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Abstract—In this paper, an improved multiplicative image wa-
termarking system is presented. Since human visual system is less
sensitive to the image edges, watermarking is applied in the con-
tourlet domain, which represents image edges sparsely. In the pre-
sented scheme, watermark data is embedded in directional sub-
band with the highest energy. By modeling the contourlet coeffi-
cients with General Gaussian Distribution (GGD), the distribution
of watermarked noisy coefficients is analytically calculated. The
tradeoff between the transparency and robustness of the water-
mark data is solved in a novel fashion. At the receiver, based on
the Maximum Likelihood (ML) decision rule, an optimal detector
by the aid of channel side information is proposed. In the next step,
a blind extension of the suggested algorithm is presented using the
patchwork idea. Experimental results confirm the superiority of
the proposed method against common attacks, such as Additive
White Gaussian Noise (AWGN), JPEG compression, and rotation
attacks, in comparison with the recently proposed techniques.

Index Terms—Contourlet transform, maximum likelihood de-
tector, multiplicative image watermarking.

I. INTRODUCTION

D IGITAL watermarking is progressively applied for
several purposes such as broadcast monitoring, data au-

thentication, data indexing, and secret communication systems
[1]–[3]. A digital watermark must have special features to guar-
antee desired functionalities. Perceptual transparency, data rate,
and robustness against attacks are three major requirements
of any watermarking system. There is a trade-off among these
requirements which has been investigated in [4] and [5] from
an information-theoretic perspective. However, depending on
the application, the importance of these features varies. For
example, for secret communication systems, the robustness
against noise and data rate is the most important feature, while
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for data authentication, imperceptibility and robustness against
different processing attacks are the most significant ones.

The increase of the power of watermark causes more resis-
tance against attacks. This point leads designers to choose the
energy of the watermark to be dependent on the still image
powers. In the attempt to match the characteristics of the water-
mark to those of the image features, larger image information
contents bear greater watermark. In other words, the power of
the watermark is proportional to the corresponding image fea-
ture samples. The simplest way to implement this principle is by
means of multiplicative watermarking. In order to employ the
Human Visual System (HVS) properties, multiplicative water-
marking is often used in the transform domain. The transforms
usually selected for digital watermarking are Discrete Cosine
Transform (DCT), Discrete Fourier Transform (DFT), and Dis-
crete Wavelet Transform (DWT) [6]–[9], which concentrate the
energy of the host signal in a fewer components. It has been
proven that the kernel of DWT is well suited for representing
one-dimensional discontinuities. However, when the dimension
increases, wavelets fails to represent singularities.

The limited capability of wavelet transform in capturing
directional information in two dimensions, resulted in intro-
ducing many directional image representations in recent years
which can capture the intrinsic geometrical structures in natural
images such as smooth curves and contours. Some examples
include the steerable pyramid [10], brushlets [11], complex
wavelets [12], dual tree complex wavelets [13], directional
wavelet frames [14], wave atoms [15], bandlets [16], ridgelets
[17], curvelets [18], and contourlets [19], [20].

Curvelet transform is defined to represent two dimensional
discontinuities more efficiently, with less error in a fixed term
approximation [18]. However, since curvelet transform has been
introduced in continuous domain, it does not have acceptable
performance in critical discrete applications. As an improve-
ment on the curvelet transform, Contourlet Transform (CT) is
proposed by Do et al. [19] using Pyramidal Directional Filter
Bank(PDFB). The main advantage of contourlet transform
over other directional representations is that it allows different
number of directions at each scale while achieving nearly
critical sampling [19]. Besides, it employs iterated filter banks,
which makes it computationally efficient. By utilizing the per-
formance of the contourlet transform in capturing directional
information of image edges, some watermarking algorithms
have been proposed so far [21]–[25]. In [21]–[23], the additive
watermarking methods are proposed, while references [24] and
[25] investigate the multiplicative watermarking approaches.
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Different approaches have been used for implementing mul-
tiplicative watermarking schemes. In [3] and [26], a correlation
detector has been used for this purpose. However, since corre-
lation detection is suboptimal for multiplicative watermarking
in a transform domain, several alternative optimum and sub-op-
timum decoders have been proposed [27]–[31]. In [27], a robust
optimum detector for the multiplicative rule
in the DCT, DWT and DFT domains is proposed. The distri-
bution of high frequency coefficients of DCT and DWT are as-
sumed to be Generalized Gaussian (GG) while the magnitude
of DFT coefficients are modeled by Weibull distribution. So-
lachidis et al. [32] has calculated the distribution of DFT coeffi-
cients analytically and has shown that it is not exactly Weibull.
They have designed an optimum detector for multiplicative wa-
termarks in the DFT domain of nonwhite signals. In [31], the
locally optimum detector for Barni’s [28], [29] multiplicative
watermarking scheme using HVS in the wavelet transform do-
main has been proposed. Li et al. have proposed an ML detector
for multiplicative watermarking in the contourlet transform do-
main [24]. They have assumed that the distribution of the re-
ceived coefficients is GG, and hence their receiver is sub-op-
timum for noise free environments.

In this paper, in order to achieve higher robustness against
AWGN and JPEG compression attacks, the multiplicative
watermarking approach in the contourlet transform domain is
used. We introduce a new multiplicative watermarking scheme
to match the watermark message to the contourlet coefficients in
an optimum way. The contourlet coefficients are multiplied by
two special functions depending on the value of the watermark
bits. These functions are optimized for the highest robustness
against AWGN and JPEG attack. For data extraction, similar to
[8], [33], the ML detector has been used utilizing GGD property
of the contourlet coefficients. To this aim, the density function
of the noisy contourlet coefficients is analytically computed. In
order to decrease the complexity of the receiver, the distribution
of these coefficients is approximated with a suitable function.
Under this estimation, the optimum threshold of the proposed
multiplicative watermarking method is evaluated. We also
extend the proposed method to a blind technique which does
not need side information.

The rest of the paper is organized as follows. In Section II,
a brief introduction of contourlet transform is given. The sta-
tistical modeling of the proposed watermarking scheme is pre-
sented in Section III. In Section IV, the proposed multiplicative
watermarking method based on the contourlet transform is in-
troduced. In the same section, the optimum threshold in the ML
detector is analytically investigated. The multi-objective opti-
mization approach to find the best value for the strength factor is
elaborated in Section V. Section VI contains simulation results
about the robustness of the proposed approach against common
attacks and the comparison of its performance over other water-
marking techniques. Finally, Section VII concludes the paper.

II. CONTOURLETS

For piecewise continous 1-D signals, wavelets have been es-
tablished as a right tool in generating efficient representation.
However, natural images are not simply stacks of 1-D piece-
wise smooth scan-lines, but they have many discontinuity points

Fig. 1. (a), (b) Laplacian pyramid one level of decomposition and reconstruc-
tion; (c), (d) directional filter bank frequency partitioning and the multichannel
view of tree-structured directional filter bank.

along smooth curves and contours. Thus, separable wavelets
cannot capture directional information in two dimensions. To
overcome this shortcoming, many directional image represen-
tations have been proposed in recent years [10]–[20].

Implementing the idea of combining subband decomposition
with a directional transform, Do and Vetterli [19] introduced
a multidirectional and multiscale transform known as the con-
tourlet transform, which consists of two major stages: the sub-
band decomposition and the directional transform. Laplacian
Pyramid (LP) [34] filters are used as the first stage and Direc-
tional Filter Banks (DFB) [35] as the second stage.

First, for the multiscale decomposition it uses Laplacian
Pyramid (LP) filters. The LP decomposition at each level gen-
erates a downsampled lowpass version of the original and the
difference between the original and the prediction, resulting in
a bandpass image. Fig. 1(a) and (b) depicts the decomposition
and reconstruction processes as suggested in [36], where
and are orthogonal analysis (lowpass) and synthesis filters,
respectively, and is the sampling matrix. The process can be
iterated on the coarse (downsampled lowpass) signal.

The directional decomposition stage is also constructed based
on the idea of using an appropriate combination of shearing op-
erators together with two-direction partition of quincunx filter
banks at each node in a binary tree-structured filter bank, to ob-
tain the desired 2-D spectrum division as shown in Fig. 1(c). As
discussed in [19], it is instructive to view an level tree-struc-
tured DFB equivalently as a parallel channel filter bank with
equivalent filters and overall sampling matrices as shown in
Fig. 1(d), where the equivalent (directional) synthesis filters are
represented by . The corresponding overall
sampling matrices were shown in [19] to have the following di-
agonal forms:

for
for

(1)

This basis exhibits both directional and localization properties.
Combining the Laplacian pyramid and the directional filter

bank into a double filter bank structure the contourlet transform
is developed. Fig. 2(a) shows the decomposition used in the con-
tourlet filter bank. Bandpass images from the LP are fed into
a DFB to capture the directional information. By iterating this
scheme on the coarse image, the image decomposes into direc-
tional subbands at multiple scales. This cascade structure helps
the user to decompose different scales into different directions.
An example of frequency partition of the contourlet transform
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Fig. 2. (a) Contourlet filter bank: Laplacian pyramid as the first stage and di-
rectional filter bank as the second stage. (b) Example of frequency partition by
the contourlet transform [19].

Fig. 3. Contourlet transform of the Barbara image. The image is decomposed
into two pyramidal levels, which are then decomposed into four and eight direc-
tional subbands. Small coefficients are showed by black while large coefficients
are showed by white [19].

is shown in Fig. 2(b). This type of frequency partitioning leads
to the sparsity of the contourlet coefficients, i.e., only the coef-
ficients with both direction and location on the original image
edges has significant values. This can be clearly seen in Fig. 3,
where the contourlet transform sub-bands of the Barbara image
is shown.

III. STATISTICAL MODELING

As discussed in [20], the contourlet coefficients are highly
non-Gaussian. As an example, the histograms of two finest con-
tourlet subbands of the image Barbara are shown in Fig. 4. The
peaks near the mean decline rapidly unlike the Gaussian distri-
bution. As a criterion, consider the kurtosis which is defined as

(2)

where is a zero-mean random variable with the standard de-
viation of . For the Gaussian distribution, the kurtosis is 3.
As shown in Fig. 4, the kurtosis of the two finest contourlet
subbands of Barbara image are 26.95 and 19.58, respectively,
which are much higher than 3.

However, as studied in [37], the contourlet coefficients are
well modeled by i.i.d. random variables with Generalized
Gaussian Distribution (GGD)

(3)

Fig. 4. Histogram of two finest contourlet subbands of the image Barbara. The
kurtosis of the two distributions are measured at (a) 26.95 and (b) 19.58, showing
that the coefficients are highly non-Gaussian.

where ,
, is the standard deviation of , is the

shape parameter, and is the Gamma
function. Special cases of the GGD density function include
the Gaussian distribution with , and the Laplacian with

.
In our watermarking approach, as will be used in the next

section, the contourlet coefficient is multiplied by an even
monotonic (for ) strength function . Thus, if we show
the watermarked coefficients by , we have .

is selected such that is still monotonic for all s.
According to [38], for a monotonic function we have

(4)

where and are the density functions of the random vari-
ables and , respectively. Therefore, the distribution of
can be defined as

(5)

At the receiver, we receive the coefficients contaminated by
noise or other kinds of attacks. We assume that the attack noise is
zero mean AWGN with the distribution of . Therefore,
the received coefficients are . Since the contourlet
coefficients are considered to be independent of the noise term,
we have , where is the convolution op-
erator. Then, considering the contourlet coefficients to be GGD,
we have

(6)
where is the inverse function of the ; that is,

.
To find a closed form answer for , we estimate the

Gaussian function, i.e.,

(7)
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Fig. 5. Distribution function of the noisy watermarked contourlet signal, � ���
(6), compared with the five point (8) and seven point estimations (11).

Then, substituting this function in (6), and using the trapezoidal
rule, we can compute the integral as

(8)

where

(9)

Then, after some manipulations, (8) is converted to

(10)

If we use the trapezoidal rule with seven points, instead of
five points as used in (8), in the calculation of (6), can be
estimated as

(11)

To verify the accuracy of the estimation used in calculation
of in (10) and (11), we have simulated these two estima-
tions along with (6) in Fig. 5 for an example case of ,

, and . As we can see, the estimations are both
well matched with the exact density function. However, as (10)
provides less computational complexity, we use this estimation
for further calculations.

IV. PROPOSED METHOD

A. Watermark Embedding

Imperceptibility of the watermarking algorithm is com-
monly achieved by exploiting the weaknesses of the HVS. As
demonstrated in HVS, the human eye is less sensitive to high
entropy blocks instead of smooth ones as there are usually
stronger edges in the high entropy blocks. For this purpose, we
select blocks with the highest entropy in the whole image
for the watermarking purpose. We then apply the contourlet
transform to each selected block. Calculating the energy of
the coefficients in each directional subband of the finest scale,
we choose the directional subband with the highest energy for
embedding purpose. This way, we hide the code in the most
significant direction of each block.

We embed data in these coefficients using a multiplicative
based approach. In the multiplicative watermarking, we look
for samples with large values. Thus, we should apply transforms
that concentrate the energy of the image in a few coefficients. As
discussed in Section II, wavelet transform fails in representing
2-D discontinuities occur in image edges. As a result, using the
multiresolution nonseparable filter bank structures such as con-
tourlets yields sparser coefficients, i.e., it represents the edges in
a few samples. Therefore, in the proposed method, we insert the
watermark in the edges of the most energetic contourlet subband
of high entropy blocks which are the right places to be visually
acceptable to HVS.

We embed a single bit of “0” or “1” in each block by ma-
nipulating the coefficients in the most energetic directional
subband based on the following strategy [39]:

for embedding 1
for embedding 0

(12)

where and are strength functions.
With the same inference that the most energetic directional

subband relates to the dominant direction of the block, we can
say that the large coefficients in that subband are relates to the
strong edges in the block and we can embed more data in these
coefficients. This verifies that the strength function must
be an increasing function for . Although a linear function
may be a straightforward choice in this case, we found that the
rate of increasing should not be linear because we have much
higher capacity in larger coefficients and with linear function we
either may miss this capacity or may cause visible distortions in
the image because of high changes in small coefficients. Thus,
we need a nonlinear increasing function. Exponential function
is a good choice which gives us a large change in larger coeffi-
cients and small changes in smaller coefficients.

Considering these facts, we suggest the strength functions to
be even and monotonically exponential functions, i.e.,

(13)

(14)

To define the parameters used in these functions we use the
following reasoning.

— : This parameter has an important role in the rising rate
of strength function. In our experiments, we found that
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considering the amplitude of contourlet coefficients,
gives us a suitable rate for the exponential function

because we now that the exponential function vanishes to
95% after three time constants, which is at

in our case. Thus, the strength function reaches its final
value after , which is a good point for us as for
many directional subbands the maximum amplitude of co-
efficients occurs near this value.

— : For small coefficients we have . This
is the minimum strength we use for embedding. We fixed
this value to 1.3. As we see in our experiments that this
minimum strength is endurable in most of the energetic
subbands and preserves the transparency.

— : Our reasoning to define the parameter in
is to make this function to show the behaviour of
for large values. This way, we increase the host coeffi-
cients for “1” embedding and decrease them for “0” em-
bedding. Thus, considering the fact that for large values,
the exponential term is small in compare with , we can
approximate this function as

Thus, we have, , , .
— : This parameter determines the values of and

functions for larger coefficients, when the exponen-
tial function is vanished. We decided to find this parameter
dependent to the image as in some images we may be able
to apply more or less strength in large coefficients while
preserving transparency. Thus, using an optimization algo-
rithm, as shown in Section V, we determine this parameter.

In summary, we relate the parameters in and to
each other through

(15)

In addition, we restrict to be larger than 1.3.
We can see that is the only degree of freedom for defining

and . As shown in Fig. 6 for different values of ,
has an exponentially ascending trend for and is

larger than unity. On the other hand, has an exponen-
tially descending trend for and is smaller than unity.
These functions are selected exponentially in order that larger
coefficients change more than smaller ones during the water-
marking process since the larger coefficients are related to the
strong edges in the supposed directional subband.

Moreover, as mentioned in Section III, these functions must
be defined such that is monotonic. As shown in Fig. 6,

is a monotonically ascending function for ; thus,
is also monotonically ascending for all s. However, as

is a monotonically descending function for , the
monotonicity of must be investigated.

If we write in terms of parameter for
, we have

(16)

Fig. 6. Strength functions (a) � ��� and (b) � ��� for different values of � .

Calculating the derivative of with respect to , we have

(17)
If we let and , (17) can be rewritten
as

(18)

Since and , we have and . Calcu-
lating the derivative of with respect to , we have

(19)

This function is negative for and positive for .
Thus, is minimum at with the value of

, which is positive for . In other words, for
, is positive and as a consequence,

is monotonically ascending for all s. Since the practical
range of is between 1.3 and 2, we are sufficiently far from
the maximum acceptable value of . Therefore, the
proposed functions in (13) and (14) satisfy the monotonicity of

, and, thus, they are invertible as required in Section III.
Applying the inverse contourlet transform, we reconstruct the

watermarked block. Repositioning each block in its position in
the image, we create the watermarked image. The block posi-
tions and the GGD parameters ( and ) should be sent along
with the watermarked image. The block diagram of the proposed
watermarking method is shown in Fig. 7(a).

B. Watermark Detection

For detecting the watermark data in each block, we suggest a
detection scheme based on an optimum detector. Fig. 7(b) shows
the block diagram of the proposed detector.

Suppose that represents the contourlet coefficients of the
most energetic directional subband of a specific block. We as-
sume these coefficients to be independently and identically dis-
tributed (i.i.d.) as . Besides, we approximate the distri-
bution of the watermarked coefficients attacked by AWGN from
(10).

In order to have ML decision, we must have

(20)

where the left term is the distribution of the coefficients in a spe-
cific block with coefficients for “1” embedding and the right
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Fig. 7. Block diagram of the proposed watermarking scheme: (a) embedding; (b) detecting.

term is the same distribution for “0” embedding. By considering
the i.i.d. distribution of the contourlet coefficients, these distri-
butions are defined as

(21)

where and are computed from (9) using the
strength functions and , respectively.

Inserting (21) in (20), we can find the watermarked bit using
the optimum detector.

As we can see, the best decision depends on the noise stan-
dard deviation in the watermarked directional subband, . To
estimate this parameter, we can use a Monte-Carlo method as
suggested in [37].

For the noise free environment, (20) and (21) can be simpli-
fied as

(22)

where

where and are the inverse functions of
and , respectively.

Considering (3), we need to have the standard deviation
and the shape parameter of the GGD function for the supposed
directional subband in each block.

There are two approaches to find these parameters. First, we
can use the kurtosis of the GGD coefficients to find the pa-
rameter. To do so, we first compute kurtosis as

Then, we use the method to find from the kurtosis discussed
in [40]

(23)

To find the parameter, we suggest an estimator which is
fitted for our ML detector. Suppose we have GGD coeffi-
cients in the current subband. Then, the distribution of these co-
efficients can be defined as

(24)

By applying a logarithmic function to both sides, we have

(25)

Computing the root of , we have

(26)

Besides, we can utilize another scheme discussed in [41] to
find GGD parameters. In this idea, we use an approach called
the method of moments estimator (MME) suggested to find the
shape parameter . The MME to find is given as

(27)
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where

and

Using this approach, we can simply find the shape parameter
and then use it in (26) to estimate the ML parameter.
We can use both of these approaches to estimate GGD param-

eters. However, we use the first one in our simulations.

V. PARAMETER OPTIMIZATION

The strength functions and have critical role on
the performance of the watermarking scheme. These functions
can affect two factors in the watermarked image: visibility and
robustness. Since can be calculated from through
(15), we only consider the effect of . First, larger values
of can cause more distortions in the image due to the wa-
termark. On the other hand, larger values of increase the
robustness of the watermarked image against various attacks.
Therefore, there is a trade-off between visibility and robust-
ness. We utilize a multi-objective optimization technique to se-
lect an appropriate strength functions ensuring imperceptibility
with acceptable robustness.

As we see in (15), there is one degree of freedom, , in
defining the strength functions and . We thus seek
for an appropriate value of satisfying the requirement of im-
perceptibility and robustness.

We model the effect of the strength function on the visibility
using the image quality index suggested in [42], [43]. In this
quality assessment method, any image distortion is modeled as
a combination of three factors considering the properties of the
HVS: 1) loss of correlation, 2) luminance distortion, and 3) con-
trast distortion. This image quality index outperforms traditional
quality assessment methods such as MSE due to its conformity
to HVS and subjective tests.

If we denote the original and the manipulated watermarked
images with and , respectively, the quality index is de-
fined as

(28)

where , , , and are the mean values and variances
of and , respectively. Moreover, parameters and are
defined as

where is the dynamic range of the pixel values (255 for 8-bit
grayscale images), and are small constants (we

Fig. 8. Goal attainment optimization method.

choose and throughout this paper as
suggested in [42]). The best value for is achieved if and only
if for all .

Since image signals are generally nonstationary and image
quality is often spatially variant, it is reasonable to measure
statistical features locally and then combine them together.
Wang et al. [42] suggested to apply the quality measurement to
nonoverlapping block segments of the image, calculate
a local index for each block, and find the overall quality
index for blocks by arithmetic averaging.

However, as humans judge the image quality based on the
worse blocks, we decided to use the geometric averaging in-
stead. This way a single low-quality block can effectively re-
duce the overall Q. Thus, we calculate the quality index as

(29)

Thus, to show the effect of the strength function on the vis-
ibility, we define an objective function ,
where is the quality index factor calculated in (29) for the
image watermarked by the strength functions and .
This objective function reveals the effect of on the distortion
introduced in the image.

Another factor which is necessary in the watermarking
scheme is the robustness. We define another objective
function , which is calculated as the average BER
(Bit-Error-Rate) against two typical attacks which are common
in our application, for example JPEG compression with quality
factor of 10% and AWGN attack with . In other words,
for each value of parameter, we watermark the image with
the proposed scheme using the strength functions and

.
As we can see in Fig. 6, increasing the parameter increases

the strength of the proposed watermarking scheme by ampli-
fying and attenuating . Thus, it increases the distor-
tion , while decreases. Our goal is to find an op-
timum value of which minimizes both these objective func-
tions simultaneously. Therefore, we treat it as a multi-objective
optimization problem. To solve this problem, we use the goal
attainment method of Gembicki [44].
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Fig. 9. Original, watermarked and difference images using the proposed method: Baboon, Barbara, Map, Bridge, and Couple. For each image, the top one is the
original test image, the middle one is the watermarked image, and the bottom one is the five times scaled of the absolute difference between the watermarked and
the original image.

In this method, to optimize a set of objective func-
tions which have some
trade-offs, a set of design goals, and a
set of weights, are considered. Then,
the goal attainment problem can be formulated as

subject to

(30)

where is the feasible region in the parameter space , and
is an auxiliary variable unrestricted in sign. The weight vector,

, enables the designer to select trade-offs between the objec-
tives. That is, if we can tolerate an objective to be under-attained,
a smaller weight is assigned to it; conversely, if we require an
objective to be over-attained, then a larger weight must be as-
signed to it.

Fig. 8 illustrates geometrically the goal attainment method
for two objective functions. In this figure, is the feasible
region in the objective function space. The minimum value of

occurs in where vector intersects the lower
boundary of the objective space .

In our problem, we have two competitive objective functions
and . Using the goal attainment method, we can

find the optimum value of for this multi-objective optimiza-
tion problem that offers an imperceptible robust result.

VI. SIMULATION RESULTS

We have performed several experiments to test the proposed
algorithms and evaluate its performance against several attacks
which are common in our application. For the contourlet trans-
form as suggested in [19], we use the 9–7 biorthogonal filters
with three levels of pyramidal decomposition for the multiscale
decomposition stage and the ladder filters introduced by Phoong
et al. [45] (referred to as PKVA filters) for the multidirectional
decomposition stage. We partition the finest scale to eight direc-
tional subbands. The results are obtained by averaging over 20
runs with 20 different pseudorandom binary sequences as the
watermarking signal.

For this study, we use five natural images (Baboon, Barbara,
Map, Bridge, and Couple) of size 512 512. The original
test images and their watermarked version using the proposed
method with 16 16 block size and 128 bits message length as
well as the five times scaled of the absolute difference between
the watermarked and the original image are shown in Fig. 9. As
we can see, the watermark invisibility is satisfied. The mean
Peak-Signal-to-Noise-Ratio (PSNR) between the original and
the watermarked images are 39.53, 36.63, 39.87, 42.40, and
42.48 dB, respectively.

We have also tested other block sizes and bit rates as well but
here we show the results for the block size of 16 16 which de-
livers us suitable robustness against different attacks along with
an appropriate transparency of the watermark data. Besides, we
have studied the performance of the proposed contourlet base
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method over similar DWT based approach for different block
sizes to find the efficiency of implementation of contourlet. Ex-
perimental results revealed that as we have expected even for
the small block size of 16 16 there is a notable difference
between the performance of contourlet and wavelet transform.
In fact, wavelet as a separable 2-D multi resolution transform
just follows the curves as horizontal-vertical lines and essen-
tially cannot represent 2-D directional discontinuity which is
common in as image edges. Thus, contourlet has advantage over
the wavelet transform in our proposed method, in which the
great performance is obtained where the transform coefficients
are sparse.

For the proposed semi-blind approach, a typical side infor-
mation bit budget needed for an image of size 512 512 and
assuming 16 16 block size and 128-bit message length is as
follows:

i) block positions:
(we send “1” if a block is among the high entropy blocks
and “0” otherwise);

ii) 4-bit words for the shape parameter and 8 bit words
for the ML parameter as mentioned in (26):

bits;
iii) : 8 bits.
Thus, the raw side information necessitates 2568 bits/image.

The block positions, however, can be compressed to near 512
bits on the average using Arithmetic coding as a lossless coding.
Other block parameters also can be reduced with lossy coding to
near 1024 bits using Vector Quantization (VQ) with negligible
loss in the performance. Thus, in total the side information is
reduced to near 1.5 Kbits on the average per image.

A. Capacity

To show the capacity of the proposed scheme, a graph of ca-
pacity versus noise standard deviation is shown in Fig. 10. In
this graph, we have considered a fixed BER of 1% as a typical
sufficiently small error rate and investigated the maximum mes-
sage length in bits for 16 16 block size which obtains this
error rate. The average message length over five test images is
shown in Fig. 10. As shown in this figure, even for heavy noise
powers of , the capacity of the proposed method in ob-
taining the BER of less than 1% is near 60 bits.

B. Performance Under Attacks

Here, we test the performance of the proposed technique
against several common watermarking attacks such as JPEG
compression, AWGN, salt&pepper noise, rotation, and scaling
attacks.

1) AWGN Attack: In the first experiment, we investigate
the effect of AWGN to the proposed watermarking scheme.
Fig. 11(a) shows the BER of the proposed method for various
images versus different noise power. As we expect, the method
has a great resistance even against heavy AWGN attack. This is
because the receiver is optimized for the noisy environment.

2) JPEG Attack: In the second experiment, the proposed
technique is tested against JPEG compression with different
quality factor. As demonstrated in Fig 11(b), the proposed
method is highly robust against JPEG with different quality
factor up to 10%.

Fig. 10. Capacity of the proposed method for BER less than 1%.

Fig. 11. (a) AWGN attack for various test images with different noise vari-
ances. (b) JPEG compression attack for various quality factors.

3) Salt&Pepper Noise Attack: In the third experiment, the
proposed technique is tested against salt&pepper noise attack.
The BER results for different densities of salt&pepper noise
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TABLE I
BER(%) RESULTS OF EXTRACTED WATERMARK UNDER

SALT&PEPPER NOISE ATTACK

are given in Table I. We can see that the proposed method is
highly robust against salt&pepper noise attack even for high
salt&pepper noise percentage up to 5%.

4) Rotation Attack: In the next experiment, we investigate
the robustness against rotation attack. The proposed embedding
approach is robust to rotation provided that one can compensate
for the loss of synchronization. Thus, we propose a synchro-
nization technique to estimate the rotation angle, rotate back the
image and then detect the watermark code. In this synchroniza-
tion method, we estimate the rotation angle in two steps con-
sisting a coarse estimation and a fine tuning step. We use the side
information available in our semi-blind approach for the syn-
chronization purpose: the coarse estimation uses the indices of
block positions and then the fine estimation is performed using
the shape and ML parameters.
Step 1) Coarse Estimation: In the coarse estimation step,

we divide all the possible rotation angles in
to 18 segments of 10 width

and consider 18 coarse angles of
.

For each of these angles, we rotate the received
image reversely with and find the high
entropy blocks of the image. Then we count the
number of the high entropy blocks that matches
with the high entropy blocks of the original images
which has been used for watermark embedding.
The angle , which yields the most number of
matched blocks, is considered as the coarse
estimated angle of rotation. Fig. 12(a) illustrates
the corresponding number of matched blocks after
angle correction versus several rotation angles for
two test cases of Barbara image rotated by 27 and
Couple image rotated by . As it is clear from
the figures, the number of matched block is
maximized when the attacked image is rotated by

for Barbara and for Couple which
corresponds to the nearest possible coarse angles.

Step 2) Fine Tuning: The rotation angle estimated in the
previous step is a coarse estimation of the true
values. To find the exact rotation angle, we di-
vide the detected segment of the coarse estimation

to 20 small segments to find
the rotaion angle with the accuracy of 0.5 . To
this aim, we search in the fine tuning angles of

. For each fine esti-
mation angle , we first rotate the received image

Fig. 12. Estimation of the rotation angle for Couple image rotated by 27 and
Barbara image rotated by��� : (a) coarse estimation and (b) fine estimation.

reversely with and then compute the following
factor:

(31)

where and are the standard deviation of the
contourlet coefficients in each block of the original
image and the reversely rotated image, respectively.

is available at the receiver as a secret key and
is calculated in the receiver as

(32)

The angle yielding the smallest MSE is consid-
ered as the estimated angle of rotation. Fig. 12(b) il-
lustrates the corresponding MSE after angle correc-
tion versus several rotation angles for two test cases
discussed in step 1. It is clear in these figures that the
estimated angles are an accurate indication of how
much the image has been rotated.

Using the proposed two step estimation approach, we find the
rotation angle. Then, we reversely rotate the received image by
the estimated angle and use the ML detector to extract the wa-
termark code. The resulted performance is reported in Table II.
The high robustness of the proposed method is obvious.

5) Scaling Attack: The last attack we study is the scaling at-
tack. The BER results are reported in Table III. It is clear that the
proposed method is highly robust against attacks with different
scaling factors. It must be noted that for scaling factors less than
one this attack can be considered as a low pass filtering attack.
Besides, for scaling attack, we assumed that the detector knows
the original size of the image, for example, all the tested images
are 512 512. The detector also can find the image size uti-
lizing the side information. For instance, the first part of the side
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TABLE II
BER(%) RESULTS OF EXTRACTED WATERMARK UNDER ROTATION ATTACK

TABLE III
BER(%) RESULTS OF EXTRACTED WATERMARK UNDER SCALING ATTACK

Fig. 13. BER averaged results for the AWGN attacks over 100 different test
images watermarked with the proposed scheme.

information, the block positions, reveals the image size. Thus,
knowing the size of the original image, we can resize the at-
tacked image to its original size and then decode the watermark
code. In fact, the distortion after this resizing is the distortion of
(downsampling-upsampling) or vice versa.

6) Testing the Performance for Various Images: Here, we test
the performance of the proposed technique for 100 different test
images selected from different categories of natural images. The
average BER for AWGN attack is given in Fig. 13. As we can
see, we have a good robustness for these test images and this
shows the significance of other method and its generality for
various test images.

C. Comparison With Other Watermarking Schemes

In this section, to compare our watermarking algorithm with
other watermarking schemes, we use the same bit rate and PSNR

TABLE IV
COMPARISON BETWEEN OUR WATERMARKING METHOD AND MWT-EMD

METHOD [46]: BER (%) UNDER JPEG COMPRESSION ATTACK FOR Baboon
IMAGE. IN THIS EXPERIMENT, THE MESSAGE LENGTH IS 64 bits AND

PSNR OF THE WATERMARKED IMAGE IS 42 dB AS USED IN [46]

TABLE V
COMPARISON BETWEEN OUR WATERMARKING METHOD AND MWT-EMD
METHOD [46]: BER (%) UNDER ROTATION ATTACK FOR Baboon IMAGE.

IN THIS EXPERIMENT, THE MESSAGE LENGTH IS 64 bits AND PSNR
OF THE WATERMARKED IMAGE IS 42 dB AS USED IN [46]

as the bit rate and PSNR used in other techniques. The simula-
tion results are shown in Tables IV and V and Figs. 14 and 15.

In Tables IV and V and Fig. 14, we compare our water-
marking scheme with the MWT-EMD method [46] for JPEG
compression, rotation, and AWGN attacks. In this experiment,
we use the message length of 64 bits and PSNR (42 dB) for the
watermarked image as used in [46] with the Baboon image. We
see that the robustness of our method against JPEG compression
attack is slightly lower than MWT-EMD method. However,
in AWGN attack, our results are considerably better as our
detector is optimized for the noisy environment. Moreover,
we see that, unlike the MWT-EMD method, our scheme is
highly robust against rotation attack due to the synchronization
technique we used in the detector to estimate the rotation angle.

The comparison with the Ergodic Chaotic Parameter Modu-
lation (ECPM) method [47] is shown in Fig. 15. In this exper-
iment, we embed the watermark code with different message
length in the host image and attack the watermarked image by
AWGN with for different message lengths. As we can
see in Fig. 15, our method considerably outperforms the EPCM
method.

D. Extension to a Blind Technique

Here, we will suggest a blind extension of the proposed wa-
termarking technique. To make our system blind we should esti-
mate two parameters of the GGD distribution function parame-
ters: and at the receiver. For this purpose, we make a slight
change in our embedding strategy. So far, we have used (12) to
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TABLE VI
BER(%) RESULTS OF THE SUGGESTED BLIND WATERMARKING TECHNIQUE UNDER ROTATION ATTACK

Fig. 14. Comparison between our watermarking method and MWT-EMD
method [46] for different images: BER (%) under AWGN attack.

Fig. 15. Comparison between our watermarking method and the ECPM
method [47]: BER (%) under AWGN attack for the noise variance of � � �

with different message lengths.

hide data in the contourlet coefficients. Now, we only change
half of the coefficients. In other words, we use two random sub-
sets of coefficients and only embed data in the coefficients of
one subset, like the patchwork idea [48]. The indices of these
subsets are produced by a random generator and the seed is sent
to the decoder side through a secure channel. Besides, we main-
tain the other half of the coefficients unchanged. If we put the
coefficients in the selected subband in a vector and show them

by , the embedding process is performed using the following
strategy:

for embedding 1
for embedding 0 (33)

where is the random subset mentioned above.
On the receiver end, we use these unchanged coefficients to

estimate the GGD parameters and . Therefore, we do not
need to send these parameters as the secret key and our scheme
is blind. is estimated by solving

(34)

where is the kurtosis of the unchanged coefficients (in other
subset). If we call these coefficients , is computed as

(35)

where is the number of coefficients in the selected subband.
To estimate the parameter, we use our ML estimator given

in (26); however, we only use unchanged coefficients . Thus,
is estimated by

(36)

Thus, for this blind version, no side information is needed
because the value of the is already set as an agreement be-
tween the coder and decoder, the shape parameter and the ML
value are estimated from the unchanged subset of contourlet co-
efficients, and the indices of high entropy blocks are estimated
using error correction codes as proposed in [49].

The results of the suggested blind watermarking technique
for JPEG and AWGN attack are shown in Fig. 16. Performance
under salt&pepper noise, rotation, and scaling attack are also
provided in Tables VII and VIII. It is found that although the
performance of the suggested blind technique is slightly lower
than the semi-blind scheme, it has still acceptable robustness
against various attacks. It should be noted that for the rotation
attack in the blind version on the contrary to the semi-blind ver-
sion, we just have the fine estimation using the error correction
coding [49] and parameter estimation simultaneously. This is
why the results have a lower performance in this case in com-
parison with the results of semi-blind version.
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Fig. 16. Performance of the suggested blind watermarking technique under
(a) AWGN and (b) JPEG compression attack for various test images.

TABLE VII
BER(%) RESULTS OF THE SUGGESTED BLIND WATERMARKING

TECHNIQUE UNDER SALT&PEPPER NOISE ATTACK

TABLE VIII
BER(%) RESULTS OF THE SUGGESTED BLIND WATERMARKING

TECHNIQUE UNDER SCALING ATTACK

VII. CONCLUSION

In this paper, we have introduced a robust multiplicative
image watermarking technique in the contourlet transform do-
main. The proposed algorithm is presented in both semi-blind
and blind versions. Since the contourlet transform concentrates
the image energy in the limited number of edge coefficients,
using multiplicative approach in this domain yields high robust-
ness accompanied by great transparency. To have better control
on both imperceptibility and robustness, the strength functions
are selected optimally by multi-objective optimization ap-
proach. We model the distribution of contourlet coefficients by
GGD. Then, the distribution of watermarked noisy coefficients
is calculated analytically. Using ML decision rule, the optimum
detector has been proposed. The optimal detector guarantees
the suggested method is well suited for high noisy environment.
Experimental results over several images confirm the excellent
resistance against common attacks in the semi-blind version.
In the blind version the proposed method outperforms recently
proposed techniques in AWGN and rotation attacks, while it
has competitive results in JPEG attacks.
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