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Differential evolution with
neighborhood-based adaptive evolution
mechanism for numerical optimization

Mengnan Tian, Xingbao Gao*!

Abstract: This paper presents a novel differential evolution algorithm for numer-
ical optimization by designing the neighborhood-based mutation strategy and adaptive
evolution mechanism. In the proposed strategy, two novel neighborhood-based mutation
operators and an individual-based selection probability are.developed to adjust the search
performance of each individual suitably. Meanwhile;*the evolutionary dilemmas of the
neighborhood are identified by tracking its perfermanee and diversity, and alleviated by
designing a dynamic neighborhood model and two exchanging operations in the proposed
mechanism. Furthermore, the population size isyadaptively adjusted by a simple reduction
method. Differing from differential evolution variants based on neighborhood and evolu-
tionary state, the proposed algorithm makes full use of the characteristics of individuals,
identifies and alleviates the neighborhood evolutionary dilemmas of each individual. Com-
pared with 21 typical algorithms, the numerical results on 30 benchmark functions from

CEC2014 show that the{preposed algorithm is reliable and has better performance.

Keywords: Differential evolution, dynamic neighborhood, evolutionary state, popula-

tion reduction, numerical optimization.

1. Introduction

Over,the last decades, the global optimization has attracted a great interest of researchers,
and miany nature-inspired intelligent algorithms have been developed such as genetic al-
gorithm (GA), differential evolution (DE), particle swarm optimization (PSO), artificial
bee colony algorithm and tabu search algorithm [8, 13,19, 35,45]. Because of the simple
idea and facile realization, they have been successfully applied to a variety of engineering

contexts including engineering design, signal processing, parameter estimation and pattern
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recognition [7,8,17,30,33,34]. Among them, DE algorithm [35] is proved to be an accurate,
reasonably fast and robust optimizer for numerical optimization. However, similar to other
stochastic optimization algorithms [13,19], it is also common and challenging for DE to
find the global optimum. In particular, for complicated problems, many local optima are
more likely to cause the premature convergence and stagnation [10]. Thus, it is necessary
to further improve DE performance.

As pointed out in [10], the performance of DE depends heavily on the appropriate bal-
ance between exploration and exploitation. In particular, they access the,new,regions of
search space and those within the neighborhood of previously visited/points, respectively.
According to diversity measure, maintenance, control and learning; researchers developed
many direct and indirect measures to evaluate them such as distance-based measure, ex-
ternal archives, estimation of distribution and so on [6,22]. "Altheugh these methods can
adaptively adjust the search capability of algorithm, it is often-too difficult for them to
distinguish or control the exploration and exploitation. Tn_general, the influences of the
evolution strategies and mechanisms on the search“proeess.are employed to indirectly mea-
sure the exploration and exploitation, i.e., theresmust be a better balance between them if
better results are obtained. Thus, to improve the'search quality of DE, many methods have
been developed to achieve the balance betweenyexploration and exploitation over the last
decades [1-5,12,21,23,24,26,27,31,36-38,40, 41, 43, 44,46-50]. Among them, the perfor-
mance of the synthesized algorithms [44, 48] are mainly determined by the basic algorithm,
and the control parameters settings [1-8,12,26,31,36,37,40,41,50] are closely related to the
corresponding strategies oranechanisms. Then they are often difficult for problems at hand.
Moreover, the trial vectér generation strategies [1,4,5,21,23,24,26,27,31,40,41,43,47,49]
always control the séarch ability of algorithm directly, and the operations based on evo-
lutionary state [27, 38,46} could effectively alleviate the evolutionary dilemmas. However,
the underlying andiuseful information among individuals are still not adequately utilized.
Therefore, it is necessary and important to design some new strategies and operations to
further improve DE performance.

It is well” known that the trial vector generation strategy, including mutation and
crossover; plays an important role in the search capability of DE. In general, different
mutation and crossover operators always have quite different search characteristics and
effects. Then a number of methods have been developed to enhance the performance of
trial vector generation strategy [1,4,5,21,23,24,26,27,31,40,43,47,49]. Some of them
combine several typical strategies with various search characteristics [26,27,31,40,47], and
others properly incorporate the neighborhood topology [1,4,5,21,23,24,43,49]. Specially,

the neighborhood topology is always used to restrict the scope of interaction among in-



so dividuals such that the search capability can be adjusted effectively. For example, Ali et
oo al. [1] divided the population into equal-sized tribes and utilized the mutation strategy
s1 with different parameter settings to alleviate the stagnation and premature convergence.
2 Liao et al. [21] used cellular topology as the neighborhood topology for each individual
&3 and incorporated the direction of information flow into the mutation operation., Cai et
s al. [4] employed the neighborhood guided selection method to choose the parent individu-
es als and introduced the direction information of best/worst nearby neighbor in‘the mutation
6 process. Meanwhile, Cai et al. [5] proposed a DE framework with the ¢oncept of index-
&7 based neighborhood by extracting the promising search directions from the neighborhood
s to guide the mutation process. Although these methods make great progress in improving
s DE performance, the mutation operation in each method always remains unchanged even
70 for different individuals in the same neighborhood, and the charaeteristic of each individual
n is not considered in its mutation process. Thus, they cannot.adaptively adjust the search
7 performance of each individual. To overcome this shértcoming, it is vital to design some
7z new neighborhood-based adaptive strategies.

74 Besides, another common way to enhance the.search performance is to incorporate the
75 evolutionary state-based operations into the framework of DE. In this way, the evolution-
7 ary dilemmas are dealt with by delineating the,evolutionary states and designing special
77 operations [27,38,46]. Mohamed [27] proposed a restart mechanism to avoid the prema-
7 ture convergence by tracking the/performance of individual. Yang et al. [46] designed an
7 auto-enhanced population diversityumechanism to resolve the issues of premature conver-
s gence and stagnation by measuring the distribution of the population in each dimension.
s Even though the experimental results show that the operations based on evolutionary state
s improve the balancedbetween’ exploration and exploitation, the evolutionary states of the
s neighborhood are net comsidered and employed. It should be pointed out that the evo-
& lutionary states-ofithe neighborhood might be helpful to improve the search capability
ss and avoid,a'large number of invalid searches. Thus, it is necessary to develop some new
s operations by considering the neighborhood evolutionary state.

87 Based“en” the above important considerations and motivated by the information of
ss neighborhood being helpful to enhance the performance of the algorithm, this paper
o presents a novel differential evolution algorithm (NDE) to achieve a proper balance be-

o tween exploration and exploitation. The main contributions of the paper are as follows.

o1 1) To adjust the search performance of each individual adaptively, we propose a neighborhood-
% based mutation (NM) strategy by designing two novel mutation operators with differ-
0 ent search characteristics based on neighborhood and an individual-based probability
9 parameter to choose a more suitable operator. Differing from the neighborhood-based
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DE variants [1,4,5,21,23,24,26,27,31,40,41,43,47,49], NM strategy uses neighborhood
information and individual information to design mutation operators and probability
parameter, respectively. Then the worse or better individuals can suitably choose
an explorative or exploitative mutation operator to search the decision space. Thus,
NM strategy could effectively preserve a proper ratio between exploration and ex-

ploitation according to the performance of each individual.

To identify and relieve the evolutionary dilemmas of neighborhood, we’ propose a
neighborhood-based adaptive evolution (NAE) mechanism by tracking its perfor-
mance and diversity and presenting a dynamic neighborhood model‘and two exchang-
ing operations, respectively. The proposed model guides the search to a promising
region and helps to jump out of the local optimum by adding’new individuals to
the neighborhood. Meanwhile, two exchanging operations deals with the premature
convergence and stagnation by using the binomialcrossover operation to intercross
the current individual with one randomly generated from the search space and the
best one in the neighborhood, respectively. Unlike the evolutionary state-based DE
variants [27,38,46] that always investigate the'evolutionary states of the whole popu-
lation, NAE mechanism employs the performance and diversity of the neighborhood
to identify its evolutionary states,.and.deals with the different evolutionary dilem-
mas by the dynamic neighborheed model and two exchanging operations. Then NAE
mechanism could effectivelyidentify and alleviate the different evolutionary dilemmas

of the neighborhood tod@adjust,the search capability and improve the search efficiency.

A simple reduction method is employed to adaptively adjust the population size such
that the diversity and exploitation capability can be maintained and enhanced at the

earlier anddater evelutionary processes, respectively.

Therefore, the proposed algorithm could not only adjust suitably the search performance of

each individualybut also maintain a proper balance between exploration and exploitation.

Finally, ‘mumerical experiments are carried out to evaluate the performance of NDE by

comparing it with 21 typical algorithms on 30 benchmark functions from CEC2014 [20].

Meanwhile, NDE is also applied to Parameter Estimation for Frequency-Modulated Sound

Waves. Experimental results show that the proposed algorithm is very competitive.

The reminder of this paper is organized as follows. In Section 2, the classical DE

algorithm is briefly introduced. A novel differential evolution with NAE mechanism is

proposed in Section 3. The experimental results of the proposed algorithm are reported

and discussed in Section 4. Finally, conclusions are drawn in Section 5.
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2. Classical DE algorithm

The basic DE includes initialization, mutation, crossover and selection. Specially, con-
sider the minimization problem min{f(Z)|2]"" < x; < x7** for j = 1,2,---, D}, where
¥ = (x1,m9,--+ ,xp) represents the solution vector, D is the dimension of the solution
space, x;m” and z7"" are the lower and upper bounds of the j-th component of solution
space, respectively. At the beginning of DE algorithm, initial population £% = {& =

(291,209, - a0 p)li =1,2,--- , NP} is randomly generated by

0 min max min
v, = 2" +rand(0,1) - (27" — 27""), (1)
where x?vj is the j-th component of the i-th vector 79, NP is{the population size and

rand(0,1) € [0, 1] is a uniform random number. Then the mutation, érossover and selection
operators will be executed in turn until the termination criterion.is met.
At each generation g, the mutation operation is appliedito each individual 77 to generate

its mutant individual @¢. In particular, the operator.“DE/rand/1”

U =+ F - (T ) (2)

(2

is only used in this paper, where F' is a scaling factor, the indices r1, ro and r3 are the
distinct integers randomly generated from. [1,;'V P| and not equal to 7. Then the crossover
operation is performed for 7 and¥7 %o generate its offspring @?. Specially, the binomial

crossover operator [10] can be described as follows:

(3)

g { Vi gy Af rand < Cr or j = randn(i),
z! ;] otherwise,

where Cr € [0, 1] 48 the crossover rate, and randn(i) is an integer randomly generated
from the range [1; V'P]\to ensure that @ has at least one component from ¢¢. Finally, the
following selgction opération [10] is executed to decide whether 77 or @ can survive in the
next generation

. { @, i f(i) < () @)

T .
k 7, otherwise.

Note that DE with (4) will get better or remain the same fitness, but never deteriorate.
The detail procedure of the classical DE can be found in [35].

3. Proposed algorithm

Even though the classical DE algorithm is simple and strongly robust, it is often difficult to

deal with some practical or complicated problems. Then various DE variants have achieved
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to strengthen its performance and great progress has been made as mentioned in Section
1, yet there are still several shortcomings. For example, DE variants with neighborhood
information rarely use the characteristics of individuals in the same neighborhood during
mutation [1,4,5,21,23,24,43,49]. The variants based on evolutionary state might not be
suitable for adjusting the search capability of algorithm for complex problems since they
only focus on the evolutionary states of the whole population [27,38,46]. To” overcome
these drawbacks, we shall propose a novel DE variant with adaptive evolutien mechanism
based on neighborhood in this section. Specially, we design two novel NM,operators with
different search characteristics and choose a suitable one for each individual @ccording to
its characteristic. Meanwhile, the proposed algorithm identifies the evolutionary states of
neighborhood by tracking its fitness value and diversity, and relieves the different evolu-
tionary dilemmas by presenting three operations.

For the convenience of the later discussions, let N (i) demote-the neighborhood of ¥,
Ngize, and N, denote the size and radius of N (i)‘respectively, f‘zbesti denote the best
individual among N (7), fitpworst;, fitnpest; and fitjauer;"deénote the worst, best and average
fitness values among N (7) respectively, Numg;vand Nums; denote the number of the suc-
cessive unsuccessful update of 77, ., and filyaver{ respectively, Std,s, denote the standard
deviation of the fitness values of individuals in NAz2) and Std,, faver denote the average value
of Std,y, for all individuals.

3.1. NM strategy

As pointed out in [24], population topology is helpful to balance the exploration and
exploitation by controlling the scope of interaction between particles and affecting the
dissemination of search/information. However, the existing neighborhood-based DE vari-
ants [4,5,21] do‘not consider the characteristics of individuals within the same neighbor-
hood, and always use’the unchanged mutation strategy such that the search performance
of each individual/cannot be adaptively adjusted. Thus, to alleviate this shortcoming, we
propose the following NM strategy by designing two novel NM operators and an individual-
basedwprobability parameter:

nry

T+ F(#,,., — 30 + F(39, —#9,) + F(#% — 7.), otherwise, (5)

nbest

by _ { w9, +F@9 —29), ifrand(0,1) < &,

nri nro

where F' is a scaling factor, r; and ry € [1, NP] are two random integers and not equal
to i, the neighborhood N (i) of the i-th individual #7 is constructed by ring topology [24],
nry and nry are two random integers from N (i) and not equal to 4, & ; is a probability

parameter based on the performance of 7.
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Obviously, the first strategy in Eq. (5) takes the individual randomly chosen from the
neighborhood N (i) as the base individual and searches around it. But another one uses
the current individual as the base individual and searches the search space along the best
individual in its corresponding neighborhood. Meanwhile, a difference vector from the
whole population is employed to enhance their global search capability. Then they can
make full use of the neighborhood and whole population information, and the former has
stronger exploration ability than the latter. Thus, NM strategy could effectively improve
the balance between exploration and exploitation by choosing a suitable strategy based on
a probability for each individual.

From Eq. (5), the probability parameter & ; plays an important reletin its performance
since an unreasonable setting will lead to explore or exploit ineffectively the information
of each individual. To choose a suitable mutation operator forseach individual and make
full use of its characteristic, let

fitnaver, — JR(1) 021
S tnworst; “Cf Vs,
where fit(i) is the fitness value of ¥, and

1

&, = (1 +exp(20 , (6)

ST fit(k) (7)

81264, LN (5)

fitnaveri =

with N, being the size of N(i). Erom Egs. (6) and (7), & ; becomes smaller or larger
if 77 has better or worse fitness?, Then the individual with worse or better performance
has more chances to employ.theymutation operator with more explorative or exploitative
in Eq. (5). Thus, the proposedistrategy can adaptively adjust the search performance of
each individual.

In summary, the proposed strategy in Eq. (5) develops two novel NM operators with
different search-characteristics, and an individual-based probability parameter to choose
a suitable one for each individual. Unlike the methods [4, 5, 21] that do not consider
the differences between individuals in the same neighborhood, NM strategy searches the
broader region or the more promising position around the worse or better individual. Thus,
it conld.not only make full use of the neighborhood information, but also adaptively adjust
the séarch performance for each individual. Therefore, the proposed strategy effectively
adjusts the exploration and exploitation, which is shown by the experiments in Subsection
4.2.1.

3.2. NAE mechanism

The existing neighborhood models [4, 5,21, 24] are always fixed, and their evolutionary

states are not identified and employed to improve the algorithm performance. Then they

7
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will waste a great number of computational resources whenever the neighborhood is in an
evolutionary dilemma, and cannot properly adjust the search capability of each individual,
especially for complicated problems. To identify and overcome the evolutionary dilem-
mas of neighborhood effectively, we propose a NAE mechanism by using the performance
and diversity of the neighborhood and designing a dynamic neighborhood model and two
exchanging operations in the following.

In the proposed mechanism, the neighborhood evolutionary state is characterized by
its performance and diversity. To evaluate the performance of the neighborhood of ¥,
we employ two counters, Numg; and Nums;, as the indicators to record the number of

the successive unsuccessful update of &9,

;, and the number of the unsugccessful update of
fitnaver, during Numyg; iterations, respectively. Set them to 0 at the beginning, increase
by 1 when the best individual fﬂbesti and the average fitness valueyfit,qer, of N(i) are not
improved respectively, and return to 0 when a better fflbesti is'obtained. On the other hand,
the diversity of the neighborhood is characterized by the standard deviation (Std,,y,) of the
fitness values of the individuals in N (7). In general /alarger.or smaller Std,, s, means that the
individuals in N (7) are relatively scattered or crowded. Fhen the neighborhood with smaller
or larger Std,s is more likely to suffer from the premature convergence or stagnation
whenever no individual is updated after.severalisuccessive generations. Clearly, it requires
less computational costs to evaluate the diversity of neighborhood in the objective space
than that in the search space.

According to the counters Numgzand Nums;, the following two evolutionary dilemmas
of the neighborhood mightsbetencountered when Numg; meets a prescribed limited value
gm.

(i) The ratio Nums;/Numg; is close to 0, i.e., fitpaper, 18 not improved within few
iterations during/Nwumgsniterations. This might be due to the fact that the best individual
in the neighberhood might be located at the local optimum, but the other individuals do
not converge to it., Then it is useless to further search in the current neighborhood, and
the neighborhood topology should be reconstructed to guide the individuals toward a more
promisingiregion. To do this, we develop the following dynamic neighborhood model to

enlarge the neighborhood N (i) of Z{ by adding new individuals.
Nrsizei = Nrsizei + 17 (8)

where Nygize; = (Ngize;, — 1)/2 is the radius of N(i). At the beginning, let N,g.., be 1 to
ensure the exploration of the algorithm in the early evolutionary stage. Furthermore, to

ensure the rationality of N,..,, let
Nisize; = min(Nygize,, floor(0.5- (NP —1))), 9)

8
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where min(a,b) returns the minimum one between a and b, and floor(c) is the nearest
integer smaller than c. Clearly, Ny;.., is increased and 7 searches within a more promising
region when the dilemma occurs. Thus, the proposed model could help to jump out of
local optimum, and effectively adjust the search performance of 77.

(ii) The ratio Nums;/Numg; is close to 1, i.e., there is almost no progress on fit,qver,;
during Numyg; iterations, which may be due to the premature convergence or stagnation.
According to [46], the evolutionary state of N (i) shall be regarded as the premature conver-
gence or stagnation when Std,,y, is smaller or larger than the average diversity Std,, rqper Of
all neighborhoods. In general, they can be alleviated by enhancing the diversity of neigh-
borhood and making full use of the information of the promising individuals, respectively.
To do this, we design the following two exchanging operations,

Regenerate # as

(10)

Ty

e { 27, if Stdyy, < Stdifuer,

g9 .
r'p,;, otherwise,

where I = {h,I5,--- ,Ip} with [; = x;m" + rand(@,1) - (z7" — QU;’”") for j=1,2,---,D,

9 (1 19 .. 19 9 a9 9. 09
Tri= (x 1,i10 T 152 » T I,i,D) and 2'p,; = (a Biw L B2 , X B,i,D) are generated by
w L if rand(0,1) < &4, (1)
T1ig =l otherwise
1,79
and
g : 4
.Z'/g — xnbesti,j7 if Tand(oﬁ 1) < 52,27 (12>
Bti ) a? otherwi
50 wise
for j =1,2,--- , Dvespectively, &, ; is the crossover parameter.

To make fulluse of the information of Z and ensure the convergence of algorithm
during the later evolutionary process, the possibility of intercrossing #7 with fibesti or [

should bé smalleras the iteration proceeds or it has better performance. Then, let

FES fitmam - flt(Z) )
FESmaz7 fitmam - fltmln 7

52,2‘ =1- mm(

(13)

where’ FES and FES,,,, are the current and maximum number of fitness evaluations
respectively, fit(i), fitmas and fit,,, are the fitness values of 7, the worst and best
individuals among the whole population, respectively. From Eqgs. (10)-(13), the diversity
or the promising information of the neighborhood N (i) can be enhanced or exploited by

exchanging 77 with I or 7

; whest;- L 1us, these proposed operations could effectively alleviate

the premature convergence and stagnation.
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Obviously, the neighborhood is more likely to fall into the local optimum, or suffer from
the premature convergence and stagnation when Numg; exceeds gm. Then the parameter
gm plays an important role in the identification of evolutionary states, and should not be
too large for simple functions, and not too small or too large for the complicated problems.
In fact, for simple problems, a small gm will lead to a rapid increase of the size of neigh-
borhood so that the promising information can be exploited to improve convergence. For
complicated problems, a too small gm could cause a premature judgement of dilemmas on
the evolutionary states such that some promising information in the current neighborhood
cannot be fully utilized. Meanwhile, a too large gm will waste a large amount of com-
putational resources due to the ineffective searches after the neighboerheod is truly in the
evolutionary dilemmas. Thus, let gm = 10 from the sensitivity analysis in Subsection 4.1.

From the above discussions, the proposed mechanism identifies, the evolutionary states
of the neighborhood by using its fitness value and diversity; and deals with its different
evolutionary dilemmas by developing a dynamic neighborhood model and two exchanging
operations. In particular, when Numg; exceeds gniand*Nums; /Numg; approaches 0, new
individuals are added in the current neighborhoed to emhance its diversity. This is helpful
to jump out of local optimum and guide the search toward a more promising region. On
the other hand, when Nums;/Numg; approaches 1, the current individual #7 is exchanged

. g _;g
with I or &7,

to enhance the diversity orwutilize the promising information of better indi-
viduals. Meanwhile, the exchanging prebability becomes smaller as the iteration proceeds,
or when #¥ has better performances Unlike the DE variants [4,5,21], the proposed mech-
anism can identify neighborhoed dilemmas, and alleviate them by enhancing its diversity
and making full use of promising information. Therefore, the proposed mechanism effec-
tively adjusts the seatch performance of each individual and improves the search efficiency.

Furthermore, its éffectiveness is illustrated by experiments in Subsection 4.2.2.

3.3. Parameter setting

It is well known that the control parameters, including scaling factor F', crossover rate
Cr and, populations size N P, also influence the search capability of algorithm mainly, and
appropriate parameter settings can enhance its performance [1-3,10,35,37]. In particular,
the constant method in [35] improves the running efficiency of DE algorithm, yet it always
takes more time to tune and is unsuitable for all problems. The random method [10] can
enhance the robustness, but it could not adapt to the different evolutionary processes.
Unlike the constant and random methods [10,35], the adaptive methods [2,37] can dynam-
ically adjust parameters and effectively balance the exploration and exploitation. To make

full use of feedback information, we set F' and Cr by employing the weighted adaptive

10



o method [37] as follows.

311 For the individual Z7, its corresponding scale factor

3

=

F?! =randc(F?,,0.1), i=1,2,--- NP, (14)

locy

sz where randc(F} ,0.1) is the cauchy distribution with location parameter

loc?

F/ =(1-c¢)- Folie. m@anWL(S}gr_l)a (15)

loc loc

as ¢ € (0,1] is a constant, S%fl is the set of successful F' values at g — 1 generation;

—1
[S% 1

. 2
meany (S5 ) = T;l,l‘wk b (16)
oy W Fy
314
Afi
W = ﬁ (17)
RRYAY )2
us and Afy = |f (ﬁzfl) —f (fzfl)]. Similarly, the corresponding crossover rate is set as
Cr! =rand,,(Crd, on,0), ©=1,2,--- NP, (18)

ss  where rand,, (Cr9,,,.,0.1) is the normal distribution with standard deviation 0.1 and mean

mean’ -

Crd

mean

=(14c)-Qrot 4 c. meCmWA(S%ZI), (19)

mean

s S 1 s the set of all successful Cr wvalues at g — 1 generation,

-1
1S&,

meany (S, ") = Z wy, - Cry, (20)
k=1

us and wy, is defined iny(17). To ensure the validity of FY and Cr{, let F} be truncated to 1
ne if FY > 1 and be regenerated by (14) if FY < 0, and

0, if Crf <0
g _ ’ i )
C%i{ 1, if Cr! > 1. (21

20 Similar to [37], ¢ is set to 0.1, Fjye and C7peqn are initialized to 0.5.
321 Moreover, as pointed out in [1,3,37], population size reduction can effectively improve
32 the performance of algorithm. To further enhance the performance of the proposed method,

23 we employ a reduction method [37] to adjust dynamically the population size. In particular,

IS

24 the current population size NP is first calculated by

FE Smaa:

NP = round|( )- FES + NP™, (22)

11
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where round(a) is the nearest integer around a, NP™" and NP™ are the smallest and
initial size of population, respectively. Then we delete the individual with the worst fitness
value when the population size is reduced. From Eq. (22), a too large or too small N P
could cause a large amount of invalid searches during the earlier evolutionary process or
weaken the global search ability. Thus, let NP™ = 10D, which is a suitable choice by
experiments in Subsection 4.1. In addition, set NP™" to 5 since Eq. (5) requires at
least five individuals. Clearly, the population size is gradually reduced and the better
individuals are retained as the number of iterations increases. Thereforé it is,helpful to
enhance the exploitation at the later evolutionary stage, and the aboyé¢ parameter settings
could adaptively adjust the search capability and balance the expleration and exploitation
effectively.

In summary, a novel DE variant (NDE) can be proposed,and,described in Algorithm
1 by integrating NM strategy, NAE mechanism and the parametér adaptation method in
this subsection.

From Algorithm 1, one can see that for each targetindividual 77, a suitable NM operator
is chosen to generate its mutant individual according toythe individual-based probability &; 1
(lines 9-15 in Algorithm 1). After each genetation, the neighborhood evolutionary state of
each individual is identified by tracking the perfermance and diversity of its corresponding
neighborhood (lines 26-36). When the evolutionary dilemmas occur, they are alleviated
by a dynamic neighborhood model and two exchanging operations, respectively (lines 38-
52). Finally, the linear reduction method is further applied to delete the worst individual
from the current population. asthe/ number of iterations increases (lines 53-56). Thus, the
proposed algorithm could mot only take full advantage of the neighborhood information
and the characteristie of each individual, but also effectively adjust the search capability
of the population:

It should be'mentioned that the DE variant [4] employs a probability to produce neigh-
bors for each individual and selects the best individual from them as the base vector to
accelerate conyergence. However, it might not exploit the promising information around
the .true meighborhood and does not consider the differences between individuals in the
mutation process. On the contrary, for each individual, the proposed NDE employs the
index-based ring topology to construct the neighborhood, and chooses a more suitable
mutation operator by developing two novel NM operators with different search capabili-
ties. Meanwhile, the PSO variant [28] uses the historical information of neighborhood to
update the learner particle, and dynamically produces the neighborhood after a certain
interval, which might not be suitable for the evolutionary process. Unlike this PSO vari-

ant, the proposed NDE adaptively adjusts the neighborhood of each individual to alleviate

12



Algorithm 1 (The framework of NDE)

1:

[\&)

Input: the initial and minimum size of population NP and NP™ the maximum number of fitness evaluations
FESnaz, the initial location parameter Fl%c? the initial average crossover rate Cr9, ..., the weighted parameter c and
the limit parameter gm.

. Set population size NP = NP™ the current generation g = 0; initialize the population P9 = {z],23,- - ,f?vp} and

evaluate its fitness; fitness evaluatlon counter F'/EES = N P; initialize neighborhood radius Nysize; = 1, Numg; = 0 and
Nums; =0 for # withi=1,2,--- ,NP;

. while FES < FES;q2 do

Sr =@ and S¢, = O;
fori=1: NP do
Construct N (i) based on ring topology structure, and calculate fitnpest;, fitnworst;, fitnavend and Stdy,p;;
Let oldfztnbest = fltnbest , oldfitnworst; = fitnworst;, oldfitnaver; = fztmwer and oldStd h Stdnf1
Calculate FY by Eq. (14), and correct it; Calculate Cr{ by Eqs. (18) and (21), and &1,; by Eqs (6).and (7);
if rand < 6,,1 then
Randomly select Z5,,, from N (3), :fle and f;% from P9 with nry #r1 # 1o #14;
ﬂg = -’znrl +Fg (xrl - fgz)§
else
Randomly select :E'm.l and :E'%,.2 from N(i), &7, and 552 from P9 with nri # nra # ri/# ro # 4;
61‘9_ +Fg (x ﬁg)JrFig'(f%n 7(2’%,“2)%*}7(:5%17:3%2);
end if
Execute the crossover operation for & x and 7Y to generate its offspring ug by Eq.(3);

nbest

Evaluate @f; FES = FES + 1;
if f(ad) < f(ff) then
FT =49, F9 - Sp and Cr9 — Scy;
else
= af;
end if
end for

Calculate meany 1 (Sr) and meanw 4(Sr) by Egs. (16), (17) and (20);
Update Fl"i;rl and Cr&t, by Egs. (15) and (19), réspectively;
fori=1: NP do
Construct N (i) based on ring topology struCture, and calculate fitnpest,, fitnworst;, fitnaver; and Stdyy,;
if fitnpest; < oldfitppest; then
Numg; = 0; Nums; = 0;
else
Numg; = Numg; + 1;

if fitnaver; > oldfitnaver; then
Nums; = Nums; + 1;
end if
end if
end for

Calculate Std, faver =300 Stdyf, /N P;
fori=1: NP do
if Numg; = gm-then
if rand > Nums;/Numg; then
Nrsizev; 3 Nrsizei +1; Nrsizei = min(NrsizewflOOT(Oﬁ * (NP — 1)));
else

if Stdnjl < Stdnf(wer then
Generate z/; by exchanging Z7 with I'by Eqgs.(11) and (13);
else
Generate a:’ by exchanging &Y with & Z'nbest by Egs.(12) and (13);
end if
#¢ = 2'}; Evaluate #/; FES = FES + 1;
end if
Numg; = 0; Nums; = 0;
end if
end for

P'm,in

N Ppew = round|( N FESm“

if NPpew < NP then
Delete the worst NP — N Ppeq individuals from P9 based on the fitness and their corresponding records;
NP = NPnew?

end if

g=g+1

") FES + NP™i];

. end while
: Output: The best individual and its fitness value.
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the evolutionary dilemmas by designing a dynamic neighborhood model and two exchang-
ing operations according to its evolutionary state. Moreover, the proposed NDE adopts
a linear reduction method to adaptively reduce the population size with the increase of
iterations, while each population size in [4] and [28] is fixed. Therefore, NDE has more
promising performance to adjust the search capabilities of different individuals and adapt

to the different evolutionary stages.

3.4. Complexity analysis

In this subsection, we shall analyze the complexity of NDE, whichtis ja very important
criterion for evaluating the performance of an algorithm. Obviously, theymain differences
between NDE and the classical DE algorithm are NM strategy; NAE.mechanism and the
parameter setting method.

As discussed in the above subsections, the main opérations of NM strategy and NAE
mechanism are to sort the neighbors of each individual and”calculate the diversity of all
neighborhoods based on fitness values, respectively. ‘Similar to [4,21,28], their complexities
are O(G - (NP™)?.1og, NP™) and O(G - (N P™)3)espectively, where G is the maximum
number of iterations. According to [10,37],'the complexities of the classical DE algorithm
and the parameter setting method are@(G.x NP™ . D) and O(NP™ . (2-G + NP™ —
NP™m)+2.G- NP™"), respectively. Thusy the complexity of NDE is O(G - NP™ - (D +
2) + NP™ . (2. G — NP™) + (NP™)? . (G - (logy NP™ + NP™) 4 1).

It should be pointed out that.the diversity of all neighborhoods does not require to be
calculated at each generation, and/the population size is gradually reduced as the iteration
proceeds. Therefore, the complexity of NDE is more expensive, but not severe, than that

of the classical DE.algerithm.

4. Numerical EXperisents

In this section, we shall evaluate the performance of NDE by numerical experiments on
30 well-known benchmark functions fi-f30 from CEC 2014 [20] as listed in Table 1, where
search range and bias value for each function are also provided. Meanwhile, we will also
analyze the sensitivities of parameters in NDE;, illustrate the effectiveness of NM strategy
and NAE mechanism. Finally, we shall compare NDE with the classical DE, 14 variants
of DE and 6 non-DE algorithms, discuss the reliability and efficiency of NDE, and give an
application. All experiments are conducted in MATLAB R2014a on a PC (Intel i3-4570
CUP 3.20GHz. RAM 4.00 GB).

In all experiments, the stopping criterion is that the number of function evaluations
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Table 1: The benchmark functions of CEC2014

Type Name Search range  f(&*) (f_bias)
Unimodal f1: Rotated high conditioned elliptic function [—100, 1(]()]D 100
functions f2: Rotated bent cigar function [~100, 100]P 200
f3: Rotated discus function [~100, 100]P 300
fa: Shifted and rotated rosenbrock’s function [~100, 100} 400
f5: Shifted and rotated ackley’s function [~100, 100} 500
Simple multimodal fe: Shifted and rotated weierstrass function [~100, 100} 600
’ ’ f7: Shifted and rotated griewank’s function [~100, 100} 700
functions fg: Shifted rastrigin’s function [~100, 100} 800
fo: Shifted and rotated rastrigin’s function [~100, 100]” 900
fio: Shifted schwefel’s function [~100, 100]” 1000
f11: Shifted and rotated schwefel’s function [~100, 100]P 1100
f12: Shifted and rotated katsuura function [~100, 100]P 1200
f13: Shifted and rotated happycat function [~100, 100]P 1300
f14: Shifted and rotated hgbat function [~100, 100]P 1400
fi5: Shifted and rotated expanded griewank’s [~100, 100]” 1500

plus rosenbrock’s function

fi6: Shifted and rotated expanded scaffer’s function  [—100, 100} 1600
fiz: Hybrid function 1 (N=3) [~100,100]7 1700
Hybrid fis: Hybrid function 2 (N=3) [~100, 100]? 1800
functions f19: Hybrid function 3 (N=4) [~100,400]” 1900
fao: Hybrid function 4 (N=4) [~100, 100}, 2000
fo1: Hybrid function 5 (N=5) [#100;700]P 2100
faa: Hybrid function 6 (N=5) [—100, 100]” 2200
fa3: Composition function 1 (N=5) [~1003100]7 2300
Composition faa: Composition function 2 (N=3) [~100, 100} 2400
functions fas: Composition function 3 (N=3) [=100{100]P 2500
R fa6: Composition function 4 (N=5) [~100, 100} 2600
far: Composition function 5 (N=5) {~100, 100} 2700
fag: Composition function 6 (N=5) [~100, 100} 2800
fa9: Composition function 7 (N=3) [~100, 100} 2900
f30: Composition function 8 (N=3) [~100, 100]” 3000

is less than the maximum number of function evaluations (F'ES,.:), and set FES 4 =
10000D for all algorithms in Subgections 4.1-4.4. All algorithms are run 30 times indepen-
dently except for NDE in Subsection,4:3.4. The average value (Mean Error) and standard
deviation (Std Dev) of the*funétion errors f(Z) — f(Z*) are recorded to measure the per-
formance of algorithm, “where Z"and z* are the best solution found by the algorithm in
a run and the global,optimum of test function, respectively. To have statistically sound
conclusions, we adopt a)"Wilcoxon rank sum test [42] at 0.05 significance level to show
the difference’between/two algorithms on a single problem; b) the multiproblem Wilcoxon
signed-rank test [11] at 0.05 significance level to identify the differences between a pair
of algorithms;; and c¢) the Friedman test [11] to show overall rankings of all algorithms

according to'their performances on all problems.

4.1. 'The sensitivities of parameters gm and NP

Now, we study the sensitivities and interactions between the prescribed limited value gm
and initial population size NP in NDE on 6 typical functions fi, f1, fis, fis, fo2 and fg
in Table 1. Among many sensitivity analysis methods [16,18,29,32,39], the full factorial
design (FFD) [18,29] is adopted because it is simple and can demonstrate the interaction

between parameters more accurately.
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Table 2: Experimental results of NDE with various values of gm and N P™

Function fi fi fis fis fo )

D NP™ gm  Mean Error(Std Dev)  Mean Error(Std Dev) ~ Mean Error(Std Dev) ~ Mean Error(Std Dev) ~ Mean Error(Std Dev) ~ Mean Error(Std Dev)
3 4.08E+03(6.95E+03) 5.49E-12(3.36E-12) 3.32E+00(3.31E-01) 2.60E+01(1.73E+01) 7.50E+01(6.43E+01) 8.91E+02(3.35E+02)
5 A52E+03(ATIE+03)  5.99E-07(LOJE-06)  3.34E+00(T92E-01)  LA2E+OL(S37E+00)  LSIE+02(LIIE+02)  8.66E-+02(4.82E+02)
5D 10  4.14E+02(1.15E+03)  1.27E4+01(2.67E4+01)  2.88E400(7.37E-01) 1.35E+01(5.30E+00) 1.31E+02(5.44E+01) 8.32E+02(3.01E+02)
15 2.50E+03(2.71E+03) 1.38E-05(1.79E-05) 2.93E+00(6.92E-01) 1.16E-+01(7.20E+00) 2.60E402(2.25E+02) 5.72E4+02(1.17E+02)
20 2.80E+03(4.26E4+03) 4.58E-02(9.62E-02) 2.59E+00(8.96E-01) 9.08E400(2.18E400) 1.38E+02(1.05E+02) 6.37E4+02(1.67E+02)
3 4.30E-07(8.90E-07)  3.41E-14(7.19E-14)  3.80E+00(LOE+00)  122E+01(L19E+00)  7.90E-+OL(7.61E+01)  LI0E-+03(572E+02)
5 1.95E-05(5.65E-05) 5.12E-14(7.31E-14) 3.04E+00(7.40E-01) 1.23E401(3.42E400) 7.68E401(7.24E401) 7.53E+02(2.69E+02)

10D 10 591E+00(5.58E4+00)  2.94E-03(4.84E-08)  2.60E+00(4.45E-01) 5.95E+00(1.50E+00) 2.61E+01(4.46E+00) 5.14E-+02(6.93E+01)
15 292E+00(T.02E4+00)  4.22E-06(9.34E-06)  3.54E-+00(8.03E-01) 1 1%E+01(4 09E+00) 6.05E+01(6.26E+01)  7.20B02(2.24E-+02)
0 2 LOGE+01(232E401)  634E-+00(200E+01)  3.60E+00(LO3E+00)  LOSE+01(3.95E+400)  4.G6E+01(3.61E+401)  G@0E+02(1.46E+02)
3 3.94E-05(2.81E-05) 3.32E-10(1926-10)  2.83E+00(8.T5E-01) 7 WE+002.7AE+00)  9.07E01(6.93501) 7 G.0TE-03(L.GIE+02)
5 ASIE+00(9.83B+00)  3.36E-07(2.04E-07)  2.82E-+00(4.8SE-01)  G6.93E+00(LSSE+00)  5.26E+01(6.04E+01)" 6.92B-102(2,79E+02)
15D 10 182E-02(5.42E-02)  G.34E+00(200E+01)  3.33E+00(9.16E-01)  9.7IE+00(3.G0E+00)  L19E+02(L38E+02)  6.22E+02(1.19E+02)
15 136E+03(L81E+03)  4.60F-02(5.00E-02)  2.61B-+00(7.84E-01)  9.10E+00(6.13B+00)  1.OSE+02(9.78EH01))  6.4GBHG2(2.71E+02)
20 224B+03(2.24E+03)  3.02E-01(4.30E01)  3.65E+00(6.23E-01)  853E+00(5.00E+00)  5.78E-+01(566B+01) . 5.875+02(3.43E+01)
3 1.4TE-02(1.77E-02) 2.55E-06(3.48E-06) 2.95E-+00(3.22E-01) 6.05E+00(1.54E400) 5.85E+01(6.32E401) 6.69E+02(3.14E+02)
5 5.25E-01(4.55B-01) 4.62E-04(9.34E-04)  2.85E4+00(L15E+00)  GA4E-+00(297E+00)  8.4SBH01(6.49E+01)0” 5.42B-+02(1.11E+02)
20D 10 9.30E-02(2.68E-01) 1.35E-05(2.68E-05) 4.38E+00(1.09E+00) 9.95E400(4.22E400) 8.39E+01(8.61E+01) 6.41E+02(1.87E+02)
15 448B+02(384E4+02)  LT2E-01(2.13E-01)  3.37E4+00(1.09E+00)  T.80E-+00(47IE+00)  n1.19B402(8.03E401)  5.17E-+02(4.38E+01)
2 218E+03(937E+02)  LOIEF00(241E-01)  3.30B+00(LITE+00)  7.32E+00(5.65E+00) 4 1LAOE+02(B05E+02)  5.22E+02(6.07E+01)
3 6.10B+04(LT9E+04)  3.33E-+01(222E+01)  6.60E+00(LA0E+00)  7.09E+01(L56E-+01) o d60B+02(LOTE+02)  9.00E-+03(4.14E+02)
5  838E+04(3.89E4+04)  7.93E+01(4.19E+01)  5.78E+00(1.01E+00)  8.06E-+01(2.86E+01) 6.66E+02(1.45E+02) 8.32E+03(3.70E+02)
5D 10 T40E+04(3.35E+04)  3.65E+01(4.43E+01)  5.44E400(3.02E-01) 5.09E+01(243E+01) 342E+02(2.81E402) 8.71E+03(6.84E+02)
15 L17E405(6.93E+04)  3.77E+01(4.31E+01)  5.75E4+00(1.04E+00)  4.03E+0L9.77E+00) 4.04E+02(1.20E+02) 8.81E+03(5.82E+02)
20 LO09E405(4.37E4+04)  3.95E4+01(4.39E+01)  5.19E+00(1.03E+00)  3.69E+01(2.42E+01) 4.58E4+02(2.24E402) 9.50E+03(3.44E402)
3 LO9E+05(4.37E+04)  3.95E+01(4.39E+01)  5.19E+00(103E+00)  3.69E+01(2.42E+01) 4.58E+02(2.24E+02) 9.50E+03(3.44E+02)
5 6.54E+04(3.17E+04)  5.50E+01(4.71E+01)  5.96E+00(1.65E+00) 5.04E40k(1:32E+01) 4.25E+02(1.58E+02) 8.45E+03(5.09E+02)

10D 10 ( %0E+04( 54E+04)  8.19E+00(6.55E-01) 4.72E-+00(6.11E-01) 2.40E+01(5.41E+00) 2.11E+02(1.34E+02) 8.16E+03(1.70E+02)
15 925E+04(3.94E+04)  9.99E+00(LISE+00)  7.08E+00(L82E+00)  2.84ERQI(L2GE+01)  5.70E-+02(227E+02)  8.15E-+03(2.24E+02)
% 2 1 IBEH05(36EH00)  ADIEAOUAATEO)  A92E+00(123E-00) BB +OI(LI4EF01)  ASSEO2(LAIEL02)  S.GOE-+03(7.03E+02)
’ 3 2.60E+04(1.32E+04) 24SE+0L(L10E+01)  6.50E+00(302E-+00), /2.02B401(7.755+00)  G.50E-+02(LS0E+02)  8.57E-+03(3.58E+02)
5 TSGE-+04(LS0E+04)  4.46E+0L(4.88E+01)  5.36E+00(78E-+00) ( 352E+01(6.17E+00)  3.23E-+02(3.80E+02)  8.61E-+03(4.73E+02)
15D 10 GO3E+04(236E+04)  6.27E+01(486E+01)  5.91E+00(1258400) |»3.60E+01(L43E+01)  2.94E+02(3.36E+02)  8.64E+03(6.78E+02)
15 LIGE+05(449E+04)  5.75E+01(3.73E+01)  542E-+00(9.83E-00) 3.18E-+01(8.89E+00)  5.05E-+02(1.98E+02)  8.51E-+03(294E+02)
20 1.65E+05(3.36E+04) 6.57E+01(4.44E+01) 5.27E+00(8:08E-01) 4.88E4+01(2.99E+01) 3.59E+02(2.70E+02) 8.74E+03(3.26E+02)
3 SA0B-+O0A(L78E+04)  447E+01(A87E+01)  5.76E+00(1.12E400)  251E+01(LI10B+01)  9.42E-+02(3.67E+02)  8.43E-+03(4.67E+02)
5 5.8SE+04(269E+04)  A.50E+01(4.85E+01)  5.61B-+00(02E+00)  3.85E+01(9.79E+00)  445E-+02(3.78E+02)  SAIE+03(6.27E-+02)
D 10 9AIE+04(LOIE+05)  6.5TE+01(445E401)  BMOE+00(14SE+00)  3.75E+01(L2SE401)  9.07E-+02(L7IE402)  8.60E-+03(7.03E+02)
15 1.46E405(6.44E404) 9.21E+01(8.21E+00)  6.12E+00(1.19E+00) 3.34E401(1.12E401) 6.45E-+02(3.87E+02) 8.78E+03(3.81E+02)
20 344E+05(1.30E+05) 7.60E+0L(3.19E+0L)  6.21E+00(1.95E+00) 4.60E+01(1.43E+01) 7.82E+02(2.94E+02) 8.64E+03(3.73E+02)

In the experiment,.gm and NP™ are first set to five and four different levels, i.e.,
gm € {3,5,10,15,20hand NP™ € {5D,10D,15D,20D}, respectively, and all possible
combinations ofdeach level are then run. Other parameters in NDE are consistent with
Section 3. Table 2 reports their experimental results when D = 30 and 50, where the best
results are*marked by bold on each function (the same below).

From Table 2, NDE gets the best results on these functions when NP" = 10D and
gm =10 except for f; and f; when NP™ = 10D and gm = 3 for D = 30, and f; when
NP™ ="15D and gm = 3 for D = 50. To see the interaction between NP™ and gm
clearly, Figures 1 and 2 depict the performance of NDE with various values of N P™ and
gm on these functions when D = 30 and 50, respectively. From Figures 1 and 2, we see
that NDE is sensitive to NP™ and gm. In particular, whether D = 30 or 50, different
values of NP™ or gm result in significant difference on each function for the same gm or
NP™ . Then NP™ should not be too small or too large for all problems, while gm should

be small for simple functions, and not too small or too large for complicated problems.
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Figure 1: Performance of NDE with various values ofN.P" and gm when D = 30. (a) fi, (b)
fa, (¢) fi5, (d) fis, () fo2 and (f) fso.
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Figure 2: Performance of NDE with various values of NP™ and gm when D = 50. (a) f1, (b)
fa; (¢) fis, (d) fis, (€) faz and (f) fzo.
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These are consistent with the analysis in Subsections 3.2 and 3.3, respectively. Thus,
let NP™ = 10D and gm = 10 in the following experiments since the more promising

performance is achieved on these functions at this case.

4.2. The effectiveness of the proposed strategies

In this subsection, we illustrate the effectiveness of NM strategy and NAE mechanism.

4.2.1. The effectiveness of the NM strategy

To show the effectiveness of NM strategy, we design three NDE variants,/NDE;_;, NDE;_»
and NDE;_3, and compare them with NDE on f;-f30 in Table/1 when'D = 30. Three
variants are NDE with of = 29 + F(29 —29)), 0} = &) + F(27,, ., =a?) + F (29, —49,,)+
F(z9, — 29,) and & ; = 0.5, respectively. Obviously, the‘yariant with only one mutant
operator or constant probability parameter can illustrate,the influence of the combination
of mutant operators or individual-based probability parameter setting.

In this experiment, the other parameters in NDE and three variants are consistent with
Section 3. Table 3 reports their experimental resultsyas well as statistical and comparison
results of the three tests, and the last five rows,summarize them. Here and in the following,

W

“Rank” represents the overall performanceéwanking of each algorithm, “+7, and “~x”
denote that the performance of NDEsis bettéer than, worse than, and similar to that of the
corresponding method respectiyely, “R4” and “R-” are the rank sum that NDE is better
and worse than the compared algorithm, respectively.

From Table 3, we see that NM/strategy is helpful to improve the performance of NDE.
According to the statistical results of three tests in Table 3, a) NDE significantly outper-
forms NDE;_;, NDE; % and NDE;_3 on 20, 15 and 18 test functions respectively; b) the
overall performanee rankings of NDE, NDE;_;, NDE;_5 and NDE;_3 are 1.7, 3.08, 2.72,
and 2.5, respectively; and ¢) R+ values are bigger than R- values in all cases and the
significant differences can be observed at 0.05 significant level. Then the combination of
mutant operators can enhance the performance of single mutation operator effectively, and
the individual-based probability parameter setting makes great progress in improving the
performance of the random combination of mutant operators. This might be because the
dynamical selection of two mutation operators with different search characteristics is help-
ful to balance exploration and exploitation of NDE, and the individual-based probability
parameter setting suitably adjusts the search ability of each individual. Thus, NM strategy

effectively balances the exploration and exploitation of NDE and improves its performance.
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Table 3: Experimental results of NDE and NDE;_;, NDE;_, and NDE;_3 on CEC 2014

functions with D = 30

Fometion NDE,_, NDE, NDE,_; NDE
Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev)
T 1.87E+04(4.095+04) 4.15E-04(8.98E-04)- 1.28E+01(1L.83E+01)+ 5.911-+00(5.581+00)
fo 0.00E+00(0.00E+400)~ 0.00E+00(0.00E+4-00)~ 0.00E+400(0.00E+400)~ 0.00E+00(0.00E+00)
f3 0.00E-+00(0.00E+400)~ 0.00E+400(0.00E+400)~ 0.00E+400(0.00E400)~ 0.00E+00(0.00E+00)
Ta 1.52E+01(2.85E+01)+ 3.98E-13(8.07E-13)- 1.09E-04(2.045-04) 2.0415-08(4.84E-08)
75 2.03E+01(6.795-02) + 2.01E+01(5.63E-02)~ 2.02E+01(7.765-02) 2.01E+01(4.71E-02)
To 1.13E+00(1.42E100)+ 5.23E-+00(1.355+00)+ 1.49E+00(1.86E+00)+ _ 3.37E+00(1.36E+00)
fr 0.00E+00(0.00E+00)~ 0.00E+00(0.00E+00)~ 0.00E+00(0.00E+00)~ 0.00E+00(0.00E+00)
Ts 0.00E+00(0.00E+00)~ 0.00E+00(0.00E+00)~ 0.00E+00(0.00E+00)~ 0.00E+00(0.00E+00)
To 3.45E+01(1.255+01)- 2.80E-+01(8.86E+00)- 3.18E+01(1.476+01)- _ 2.48E+01(4.48E+00)
JSio 0.00E+00(0.00E+00)~ 5.63E-02(3.13E-02)+ 0.00E+00(0.00E+400)~ 0.00E+00(0.00E+00)
fi1 1.49E+03(5.40E+02)+ 1.67E-103(4.59E+02) + 1.52E+03(4.98E102)+  1.27E+03(2.41B+02)
fi2 2.07E-01(8.97E-02)+ 1.22E-01(4.06E-02)~ 1.75E-01(1.10E-01)+ 1.22E-01(2.82E-02)
Fis 1.30E-01(7.00B-02)+ 1.575-01(5.35E-02)+ 1.25E-01(3.455-02) 6.80E-02(1.31E-02)
fia 2.580-01(5.67B-02) + 1.79E-01(3.30E-02)~ 2.315-01(5.215-02) + 2.03E-01(2.645-02)
fis 1.02E+00(9.09E-01)+ 3.06E-+00(7.16B-01)+ 3.58E+00(1.586+00)+  2.60EF00(4.45E-01)
I 9.01E+00(6.58E-01)+ 8.815-+00(5.195-01) + 8.72E-+00(5.595-01)+ 8.38B-00(4.13E-01)
Fir 1.83E102(1.31E102) 1.25E-+02(2.05B+02)+ 1TA7TE+02(7.52E+01)+ _ 1.13E+02(5.948+01)
Jis 8.87E+00(2.18E+00)+ 8.85E+00(3.62E+00)+ 6.39E+00(3.58E+00)+ 5.95E+00(1.50E-+00)
fio 2.71E+00(7.90E-01)+ 3.45E-+00(7.10B-01) + 2.86B+00(7.22E-01) 2.14E+00(4.61E-01)
F20 7.21E+00(2.88E100)+ 9.93E-+00(2.655+00)+ 5.59E+00(1.5165+00)+ | .4.05E+00(9.50E-01)
Fai 5.97E+01(6.59E+01)+ 2.02E-+02(1.46B+02)+ 2.226+01(3.79B+00)% _ 1.01E+01(5.37E+00)
fa 6.25E+01(5.46E+01)+ 5.60E+01(5.635101)+ 5.16E+01(5.42E+01)+ _ 2.61B+01(4.46E+00)
f2s 3.15E102(0.00E+00)~ 3.15E+02(1.44E-13)~  3.15E+02(2.21E-13)~ 3.15E102(2.15B-13)
f2a 2923E+02(1.116+00)+  2.17E+02(9.05E+00)- _ 2.20E+02(7.0415+00) 2.296-+02(1.67E-01)
Fos 2.03E+02(1.69E-01)~  2.03E+02(1.77E-01)~ _ 2.03E+02(1.98E:01)~ _2.03E+02(4.91E-02)
Fos 1.00E+02(5.45E-02)~ _ 1.00E+02(5.06E-02)~  1.00E+02(4.38B-02)~ | 1.00E+02(1.79E-02)
for 3.61E+02(5.21E+01)- _ 4.01B+02(1.54E+00)+ 3.905+02(38:18E+01)~ 3.90E+02(3.06E+01)
Fas 5.14E+02(2.66BE+01)+  7.86E+02(1.22E+01)- _ 8.16E402(1.96E+01)+ 7.07E102(1.63E+01)
J29 7.07E+02(8.55B+01)+ 7178+ 02(3.57E100)+  6.57E+02(1.71E+02)- __ 6.66E-+02(1.50E+02)
f30 7.725+02(2.95E+02)+ 7.095+02(2.21E+02)+ 6.20E+02(1.73E+02)+  5.14E+02(6.93E+01)
/]~ 20/2/8 15/5/10 18/3/9 =
R+/R- 238/15 189.5/41.5 204/27 - -
p-value 0.0003 0.0106 0:0022 --
a = 0.05 YES YES YES - -
Rank 3.08 2.72 2.50 1.70

4.2.2. The effectiveness of the NAE mechanism

To evaluate the effectiveness of NAE mechanism, NDE is compared with its three vari-
ants, NDE,;_1, NDEy;_o and“NDEs. 3, on fi-f39 in Table 1 when D = 30. The variants
are NDE without dynamic neighborhood, exchanging operations and NAE mechanism,
respectively. Clearly, they can effectively illustrate the influences of NAE mechanism and
its each component:

In this experiment, the other parameters in NDE and its variants are consistent with
Section 3. Table 4 reports their experimental results, statistical and comparison results.
From Table 4,"on€é can see that NAE mechanism and its components have great influences
on the performance of algorithm, and NDE is superior to its variants. According to the
statistical results of three tests in Table 4, a) NDE is better than NDE,;_;, NDE,_5 and
NDEswLs on 27, 23 and 27 test functions, respectively; b) the overall performance rankings
of NDE, NDE;_;, NDE;_5 and NDE,_3 are 1.22, 2.68, 2.4 and 3.7, respectively; and c)
R+ values are bigger than R- values in all cases and the significant differences can be
observed at 0.05 significant level. Then NAE mechanism improves the performance of
NDE effectively. These might be attributed to the following two facts. 1) The dynamic
neighborhood model is helpful to jump out of local optimum. 2) The exchanging operations

deal with the premature convergence and stagnation of the corresponding neighborhood.
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Table 4: Experimental results of NDE and NDE,_;, NDEs;_> and NDE;_3 on CEC 2014

functions with D = 30

Function

NDEz

NDB; 5

NDB; 3

NDE

Mean Error(Std Dev)

Mean Error(Std Dev)

Mean Error(Std Dev)

Mean Error(Std Dev)

1.77B+05(1.01E+05)+

2.505+06(6.085+06)+

6.05E+06(1.24E+07)+

5.91E+00(5.58E+00)

f2 6.186-06(1.886-05)+  0.00E+00(0.00E+00)~ 7.21E-09(1.98E-08)+ 0.00E+00(0.00E+00)
fs 1.06E-03(2.01E-03)+ _ 0.00E+00(0.00E+00)~ 2.65E-14(3.87E-14)+ 0.00E+00(0.00E+00)
J1 T.06E+01(2.06E+01)+ 6.34E+00(2.00E+01)+ 7315401 (5.23B+01)+ 2.94B-08(4.84B-08)
fs 2.02E+01(9.155-02) + 2.03B+01(1.92B-02)+ 2.04B+01(4.725-02) + 2.01E+01(4.71E-02)
fo 7.68E+00(3.30E+00)+ 1.38E+01(1.17TE+00)+ 1.68E+01(1.77B+00)+  3.37TE+00(1.36E+00)
Jr 1.02E-13(1.13E-13)+ __ 0.00E+00(0.00E+00)~ 9.01E-04(3.32E-03) + 0.00E+00(0.00E+00)
Is 6.97E+00(9.356+00)+ _ 0.00E+00(0.00E+00)~ 0.00E+00(0.00E+00)~ 0.00E+00(0.00E+00)
fo 1.48E+01(1.01E+01)+ 3.95E+01(4.236+00)+ 6.60E+01(1.30B+01)+  2.48E+01(4.48E+00)
f10 T.16B+00(7.08E-01)+ 1.82E-13(5.75E-13)+ 6.94E-04(3.80E-03) + 0.00E+00(0.00E+00)
fi1 1.85E+03(4.42E+02)+ 1.87E+03(2.98E+02)+ 2.27E+03(2.78E+02)+  1.27E403(2.41E+02)
f12 2. 4156-01(6.215-02) + 3.631-01(6.136-02)+ 4.48E-01(1.01E-01)+ 1.22E-01(2.82B-02)
f13 T.67E-01(1.96E-02)+ 2.76E-01(5.865-02)+ 4.78E-01(1.04B-01)+ 6.80B-02(1.31E-02)
fia 2.64E-01(4.20E-02)+ 2.20E-01(2.30E-02)+ 2.94E-01(3.21E-02)+ 2.03E-01(2.64P-02)
fis 3.53E+00(9.88E-01)+ 3.72E+00(6.64E-01)+ 7.73E+00(1.90E+00)+  2.60E-00(4,45E-01)
fi6 9.27B+00(5.115-01)+ 9.58E100(4.841-01)+ T.06B+01(3.23E-01)+ 8.388+00(4.13E-01)
fi7 1.68E+03(1.73E+03)+ 3.22E+05(7.27E+05)+ 8.26E+05(2.10E+06)+ _ 1.13E102(5.94E+401)
fis 1.45E+01(6.02E+00)+ 7.32E+00(2.32E+00)+ 9.74E+00(3.18E+00)+ _ 5:95E+00(1.50E+00)
fi9 3.93E+00(6.03E-01)+ 2.61B+00(5.07E-01)+ 8.37E+00(3.47TE+00)+ [2.14E+00(461E-01)
f20 1.32B+01(4.745+00)+ 1.02E+03(2.135+03)+ 1.24E404(1.35E+04)+ | 4.056E+00(9.50E-01)
fo1 2.50B+02(1.41B+02)+ 2.70E+01(4.25E4+01)+ 1.90E+04(2.09E+05)+  1.01E+01(5.37E+00)
fo2 1.50E+02(1.32E+02)+ 2. 14E+02(8.88E+01)+ 3.54E+02(1.61E+02)+  2.61E+01(4.46E+00)
f23 3.155+02(3.18E-13)~ 3.15B+02(2.21E-13)~ _ 3.15E+02(8.13E-06)~~  8.15E+02(2.15E-13)
foa 2.23E+02(1.295+00)+ 2.236+02(1.286+00)+ 2.28E+02(1.07E+00)+  2.22E+02(1.67E-01)
fos 2.03E+02(4.12E-01)~ 2.03E+02(1.61E+00)~ _ 2.06B+02(4.07E+00)+ ____2.03E+02(4.91E-02)
fo6 1.00E+02(6.64E-02)~ 1.00E+02(7.37TE-02)~  1.00E+02(1.20E-01L)~ . 1.00E+02(1.79E-02)
for 3.92E+02(3.06B+01)+ 1.69E+02(1.02E5102)+ 6.02E+02(1:31E+02)§  3.90E+02(3.06E+01)
fos 8. A0E+02(4.20B+01)+ 8.33E+02(1.22E101)+ 8.7AE402(4.52E+0)4  7.97E+02(1.63E+01)
f20 1.0GE+03(1.10E+02)+ 7.32E+02(2.91E402)+ 1.54E103(7.54B402)  __ 6.66E+02(1.50E102)
f30 8.17TE+02(2.33E+02)+ 7.42E+02(4.29E+02)+ 3AGE03(2:75E+03)+  5.14E+02(6.93E+01)
+/-/~ 27/0/3 23/0]7 27/0/3 o
R+/R- 378/0 276/0 378/0 -
p-value <0.0001 <0.0001 <0.0001 A
a = 0.05 YES YES YES -
Rank 2.68 2.40 3.70 1.22

Therefore, NAE mechanism could suitably~adjust the search capability of each individual,

and improve the performance of algorithm effectively.

4.3. Comparisons and'discussions

To evaluate the advantages of NDE, we make a comparison of NDE with 21 well-known

optimization algorithms on 30 benchmark functions fi-f39 in Table 1 when D = 30 and

20.

These algorithmsinclude the classical DE, five state-of-the-art DE variants (CoDE [40],
EPSDE /26], JADE [47], jDE [2] and SaDE [31]), nine up-to-date DE variants (CIPDE
[49], CoBiDE f41], dynNP-iDE [3], JADE sort [50], L-SHADE [37], MPEDE [43], SHADE
[36],,SinDE [12] and TSDE [23]), and six non-DE algorithms (CLPSO [19], CMA-ES [14],
DNLRSO [28], EPSO [25], GL-25 [13] and HSOGA [15]). The classical DE adopts mutation
operator “DE/rand/1” to generate the offspring. CoDE [40] implements three mutant
strategies with different characteristics simultaneously. Four variants, EPSDE [26], JADE
[47], jDE [2] and SaDE [31], adjust their control parameters adaptively. TSDE [23] enhances
CoDE [40] by dividing the whole evolutionary process into two stages, and dynNP-jDE [3]
improves jDE [2] by presenting a simple schema to reduce population size. JADE_sort [50]
and SHADE [36] improve JADE [47] by assigning a smaller CR value to the individual
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Table 5: Parameters setting

Algorithms Parameter setting

DE [35] NP=50, F=CR=05

CoDE [40] NP=30, [F=10, CR=0.1], [F=10, CR=09], [F=08, CR=02]
DE [2 NP=100, n=m =01, F =01, F,=09

JADE [47] NP =100, iFy = uCRo =05, ¢c=0.1, p=005

EPSDE [26] NP =50, Fel04, 0.9 and CR € [0.1, 0.9] with stepsize = 0.1

SaDE [31] NP =50, K=4, Lp=50

CIPDE 49] NP =100, c=0.1, pir =07, jicn =05, T=90

CoBDE [41] NP =00, pb=04, ps=05

JADE sort [50] NP =100, pky=upuCRy=05, ¢=0.1, p=0.05

LSHADE 37 N™ =20D, H=5, c=01, p=01

SHADE 36] NP =100, H=2, c=0., p=rand(0.02,0.2)

TSDE [23] NP =30, [F=10, CR=0.1], [F=10, CR=09], [F =08, CR=02]
dynNP-DE 3] NP™ =200, pras =4

MPEDE [43] NP =250, ¢=0.1, \y=X=X3=02, ng=20

SinDE [12] NP =10, freq=025

CLPSO [19] NP =30, ¢1 = ¢ = L1494, woe = 0.9, g = 04, m = 5

CMAES [14] NP =4+ 3(D)], = [NP/2], wimt.. u = (NP 1 1)/2) — . Co=nCy =4/ (D + 4)
GL-2 [13) NP=60,a=1Lw=>5nr=2

EPSO [25) NP =30, 01 =15, 0, =2

DNLPSO [28] NP =30,¢1=cp =1494, wy =09, w; =04

HSOGA [15] NP =200, 5 =5, P, = 0.6, Py =0.1

NDE NP = 10D, NP =5 _gm =10, FY, = CRY=05, @=0J

oc ‘m

with better fitness value, and using the success\ history information to adaptively set its
parameters, respectively. L-SHADE [37] furtherextends SHADE [36] by incorporating
a linear population size reduction. CoBiDE\ [41] improves DE algorithm by developing
a covariance matrix learning and.a“bimodal distribution parameter setting. SinDE [12]
is a sinusoidal DE variant that. uses the sinusoidal formulas to adjust automatically the
control parameters. Two re¢ent' DE’variants, MPEDE [43] and CIPDE [49], employ the
concept of work specialization, and the collective information of the best candidates in
mutation and crossoyer, respectively. CLPSO [19] updates the particle velocity by using
the personal historical'best information of all particles. DNLPSO [28] further enhances
CLPSO [19] by.adepting a learning strategy and dynamically reforming the neighborhood
after a certain interval. EPSO [25] combines different PSO algorithms and employs a self-
adaptive” scheme to identify the top algorithms according to their previous experiences.
Two hybrid GAs, GL-25 [13] and SOGA [15], combines the global and local searches,
and ‘employs a self-adaptive orthogonal crossover operator, respectively. CMA-ES [14] is
a veryyefficient evolution strategy (ES). Obviously, these algorithms are more competitive
or recently published in the literatures. Thus, they are chosen as the compared ones.

In the following experiments, the parameter settings for them are listed in Table 5,
where the control parameter settings of each compared algorithm and NDE are the same

as those in its original paper and Section 3, respectively.
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4.3.1. Comparison with the classical DE and five state-of-the-art DE variants

First, we compare NDE with the classical DE and five state-of-the-art DE variants on
30 benchmark functions fi-f3p in Table 1. These variants include JADE [47], jDE [2],
CoDE [40], SaDE [31] and EPSDE [26].
Table 6 reports their experimental results, the statistical results of Wilcoxon rank sum
test and Friedman test when D = 30 and 50, and the last two rows summarize them.
When D = 30, from Table 6, the following detail results can be observed:

1) NDE obtains the best results on unimodal functions fi-f5, and"CoDEon f,. This
is because the dynamic neighborhood size is helpful to speed up the convergence of

NDE by using the information of the promising individuals.

2) NDE obtains the best results on simple multimodal“and hybrid functions fs, f7-fi1,
and fi3-fa, DE on fg, CoDE on f5, fs and fi2, JADE on fy, f7 and fs, and EPSDE

on fg.

3) NDE obtains the best results on composition functions fay, fog and f3p, EPSDE on
fa3, fas, fo6, fos and fog, and DE on fsg.and{ fo7. From Wilcoxon rank sum test, NDE
is much better than DE, CoDE, jDE, JADE, EPSDE and SaDE on 4, 5, 3, 3, 3 and
7 test functions respectively, and slightly worse on 1, 1, 2, 2, 3 and 0 test functions,

respectively.

According to the statistieal results of two tests in Table 6, a) NDE performs better than
DE, CoDE, jDE, JADE/EPSDE and SaDE on 25, 22, 25, 22, 24 and 29 test functions
respectively, slightly worse on'2, 3, 2, 3, 4 and 0 test functions respectively, and similar to
that on 3, 5, 3, 5/2 and 1 test functions, respectively; and b) NDE and others get 1.78,
5.45, 3.18, 3.88, 3:63, 4,63 and 5.53 in term of overall performance ranking on all problems,
respectively.

To futrther show the convergence performance, Figure 3 depicts the evolutionary curves
of NDE"and five DE variants on 12 typical functions fi-fy, fe-fs, fio, fi1, fi3, fi7 and fis.
From PFigure 3, we see that NDE has faster convergence and better accuracy than others
on these functions except for JADE on f;, CoDE on fs, and EPSDE on fs.

When D = 50, from Table 6, we also see that NDE obtains the best results on fy,
fro Jo, Ju1s fiz-fis, foo-f22 and fos, JADE on f1, fa, fs, and fa, JDE on fs, fio and fos,
DE on fs, fas and fo7, CoDE on f5, fi2 and fig, and EPSDE on fa3, fos, f26 and fos-f30.
According to the statistical results of two tests in Table 6, a) NDE performs better than
DE, CoDE, jDE, JADE, EPSDE and SaDE on 25, 25, 25, 24, 23 and 29 test functions

respectively, slightly worse on 4, 4, 3, 4, 6 and 0 test functions respectively, similar to that
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Figure 3: Evolution curves of NDE and five state-of-the-art DE variants with D = 30. (a) fi,
(b) fa, (¢) f3, (d) fa, (&) fo, () fr, (&) fs; (B) fr0, (1) fu1, () fis, (k) fi7 and (1) fis.
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Table 7: Comparison results of NDE with the classical DE and five state-of-the-art DE
variants based on the multiproblem Wilcoxon signed-rank test on CEC2014 functions

D =30 D =50
Algorithm R+ R-  p-value a=0.05 Algorithm R+ R- p-value a=0.05
NDE vs DE 353 25 <0.0001 YES NDE vs DE 395 40  0.0001 YES
NDE vs CoDE 297 28 0.0003 YES NDE vs CoDE 406 29 <0.0001 YES
NDE vs jDE 347.5 30.5 0.0001 YES NDE vs jDE 394 12 <0.0001 YES
NDE vs JADE 292 33 0.0005 YES NDE vs JADE 369 37 0.0002 YES
NDE vs EPSDE 342 64 0.0016 YES NDE vs EPSDE 347 88  0.0053 YES
NDE vs SaDE 435 0 <0.0001 YES NDE vs SaDE 435 0 <0.0001 YES

on 1, 1,2 2 1and 1 test functions, respectively; and b) they get 1,83, 5.58, 3.48, 3.78,
3.28, 4.58 and 5.45 in term of overall performance ranking on all problems; respectively.
For clarity, Figure 4 depicts the bar charts of the statistical tesults,of NDE and other
compared algorithms on all functions from CEC 2014 when D =%30 and 50, where the
blue and red bars represent the overall performance ranking of the Friedman test and the
number of function obtained the best results, respectively. From Figure 4, we see that

NDE has the best ranking and the most number of the best results on all functions.

30 20

I Rank I Rank

251 | M The number of functions obtained the best results 7 I The number of functions obtained the best results

DE CoDE jDE JADE EPSDE SaDE NDE DE CoDE jDE JADE EPSDE SaDE NDE

(a) D <30 (b) D =50

Figure 4: Statistical results of NDE with the classical DE and five state-of-the-art DE variants
on CEC 2014. (a).D =30, (b) D = 50.

Furthermeore, Table 7 provides the comparison results of NDE with others on all prob-
lems based on, the multiproblem Wilcoxon signed-rank test when D = 30 and 50. From
Table 7, wessee that NDE obtains higher R+ values than R- values in all cases, and there
are sighificant differences at 0.05 significant level. These might be due to the following
two facts. 1) NAE mechanism can identify the neighborhood evolutionary state of each
individual and effectively alleviate its evolutionary dilemmas. 2) NM strategy adaptively
adjusts its search capability by making full use of the characteristic of each individual to
choose a more suitable mutation operator. Therefore, NDE has better performance than

DE and five DE variants on these instances.
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4.3.2. Comparison with nine up-to-date DE variants

Second, we make a comparison of NDE with nine up-to-date DE variants on 30 benchmark
functions fi-f3p in Table 1. These variants include CIPDE [49], CoBiDE [41], SinDE [12],
dynNP-jDE [3], MPEDE [43], TSDE [23], JADE sort [50], SHADE [36] and L-SHADE [37].

Tables 8-9 report their experimental results, the statistical results of Wilcoxon rank sum
test and Friedman test when D = 30 and 50 respectively, and the last two rows. summarize
them.

When D = 30, from Table 8, the following two results can be observed:y1) L-SHADE
obtains the best results on unimodal functions fi-f3, NDE and CoBiDE.on f; and fs,
TSDE and SinDE on f;. This might be because L-SHADE employs better individuals to
guide the search and the population size reduction to adjust-the population size. 2) For
other functions, NDE obtains the best results on fy, fs-fs,4f10, fi1. f13-f19, fo1-fo6 and f3o,
JADE sort on f5, fg and fi2, L-SHADE on fy4, fi5, fog-and for, dynNP-jDE on fog, TSDE
on f5, and MPEDE on fg and fog.

From the statistical results in Table 8, a) NDE performs better than CIPDE, CoBiDE;,
JADE sort, L-SHADE, SHADE, TSDE, dynNR-jDE, MPEDE and SinDE on 23, 20, 23,
18, 25, 21, 24, 25 and 22 test functions respectively, slightly worse on 4, 3, 4, 6, 2, 5, 3,
2 and 3 test functions respectively, and similar'to that on 3, 7, 3, 6, 3, 4, 3, 3 and 5 test
functions, respectively; and b) NDE.and others get 2.72, 7.13, 4.92, 5.15, 3.65, 6.27, 5.75,
6.1, 6.63 and 6.68 in term of overall performance ranking on all problems, respectively.

When D = 50, from Table 9pwe see that NDE obtains the best results on fy, f; and
J13-f18, fa1-f23, fos, fos and fzo, €IPDE on fs and fo3, JADE sort on f3, f5, fo, fi1, f12 and
Jo3, L-SHADE on f; and. fo, fao, f23, fos and fas, SHADE on fig, fo3 and fas, TSDE on fig
and fa3, dynNP-jDE and CoBiDE on fs3 and fog, MPEDE on fa3, fog and fog, and SinDE
on fg, fo3, foa, fomand fazs. From the statistical results in Table 9, a) NDE performs better
than CIPDEJ CoBiDE, JADE sort, L-SHADE, SHADE, TSDE, dynNP-jDE, MPEDE and
SinDE on25,23,.21, 22, 23, 25, 24, 26 and 25 test functions respectively, slightly worse on
4,4, 8,4, 3,4, 4, 2 and 4 test functions respectively, and similar to that on 1, 3, 1, 4, 4, 1,
2, 2%and. 1 test functions, respectively; and b) they get 2.55, 6.6, 5.4, 5.3, 4.08, 5.93, 6.25,
5.87, 6.4 and 6.62 in term of overall performance ranking on all problems, respectively.

For clarity, Figure 5 depicts the bar charts of the statistical results of NDE and other
compared algorithms on all functions from CEC 2014 when D = 30 and 50, where the blue
and red bars are same as Figure 4. From Figure 5, we see that NDE has the best rank and
the most number of best results for all functions.

Furthermore, Table 10 provides the comparison results of NDE with others on all prob-

lems based on the multiproblem Wilcoxon signed-rank test when D = 30 and 50. From
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Table 8: Experimental results of NDE and nine up-to-date DE variants on CEC 2014
functions with D = 30

Function Statistic CIPDE CoBiDE JADE sort  L-SHADE SHADE TSDE dynNP-jDE MPEDE SinDE NDE
Mean Error  2.86E+03+  1.55E+04+  1.27E4+02+  1.19E-14-  2.35E+02+  1.52E4+04+  3.23E4+04+  1.06E-03- 1.33E4+06+ « 5.91E+00

h Std Dev 279E403  127TE+04  498E+02  5.32E-15  427E4+02  138E4+04  219E+04  236E-03  1.00E+06"  5.58E+00
Mean Error  2.96E-14+  0.00E+00~ 2.05E-14+ 0.00E+00~ L7IE-14+ 0.00E+00~ 9.09E-15+  7.10E-06+ 0.00E-+00~ 0.00E+00
h Std Dev 568E-15  0.00E4+00  130E-14  0.00E4+00  142E-14  0.00E4+00  135E-14 9.03E-06  0.00E+00 0.00E400
: Mean Error  2.53E-014  0.00E+00~ 3.87E-14+ 0.00E+00~ 34IE-14+  455E-15+  5.23E-14+  7.53E-08+ _6.1IE-11+ 0.00E+00
fs Std Dev 462E-01  0.00E4+00  271E-14  0.00E4+00  2.84E-14 1.57E-14 157E-14 1.27E-07 285810 0.00E+00
Mean Brror  LGGE-13-  8.07E-06+  254E+00+  4.55E-14-  546B-14-  254E+00+ L2IE+00+  L93E-01+  B07E+014 2.91E-08

Ji Std Dev 1.26E-13 3.09E-05  127E401  2.84E-14  347E-14  127B401  8.96E-01 448801, 291E401  4.84E-08
Mean Error ~ 2.06E+01+  2.03E+01+ 2.00E+01- 202E+01+ 202E+01+ 2.00E+01- 2.03E+01+ 204E+01F 206E+01+ 2.01E+01

5 Std Dev 3.30E-02 2.70E-01 2.78E-02  3.94E-02 371E02  6.00E-02  3.06E-02 4.99B-02 MOAE-02  ATIE-02
Mean Error  453E+00+  145E+00-  7.23E-01-  9.84E4+00+ 9.66E+00+  15SE+00-  215E+00-7 L54E+01% _ 3.73E-02-  3.37E+00

% Std Dev 206E+00  149E+00  659E-01  226E+00  356E4+00  134E+00  146E4+00  941E01 ) 1.80E-01  1.36E+00
Mean Error  6.82E-14+  0.00E+00~ 2.96E-04+ 0.00E+00~ 355E-03+  2.96E-04+  200E-134. 532E-11+ 0.00E+00~ 0.00E+00
f Std Dev 5.68E-14  0.00E4+00  148E-03  0.00E4+00  6.28E-03 1.48E-03 29113 L19F-10  0.00E+00 0.00E+00
Mean Error  0.00E+00~ 0.00E+00~ 844E+00+ 5.00E-14+  500E-14+  3.98E-02+  455E-I6#. 8.61E+00+  2.05E-01+ 0.00E400
fs Std Dev 0.00E+00  0.00E+00  2.70E4+00  5.76E-14 5.76E-14 1.99E-01 2.97E-14 9.02E-01 547E-01  0.00E+00
Mean Error  207E+01-  3.73E+01+ 1.00E+01- 188E+01-  259E+01+ 3.72E401+ 3.66E+01+ 5.54E+01+ 3.10E+01+  2.48E+01

fo Std Dev 721E400  697E400  2.00E400  589E+00  867E4+00 1208401  ABIEH00  T.09E4+00  7T.62E400  4.48E+00
i Mean Error  LO7E+02+  557E+01+  268E+02+  3.33E-03+  LOSE-02+  229E100+  9.99E-03+  2.02E+02+ 7.81E+01+ 0.00E+00
fo Std Dev 3.03E+01  L46E+01  2.35E4+02  1.30E-02 149E-02  ~ 2M9E+00 M f49E-02  276E+01  2.42E401  0.00E+00
Mean Error  2.45E+03+  161E+03+  157E+03+ L42E+03+  1.61E+03+. 200EF03+ 1S89E+03+ 3.32E+03+ 1.94E+03+ 1.27E+03
In Std Dev 488E+02  427E+02  3.99E+02  221E4+02  245E402%, 4I5E+02  1.95E402  242E+02 5526402 2.41E402
Mean Error  8.74E-01+  238E-01+  7.24E-02-  221E-01+  237E-01+ “8.14E-02-  357E-0l+  6.36E-01+  9.98E-01+  L.22E-01

Jo Std Dev 144E-01 319E-01  5.76E-02  4.58E-02 SUIE-02 368E-02 5.08E-02 9.11E-02 LOIE-01  2.82E-02
Mean Error  9.24E-02+  242E-01+  LAOE-01+  168E-01+  221E-0l+ 0237E-01+  274E-01+  2.24E-01+  240E-01+  6.80E-02

his Std Dev 2.35E-02 6.87E-02 3.29E-02 2.54E-02 3.91E-02 5.66E-02 4.91E-02 2.56E-02 3.41E-02 1.31E-02
Mean Error  2.91E-01+  233E-01+  279E-01+  2.36E-01% »258E-0L+  2.37E-01+  260E-01+  2.08E-01+  240E-01+  2.03E-01

fu Std Dev 2.76E-02 4.56E-02 4.58E-02 2.13E-02 5.62E-02 3.60E-02 3.53E-02 2.08E-02 280E-02  2.64E-02
Mean Error  4.38E+00+  3.29E100+  261E+00+ 2.38B400- | 2.74E+00+ 295E+00+ 4.94E+00+ 6.21E+00+ 3.99E+00+  2.60E+00

fis Std Dev 9.80E-01 7.72E-01 348E-01  2.37E-01 * 4.65E-01 7.13E-01 6.10E-01 7.58E-01 895E-01  4.45E-01
Mean Error  845E+00+  LOOE+01+  921E+00+  9.13E+00+ 9.52E+00+ 9.60E+00+ 9.36E+00+ 1.06E+01+ 1.08E+01+ 8.38E+00

fis Std Dev 7.90E-01 7.19E-01 8.32B°01 3.95E-01 3.56E-01 6.84E-01 3.91E-01 2.27E-01 443E-01  4.13E-01
) Mean Error  LSIE+04+  250B4+02+  2.95E+02+ 204E+02+ 8.93E+02+ 9.98E+02+ 821E+02+ L77E+02+ 9.8E+04+ 1.13E402
fr Std Dev 6.94E+04  148E+02 o 1.23B402  A11E4+02  3.73E402  854E+02  543E4+02  120E+02  6.9IE+04  5.94E401
Mean Error  9.74E+01+  L14E+0147 9.97E+00% /6.00E+00+ 5.27E+01+ 126E+01+ 226E+01+ 9.14E+00+ 4.82E+02+ 5.95E+00
fis Std Dev 3ATE+01  4.03E400,  A452E+00)  233E+00  227E4+01  5.24E4+00  146E401  355E+00  617E+02  1.50E+00
Mean Error  452E+00+  2.73B400+ | 3.69E400+ 3.71E+00+ 4.68E+00+ 2.63E+00+ 4.43E+00+ 3.57E+00+ 3.41E+00+ 2.14E+00

fo Std Dev 5.95E-01 409E-01 7.25E-01 5.04E-01 7.63E-01 3.80E-01 3.67E-01 7.83E-01 6.96E-01  4.61E-01
Mean Error  8.74E+02+ 4 7.71B400+ 562E+00+ 3.24E4+00- 1.83E+01+ 9.61E+00+ 7.83E+00+ LI4E+01+ 9.0IE+00+  4.05E+00

fo Std Dev 1.26E-+034m0 3.16E+00,_ 3.09E+00  1.54E400  9.42E+00  397E+00  235E4+00  334E+00  288E4+00  9.50E-01
Mean Error 7T91E4+03+ 1.36E+02+  1.16E+02+ 1.04E+02+  2.72E+02+ 1.89E+02+  1.50E+024+  8.79E+01+  3.84E+03+ 1.01E+401
fn Std Dev 2.76E+04 9.30E+01 8.18E+01 1.01E+02 9.71E401 1.25E+02 1.03E+02 9.36E+01 4.61E403 5.37TE400
Mean Error  204E+02+ OL19E+02+  5.33E+01+ 425E4+01+ O37E+01+ 142E+02+ 3.96E+01+ 145E+02+ 5A7E+01+ 2.61E+01
fn Std Dev LOIB402  JT56E+01  5.05E+01  331E+01  642E+01  981E+01  165E401  571E4+01  4.98E+01  4.46E-+00
Mean Errot 3.15E+02~  3.15E+02~ 3.15E4+02~ 3.15E4+02~ 3.15E4+02~ 3.15E4+02x~ 3.15E+02~ 3.15E4+02~ 3.15E+02~ 3.15E+402

fs Std Dév 0.00E+-00 0.00E+00 0.00E4-00 1.51E-13 0.00E4-00 1.51E-13 0.00E+4-00 1.33E-10 5.78E-14 2.15E-13
i MeanError 225402+  2.23B4+02+  2.25E+02+ 224E4+02+ 2.30E+02+ 224E+02+ 224E+02+ 224E+02+ 2.22E402~ 2.22E402
fn Std Dey 283E400  9.04E-01 L20E+00  9.94E-01  G11E4+00  L49E+00  6.45E-01 459E-01  1.28E+00  1.67E-01
i Mean Ertoby2.08E+02+  2.03E+02~ 2.03E+02~ 2.03E+02~ 2.03E+02~ 2.03E+02~ 2.03E+02~ 2.03E+02~ 204E+021 2.03E+02
fs Std Dev 317E+00  3.64E-01  4.96E-01  7.53E-02  4.94E-01  6.12E-01  5.17E-01  1.45E-01  482E-01  4.91E-02

F Mean Error -~ 1.00E4-02~ 1.00E402~ 1.00E402~ 1.00E402~ 1.00E+02~ 1.00E402~ 1.00E402~ 1.00E402~ 1.00E402~ 1.00E+02
% Std Dev(Rank)  1.78E-02 5.29E-02 3.95E-02 3.22E-02 5.09E-02 6.29E-02 4.04E-02 2.67E-02 2.98E-02  1.79E-02
Mean Error 3.21E+02-  3.76E402- 3.07E+02-  3.00E402-  3.35E4+02-  3.77E+02- 3.T6E+02-  3.97E4+024+  3.04E+02-  3.90E402

fx Std Dev 380E+01  439E+01  143E401  L71E-13  334E401  405E+01 420401  L79E+01  135E401  3.06E-01
Mean Error  7.06E402-  S.09E+02+  8.37E+02+ S.04E+02+ 828E+02+ S35B+02+ 7.85E+02- SG0BE+02+  7T.OIE+02-  7.97E+02
I Std Dev 206E+01  232B401  328E+01  200E+01  280B+01  3.23E+01  L79E4H01  253E4+01  234B401  1.63E+01
Mean Error  7.61E+02+  5.80B+02-  T.16E+02+ 7ATE402+ T.I3E+02+  650B102  T.60E+02+ 4.00E+02- 14SE+03+  6.66E+02
fs Std Dev TOIEH01  233E+02  1.92E400  3.37E+00  668B+01  159E+02  5.07E+01  2.85E+02  272E402  150E+02
Mean Error  1ASE+03+  6.22E402+  842E+02+ LOOE+03+ 1.92B+03+ S.05B+02+ 122E+03+ 5.21B+02+ 134E+03+ 5.14E+02
fo Std Dev 435E4+02  13TE402  248E402  414E402  LITEH03  290E402  3.99E+02  LI14E+02  5.02E402  6.93E401
1]~ 23/4/3 20/3/7 23/4/3 18/6/6 %/2/3 21/5/4 24/3/3 2%/2/3 2/3/5 -
Rank 7.13 192 5.15 3.65 6.27 5.75 6.1 6.63 6.68 272
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Table 9: Experimental results of NDE and nine up-to-date DE variants on CEC 2014
functions with D = 50

Function  Statistic CIPDE CoBiDE JADE sort  L-SHADE SHADE TSDE dynNP-jDE MPEDE SinDE NDE
Mean Error  1L.73E4+04-  2.98E+05+  2.69E+04-  4.31E402-  1.74E+04-  1.11E4+05+ 281E+05+  1.08E+05+  2.89E+06+ 6.30E404

h Std Dev 8.76E+03 2.05E4+05 14TE404 5.83E+02 1.68E404 4.96E4+04 1.09E405 9.12E4+04 L1TE406 4 2.54E404
Mean Error  7.57E-12- 1.09E-01+ 9.44E-14- 3.52E-14- 8.T5E-14-  250E+02+  5.62E-07+  143E+01+  3.17E+034+%  3.31E-07
f2 Std Dev 3.51E-11 2.63E-01 2.56E-14 1.24E-14 4.01E-14 7.85E+02 2.31E-06 3.01E+01 3.20E+03 4.22E-07
Mean Error  1.82E+03+  6.99E-03+  4.51E-08-  2.25E4+02+ 1.98E+02+  1.66E+014+  1.67E-06+ 4.TIE-04+  443E402+°  2.03E-07
fs Std Dev 1.58E403 1.55E-02 1.48E-07 8.19E+02 9.88E+02 4.15E+01 4.59E-06 1.05E-03 3.44E-+02 3.00E-07
Mean Error ~ 1.35E4+014+  4.27E+01+  L77E4014+  2.51E+01+  1.98E4+01+  1.99E+014+  9.01E+01+  6.61E4+014+  9.54E+01+ »8.19E400
h Std Dev 2.90E+01 4.07E+01 4.22E+01 4.19E4+01 4.00E+01 3.20E+01 1.27E401 3.38E401 4.03E400." 6.55E-01
Mean Error  2.08E+01+  2.02E+01-  2.00E401- 2.04E+014+ 2.03E+0l~  2.01E+01-  2.04E+014+  2.06E+01+ ) 2.08E+01+  2.03E+01
5 Std Dev 8.94E-02 3.29E-01 1.09E-02 4.19E-02 2.99E-02 9.72E-02 2.37E-02 3.48E-02 4.97E-02 4.57E-02
I Mean Error  6.39E+00- 5.62E+00- 8.37E+00-  240E4+014+  2.29E+01+  7.98E+00- L15E401- 7 3.02E+014 5, 1.95E-01-  1.53E-+01

Std Dev 2.80E+00 3.18E4+00 2.34E+00 1.58E+00 5.27E+00 2.97E+00 5.46E+00 2.14E4+00 4.16E-01  2.44E+00

Mean Error  3.65E-03+ 9.09E-154 5.02E-03+ 3.18E-14+  4.14E-03+ 2.66E-034+ 8.00E-13+4 4.77E-034  4.93E-14+  0.00E400

f Std Dev 5.42E-03 3.15E-14 8.19E-03 5.21E-14 5.36E-03 4.71E-03 642E-13 4.62E<03 5.73E-14  0.00E400
Mean Error  0.00E400-  3.29E-10+  LO9E+014+  2.23E-134 1.36E-13+ 5.17E-014 T00E-134=, 1.94E4+014+  7.50E4+00+  5.68E-14
Std Dev 0.00E+00 1.26E-09 1.38E401 6.95E-14 4.64E-14 7.11E-01 3.77E-14 1.34E+00 3.60E+00 5.78E-14
Mean Error  6.36E+01+  9.18E+01+  2.64E401-  3.19E+01-  484E+014+  7.20E+014+  T69E+0L4" L1I6E+024+  6.50E+014+  4.15E+01
Std Dev 1.15E401 1.68E+01 3.33E4-00 5.056E4+00 1.24E401 2.09E4-01 8.9TE+00 9.93E+00 8.13E+00  6.53E+00
Mean Error  3.88E4+02+  2.71E+02+  9.52E4+02+  2.71E-01+  4.50E-03-  8.82E+004, ~ 8.49E-03-  4.67E+02+  1L51E+02+  9.92E-02
fo Std Dev 8.13E+01 4.83E+01 6.47E+02 1.89E-01 7.97E-03 3.33E4+00 1:06E-02 5.23E+01 8.23E+01 2.36E-02
Mean Error  5.73E+03+  4.21E+03+  3.49E+403- 3.78E+03+  3.73E+03+.. 4.01E+034  4.33E+03+  6.74E+03+  4.32E+03+  3.62E+03

Ju Std Dev 5.23E+02 9.14E+02 3.71E402 3.27E+02 3.33E+02 5.76E-+02 3.70E+02 3.12E+02 T90E+02  4.24E402
Mean Error  1.15E400+ 1.20E-01- 7.95E-02-  3.14E-01+ 2.30E-01~ 106E-01- 3.64E-01+ T42E-01+  1.35E4004+  2.30E-01

J2 Std Dev 1.12E-01 2.54E-01 3.70E-02 3.32E-02 3.32E=02 4.18E-02 4.54E-02 7.99E-02 1.40E-01 3.85E-02
Mean Error  1.87E-01+ 3.57E-014+ 2.45E-01+ 2.35E-014+ 3.20B-014334E-01+ 3.40E-01+ 3.10E-01+ 343E-01+  1.16E-01

Js Std Dev 4.07E-02 6.84E-02 4.15E-02 2.83E-02 5.26E-02 7.44E-02 5.41E-02 2.94E-02 3.59E-02 1.67E-02
Mean Error  3.56E-01+ 2.84E-014+ 3.52E-01+ 2.84E-014+ 3.15E-014 2.89E-014 3.05E-01+ 2.80E-014+ 281E-01+  2.45E-01
fu Std Dev 3.03E-02 2.68E-02 5.39E-02 1.76E-02 8.4TE-02 9.31E-02 2.79E-02 1.85E-02 9.84E-02 3.11E-02
Mean Error  9.07E+00+  6.05E+00+  6.19E+00+  604E+00+, '8.12E+00+  6.86E+00+ L.02E+01+  L33E+01+  7.99E+00+ 4.72E400
fs Std Dev 2.85E+00 1.22E+00 8.02E-01 5.78E-01 1.35E400 1.93E+00 9.86E-01 3.95E+00 146E4+00  6.11E-01
fie Mean Error  L.72E+01+  L83E+01+  L74E+01+  L78E+0144~ 181E+01+  182E+01+  L77E+01+  L92E+01+  2.00E+01+ 1.71E401

Std Dev 1.16E400 9.34E-01 7.55E-01 3.75E-01 4.95E-01 7.48E-01 3.96E-01 4.42B-01 4.14E-01 5.61E-01
Mean Error ~ 2.68E+03+  LO6E+04+  1.86E+03+  L4IE+03+  221E+03+  L32E+04+  123E+04+  945E+02+  3.59E+05+ 7.76E+402
fn Std Dev 1.03E4+03 6.52E+03 1.09E403 3.25E+02 4.11E+02 7.37E+03 7.65E4+03 3.32E+02 1.98E4+05  1.94E+02

. Mean Error  143E+024+  8.44E+01+ " LI4E+024 5, FO4E+02+  L72E+024+  L9SE+02+  2.68E+024+  4.33E+01+  3.10E+02+ 2.40E+401
fis Std Dev 3.04E+01 7.10E+01 3.81E-+01 1.50E+01 4.87E+01 2.43E+02 4.65E+02 1.33E+01 3.63E+02  5.41E400
Mean Error  1.57E4+014+  6.90E400- " 9.51E4+00+  9.44E+00+  1.32E401+  6.06E4+00- 1.07E+01+ 1.01E4+014+  9.33E+00+  8.40E400
Jis Std Dev 7.57E+00 1,13E4+00 2185400 1.84E4+00 3.17E+00 1.11E400 9.05E-01 1.26E4+00 7.75E-01 9.00E-01
Mean Error  3.49E+03+  3.33E+0L+  5.71E+01+ 1.67E401-  1.82E+02+  1.55E+02+  340E+01+ 4.08E+01+  2.14E+02+  2.24E+01

fn Std Dev 4.20E+03 1.28E+01 2.67TE+01 6.26E+00 1.07E+02 1.42E+02 1.01E+01 1.23E401 1.41E+02 5.95E+00
Mean Error  1.51E4+034  335E+03+/ 6.84E4+02+  5.08E+02+  1.24E4+03+  3.97E+034+  245E+03+  5.88E4+02+  2.25E+05+  3.51E+02
fa Std Dev 4.28E+02 5.07E4+03 1.58E402 1.55E+02 3.69E+02 2.40E4+03 1.54E403 2.09E+02 1.18E+05  9.42E401
Mean Error  6.33E+02+ “543E+02+  2.84E+02+  236E+02+  4.02E+02+  643E+02+  4.12E+02+  5.44E+02+  249E+02+ 2.11E402
fn Std Dev 2.45E402 212E4+02 1.17E402 8.49E4+01 1.74E402 1.67E+02 1.31E402 1.29E+02 1.25E402  1.34E+02
s Mean Error, 3.44E+02~ /3.44E402~ 3.44E402~ 3.44E+02~ 3.44E4+02~ 3.44E402~ 3.44E+02~ 3.44E4+02~ 3.44E402x 3.44E+402

Std Dév 5.80E-14 3.22E-13 3.09E-13 2.32E-13 3.01E-13 2.32E-13 2.64E-13 4.29E-11 2.89E-13  2.89E-13
Mean/Error  2.71E+024+  2.67E+02=  2.75E+024+  2.75E+024+  2.79E+024+  2.71E+024+  2.66E+02-  2.71E+024+  2.64E402-  2.67E-+02
e Std Dey 1.46E401 3.53E4+00 L77E400 6.99E-01 2.98E+00 1.80E+00 2.08E+00 1.54E+00 3.97E400  2.72E+00

. Mean Errorn:2:21E+02+  2.07E+02+  2.18E4+02+ 2.05E402~ 2.09E+02+  2.08E4+02+  207E+02+  2.06E+02+  2.08E+02+  2.05E+02
fs Std Dev. 8.23E+00 1.07E+00 7.59E400 3.50E-01 5.87E+00 4.20E+00 1.39E-+00 9.67E-01 1.21E+00  3.01E-01

Mean Error ~ 1.14E4+02+  1.00E402~ 1.16E4+02+ 1.00E402~ 1.00E402~ 1.12E+02+ 1.00E402~ 1.00E4+02~ 1.04E+02+ 1.00E+02
J Std-Dev 3.34E+01 6.21E-02 3.73E+01 1.86E-02 8.48E-02 3.31E+01 4.29E-02 2.61E-02 1.82E+01  2.95E-02
Mean Error  4.51E402+  4.06E+02+  4.91E402+  3.74E+02+  T7.13E4+02+  5.51E+02+  4.35E+02+  347E402-  3.34E402-  3.50E402

I StdDev  5.05E+01  G5SE4+01  746E401  142E402  142B402  T78E4+01 815401  387E4+01  2.24E401  2.77E+01
Mean Error 1L14E+03+  LU4E+03+ 1.20E+03+ 1L11E+03~ LIOE03+ 119E+03+ LOJE403- 1.27E+03+ 1L.06E+03- LIIE+03
Jas StdDev  58E+01  GOIE+01  576E401  27IE401  596E+01  G6.96E+01  352E401  523E4+01  6.01E4+01  3.07E+01
Mean Error 9.30B+02+  1O6E+03+  8.67E+02+ S.13E+02+ 8.74B+02+ 9.00E+02+ 103E103+ 6.59E+02- 1O9E+03+  7.50B+02
fs StdDev  551E+01  207E+02  587E401  4.96E+01  6.04E+01  LO9E+02  L9TE+02  1.41E402  349E4+02  5.63E+01
Mean Error  LOSEF04+  8.72B+03+ O.11E103+ 9.0IE+03+ LOSE+04+ B8OTE+03+ SAGE+03+ 9.3IE+03+ 820E+03+ 8.16E+03
fo StdDev  TTAE402  509E+02  T3IE402  7T.38E402  LOSE403  A8SE+02  3.05E+02  T39E+02  299E4+02  1.70E-+02
1]~ 25/4/1 23/4/3 21/8/1 22/1/1 23/3/4 2%5/4/1 241/ 2/2/2 25/4/1 -
Rank 6.6 5.4 53 4.08 5.93 6.25 5.87 6.4 6.62 255
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Figure 5: Statistical results of NDE and nine up-to-date DE variants on CEE,2014. (a) D = 30,
(b) D = 50.

Table 10: Comparison results of NDE with nine up-to-datesDE, variants based on the
multiproblem Wilcoxon signed-rank test on CEC2014 functions

D =30 D =50
Algorithm R+ R- p-value a=0.05 Algorithm R+ R~ p-value a=0.05
NDE vs CIPDE 333 45  0.0006 YES NDE vs CIPDE 390 )45  0.0002 YES
NDE vs CoBiDE 234 42 0.0037 YES NDE vs CoBiDE 342+ 36 0.0002 YES
NDE vs JADE sort 314 64  0.0028 YES NDE vs JADE sort,  339.5 95.5 0.0086 YES
NDE vs L-SHADE 229 71  0.0249 YES NDE vs L-SHADE 295 56 0.0025 YES
NDE vs SHADE 353 25 <0.0001 YES NDE vs SHADE 318 33 0.0003 YES
NDE vs TSDE 292 59  0.0032 YES NDE,vs TSDE 407 28  <0.0001 YES
NDE vs dynNP-jDE 328 50  0.0009 YES NDE vs dynNP-jDE 358 48  0.0004 YES
NDE vs MPEDE 338 40  0.0004 YES NDEws MPEDE 376 30 <0.0001 YES
NDE vs SinDE 283 42 0.0012 YES NDE vs SinDE 381.5 53.5 0.0004 YES

Table 10, we see that NDE obtains higher R+ values than R- values in all cases, and there
are significant differences at 005 significant level. The reason for these might be that the
exploration and exploitation e¢an be effectively balanced by the following two facts. 1) A
more suitable mutation éperatoris chosen to each individual by employing its fitness value.
2) The neighborhood evolutionary dilemmas are alleviated by designing a dynamic neigh-
borhood model andtwosexchanging operations. Therefore, NDE has better performance

than nine up-to-date DE variants on these instances.

4.3.3. Comparison with six non-DE algorithms

Next, NDE*s compared with six non-DE algorithms on 30 benchmark functions fi-fso in
Table/1. "These algorithms include CLPSO [19], GL-25 [13], DNLPSO [28], EPSO [25],
HSOGA [15] and CMA-ES [14].
Table 11 reports their experimental results, the statistical results of Wilcoxon rank sum
test and Friedman test when D = 30 and 50, and the last two rows summarize them.
When D = 30, from Table 11, the following detail results can be observed.

1) CMA-ES obtains the best results on unimodal functions fi-f3, and NDE onf, and fs.
This might be because the evolution path added in CMA-ES is helpful to improve
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the quality of evaluation.

2) NDE obtains the best results on simple multimodal and hybrid functions fs- fao,
CMA-ES on f; and f5, and CLPSO on fs.

3) HSOGA gets the best results on composition functions fas-fog and fos-f30, and GL-
25 on fo7. This might be because the self-adaptive orthogonal crossover éperator in
HSOGA can effectively maintain the population diversity and enhance the exploita-
tion of promising regions by using a representative set of points”as the, potential

offspring and a local search scheme.

According to the statistical results in Table 11, a) NDE performs better than CLPSO,
CMA-ES, GL-25, NDLPSO, EPSO and HSOGA on 27, 24, 27, 26, 29-and 23 test functions
respectively, slightly worse on 0, 3, 1, 4, 0 and 6 test functions respectively, similar to that
on 3, 3, 2,0, 1 and 1 test functions, respectively; and b) they get 1.65, 4.53, 4.32, 4.33,
5.35, 4.4 and 3.42 in term of overall performance ranking on all problems, respectively.

When D = 50, from Table 11, we see that NDE obtains the best results on fy, f7-fio,
f13, fis, fir, fis, fao-fo2 and fos, CMA-ES on\fi-fs; f5 and fos, EPSO on fi1, fi4, fie
and fi9, HSOGA on fi9, fo3-fao6 and fos-f30, and"GL-25 on fg and fy7. According to the
statistical results in Table 11, a) NDE ‘performs better than CLPSO, CMA-ES, GL-25,
NDLPSO, EPSO and HSOGA on-28; 22, 26, 25, 21 and 21 test functions respectively,
slightly worse on 1, 5, 3, 5, 9 and 8ytest/ functions respectively, similar to that on 1, 3, 1, 0,
0 and 1 test functions, respeetively; and b) they get 2.13, 4.68, 4.03, 4.82, 5.57, 3.02 and
3.75 in term of overall performance ranking on all problems, respectively.

For clarity, Figure’6 depicts s the bar charts of the statistical results of NDE and these
six compared algorithms on all functions from CEC 2014 with D = 30 and 50, where the
blue and red bars‘are same as Figure 4. From Figure 6, we see that NDE has the best rank
and the most number of best results for all functions.

FurtliermoreyTable 12 provides the comparison results of NDE with others on all prob-
lems based on the multiproblem Wilcoxon signed-rank test when D = 30 and 50. From
Table 125we see that NDE gets higher R+ values than R- values in all cases, and there
are significant differences at 0.05 significant level except for EPSO when D = 50. These
might be because NM strategy suitably chooses a more promising mutation operator for
each individual based on its fitness value, and NAE mechanism alleviates the evolutionary
dilemmas. Therefore, NDE has better performance than six non-DE algorithms on these
instances.

In summary, it should be noted that it is just the proposed strategy and mechanism

that make NDE superior to other algorithms on these functions, especially for multimodal
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(a) D =30 (b) D =50

Figure 6: Statistical results of NDE and six non-DE algorithms on CEC2014. (a) D = 30, (b)
D = 50.

Table 12: Comparison results of NDE with six non-DE variants based*on the multiproblem
Wilcoxon signed-rank test on CEC2014 functions

D =30 D= 50
Algorithm R+ R~ p-value a=0.05 Algorithm R+ R- p-value a=0.05
NDE vs CLPSO 378 0  <0.0001 YES NDE vs CLRSO 424 /11  <0.0001 YES
NDE vs CMA-ES 365 13 <0.0001 YES NDE vs CMA-ES 337 41  0.0004 YES
NDE vs GL-25 363 15 <0.0001 YES NDE'vs GL-25 407 28 <0.0001 YES
NDE vs NDLPSO 4125 52.5  0.0002 YES NDE vs NDLPSO 396 69  0.0008 YES
NDE vs EPSO 435 0  <0.0001 YES NDE vs EPSO 326 139 0.0558 NO
NDE vs HSOGA 329 106  0.0164 YES NDE vs HSOGA 324 111  0.0219 YES

and hybrid functions. In fact, the worseor better individuals employ an explorative or
exploitative mutation operator to’adjust their search regions in NM strategy. Meanwhile,
NAE mechanism alleviates the neighborhood evolutionary dilemmas of each individual
to improve the search performance. Thus, NDE effectively maintains a suitable balance

between exploration and exploitation, and is a more promising algorithm.

4.3.4. The reliability,of NDE

Another impoértant factor to evaluate the performance of an algorithm is reliability, i.e.,
the experimental results of the algorithm vary slightly as the number of runs increases.
To measure the reliability of NDE, it is further independently run with 1000 times on 30
benechmark functions fi-f3g in Table 1 when D = 30 and 50.

Table” 13 reports its experimental results obtained by 1000 independent runs on all
problems, and also lists those by 30 independent runs for the convenience of comparison.
From Table 13, we see that there is only a slight variation in the experimental results of
NDE on each function for different running times whether D = 30 or 50. In particular,
the difference between the experimental results of 30 and 1000 independent runs is the
same or no more than one order of magnitude for each function. In fact, the numerical

results obtained by 1000 independent runs are same and slightly worse than those by 30
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Table 13: Experimental results of NDE obtained by 30 and 1000 independent runs

D =30 D = 50
Function Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev)
30 runs 1000 runs 30 runs 1000 runs

A 5.91E+00(5.58E+00) 2.18B+01(3.07E+01) 6.30B+04(2.54E+04) 5.94E+04(2.25E+04)
Jf2 0.00E+00(0.00E4-00)  0.00E+00(0.00E+400) 3.31E-07(4.22E-07) 6.78E-07(8.62E-07)

f3 0.00E+00(0.00E400)  0.00E+00(0.00E+400) 2.03E-07(3.00E-07) 7.69E-07(1.20E-06)

fa 2.94E-08(4.84E-08) 8.54E-08(2.07E-07) 8.19E+400(6.55E-01)  2.27E+01(3.19E+401)
f5 2.01E4+01(4.71E-02) 2.01E+01(4.86E-02) 2.03E+01(4.57E-02) 2.03E401(5.57E-02)
fe 3.37TE400(1.36E400)  3.65E400(1.36E+4-00) 1.53E4+01(2.44E+00) 1.56E+01(2.64E4-00)
f7 0.00E+00(0.00E+00)  0.00E+00(0.00E+00) 0.00E+-00(0.00E+00)  0.00E+00(0.00E~+00)
fs 0.00E+00(0.00E4-00)  0.00E4-00(0.00E+00) 5.68E-14(5.78E-14) 7.84E-14(5.26E-14)

fo 2.48E+01(4.48E+00)  2.51E+01(5.43E+00) 4.15E+01(6.53E4+00)  3.94E+01(8.27E+00)
Sf10 0.00E+00(0.00E+-00)  0.00E+4-00(0.00E+00) 9.92E-02(2.36E-02) 1.06E-01(2.79E-02)

1 1.27E+03(2.41E+02)  1.32B+03(2.936+02) 3.62E+03(4.24E+02)  3.70E+03(4.90E+02)
Jiz 1.22E-01(2.82B-02) 1.47E-01(3.99E-02) 2.30E-01(3.85E-02) 2.31B-01(5.60B-02)

J13 6.80E-02(1.31E-02) 7.76E-02(1.74E-02) 1.16E-01(1.67E-02) 1.24E-01(2.11E-02)

fia 2.03E-01(2.64E-02) 2.11E-01(3.08E-02) 2.45E-01(3.11E-02) 2.57E-01(3.:37E-02)

fis 2.60E+00(4.45E-01) 2.70E400(4.89E-01) 4.72E400(6.11E-01) 4.99E400(7.25E-01)
f16 8.38E400(4.13E-01) 8.42E+400(5.42E-01) 1.71E+01(5.61E-01) 1.73E+01(5.94E-01)
fir 1.13E+02(5.94E+01)  1.14E+02(5.95E+01) 7.76E4+02(1.94E402) 761E402(2.20E402)
fis 5.95E400(1.50E4+00)  6.62E4-00(1.86E+00) 2.40E+01(5.41E4+00) [2.58E4-01(7.17E+00)
f19 2.14E+400(4.61E-01) 2.29E+4-00(5.03E-01) 8.40E+00(9.00E-01) 8.68E+00(8.79E-01)
f20 1.05E+00(9.50B-01) _ 4.86E+00(1.28B+00) 2.24E+01(5.95BE+00)~. 2.47E+01(6.26E+00)
f21 1.01E+01(5.37E+00) 1.32E+01(1.05E+01) 3.51E+02(9.42E401) _3.72E102(1.13E+02)
S22 2.61E+01(4.46E+00) 3.84E+01(3.06BE+01) 2 11E+02(1.34E+02)  2.42E+02(1.68E+02)
fos 3.15E+02(2.15B-13) _ 3.15E+02(2.04E-12) 3.44E+02(2789E-13)  3A4E+02(3.986-13)
f2a 2.22E+02(1.67B-01)  2.22E+02(4.19E+00) 2.67B+02(2.72E100) W2.67E+02(2.06E+00)
f2s 2.03E+02(4.91E-02) 2.03E402(5.98E-02) 2.05E402(3.01E-01) 2.05E+402(3.29E-01)
f26 1.00E+02(1.79E-02) 1.00E+02(2.16E-02) 1.00E+02(2.95E-02) 1.00E+02(3.23E-02)
for 3.90E+02(3.06E+01)  3.94E+02(2.48E+01) 3.50E402(2.77E4+01)  3.59E+02(2.83E+01)
fos 7.97E402(1.63E401)  8.05E402(1.85E401) 1:11E+03(3.07E+01)  1.11E+03(2.87TE+01)
fa0 6.66E+02(1.50E4+02)  6.74E4-02(1.39E+02) 7.50E+02(5.63E4+01) 7.67E402(4.08E401)
f30 5.14E+02(6.93E+01)  5.335+02(9.785+01) S.16E103(1.70E+02)  8.42E+03(3.22E+02)

independent runs on 10 and 20 test funetions with D = 30, respectively. Meanwhile, they
are same, slightly worse and better than these by 30 independent runs on 7, 20 and 3 test
functions with D = 50, respectively. This might be due to the computational errors and
some worse cases with very snfall, probabilities in a large number of numerical experiments.
Thus, NDE is robust and_reliable.

4.4. Algorithm‘efficiency

To show the efficiency of NDE, we compare it with the classical DE, EPSDE and SaDE on
5 typical functions, including unimodal functions fi-f3, and simple multimodal functions
fe and f¢'in Table’'l when D = 30. The classical DE employs the DE/rand/1 and binomial
crossover,operation, the scaling factor and crossover rate are set to 0.5. In this experiment,
the average CPU time of 30 independent runs is recorded to evaluate their efficiencies.
Table\14 reports the average CPU times of 30 independent runs expended by them.
From Table 14, we see that NDE is slower than DE and EPSDE, and similar to SaDE.
Unlike the classical DE and EPSDE, NDE requires to sort the neighbors of each individual
at each generation and to calculate the diversity of all neighborhoods based on fitness
values. Then it takes a longer time than the classical DE and EPSDE. Overall, numerical

results show that NDE is a promising algorithm.
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Table 14: Average CPU time expended by NDE, DE, EPSDE and SaDE.

unimodal multimodal

f fa fs fs fo
DE 19.00s 18.44s 19.27s 54.64s 1850s
EPSDE 24.39s 2236s 2571s 60.31s 23.10s
SaDE  56.00s 54.37s 57.44s 88.69s 54.80s
NDE  59.10s 57.08s 59.38s 96.69s 57.28s

Function

Table 15: Numerical and statistic results of NDE and five DE variantsion PEFM

Function Best(Result) Worst(Result) Average value Standard deviation p-value o = 005

CoDE  0.00E+00 3.91E-12 3.92E-12 1.4E-11 0.0482  YES

jDE 3.06E-+00 1.25E+01 7.37E+00 3.01E+00 <0.0001~ YES
JADE 3.17E-02 1.82E+00 6.70E-01 5.43E-01 0.0024  YES
EPSDE  3.76E+00 1.29E+01 1.00E+01 2.50E+00 <0:0001 >, YES

SaDE  0.00E-+00 6.61E+00 9.12E-01 2.11E+00 0.0019, YES
NDE  0.00E400  0.00E400 0.00E-+00 0.00E+00 --

4.5. Application

As an application, we consider the Parameter Estimation for Frequency-Modulated Sound
Waves (PEFM) [9]. It has an important role injseveral modern music systems, aims to
generate a sound similar to target sound-and.can be modeled as the following optimization

problem

100

miin F(X)= (y(t) — vo(1)), (23)

t=0

where X = (a1, w1, axiwa as, W3),
y(t)= ay sin(with + as sin(wqth + as sin(wstd))),
and
Yo(t) = sin(5t0 + 1.5sin(4.8t0 + 2sin(4.9t0))).

Clearly, this problem is highly complex and multimodal, and its minimum value is 0.

To show the effectiveness of NDE, we compare it with five state-of-the-art DE variants
CoDE, jDE, JADE, EPSDE and SaDE on this problem. Let FES,,,., = 60000, Table
15 reports their numerical results by 30 independent runs, and the statistic results of
Wilcoxon rank sum test at 0.05 significant level. From Table 15, we see that NDE gets the
best performance among them, and the significant differences between NDE and others

can be observed in all cases. Thus, NDE is more effective for this problem.
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5. Conclusion

To make full use of the characteristics of individuals and the evolutionary states of the
neighborhood, this paper proposes a novel differential evolution with NAE mechanism. A
NM strategy is first designed to adjust suitably the search ability of each individual by
developing two NM operators with different search characteristics and choosing a suitable
one for each individual according to its fitness value. Then a NAE mechanismis presented
to identify and mitigate the evolutionary dilemmas of the neighborhood: byutracking its
fitness value and diversity and designing a dynamic neighborhood modekandtwo exchang-
ing operations, respectively. Meanwhile, a simple reduction method istemployed to adjust
the population size dynamically. Compared with the DE variants based ‘on neighborhood
and evolutionary state, the proposed algorithm not only chogses a mete suitable mutation
operator for each individual, but also relieves adaptively the neighborhood evolutionary
dilemmas of each individual. Thus, NDE not only suitably adjusts the search performance
of each individual, but also effectively maintains.a_proper balance between exploration
and exploitation. Finally, the proposed algorithm is eompared with 21 typical algorithms
by numerical experiments on 30 benchmark functions from CEC2014, and applied to the
Parameter Estimation for Frequency-Modulated Sound Waves. Experimental results show
that the proposed algorithm is reliable and has better performance.

Further research can be focusedomextending the NAE mechanism to other algorithms,
designing adaptive hybrid neighberhood topology to further enhance the performance of
DE, and applying NDE to practical problems.
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