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Differential evolution with
neighborhood-based adaptive evolution
mechanism for numerical optimization

Mengnan Tian, Xingbao Gao∗†

Abstract: This paper presents a novel differential evolution algorithm for numer-1

ical optimization by designing the neighborhood-based mutation strategy and adaptive2

evolution mechanism. In the proposed strategy, two novel neighborhood-based mutation3

operators and an individual-based selection probability are developed to adjust the search4

performance of each individual suitably. Meanwhile, the evolutionary dilemmas of the5

neighborhood are identified by tracking its performance and diversity, and alleviated by6

designing a dynamic neighborhood model and two exchanging operations in the proposed7

mechanism. Furthermore, the population size is adaptively adjusted by a simple reduction8

method. Differing from differential evolution variants based on neighborhood and evolu-9

tionary state, the proposed algorithm makes full use of the characteristics of individuals,10

identifies and alleviates the neighborhood evolutionary dilemmas of each individual. Com-11

pared with 21 typical algorithms, the numerical results on 30 benchmark functions from12

CEC2014 show that the proposed algorithm is reliable and has better performance.13

Keywords: Differential evolution, dynamic neighborhood, evolutionary state, popula-14

tion reduction, numerical optimization.15

1. Introduction16

Over the last decades, the global optimization has attracted a great interest of researchers,17

and many nature-inspired intelligent algorithms have been developed such as genetic al-18

gorithm (GA), differential evolution (DE), particle swarm optimization (PSO), artificial19

bee colony algorithm and tabu search algorithm [8, 13, 19, 35, 45]. Because of the simple20

idea and facile realization, they have been successfully applied to a variety of engineering21

contexts including engineering design, signal processing, parameter estimation and pattern22
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recognition [7,8,17,30,33,34]. Among them, DE algorithm [35] is proved to be an accurate,23

reasonably fast and robust optimizer for numerical optimization. However, similar to other24

stochastic optimization algorithms [13, 19], it is also common and challenging for DE to25

find the global optimum. In particular, for complicated problems, many local optima are26

more likely to cause the premature convergence and stagnation [10]. Thus, it is necessary27

to further improve DE performance.28

As pointed out in [10], the performance of DE depends heavily on the appropriate bal-29

ance between exploration and exploitation. In particular, they access the new regions of30

search space and those within the neighborhood of previously visited points, respectively.31

According to diversity measure, maintenance, control and learning, researchers developed32

many direct and indirect measures to evaluate them such as distance-based measure, ex-33

ternal archives, estimation of distribution and so on [6, 22]. Although these methods can34

adaptively adjust the search capability of algorithm, it is often too difficult for them to35

distinguish or control the exploration and exploitation. In general, the influences of the36

evolution strategies and mechanisms on the search process are employed to indirectly mea-37

sure the exploration and exploitation, i.e., there must be a better balance between them if38

better results are obtained. Thus, to improve the search quality of DE, many methods have39

been developed to achieve the balance between exploration and exploitation over the last40

decades [1–5, 12, 21, 23, 24, 26, 27, 31, 36–38, 40, 41, 43, 44, 46–50]. Among them, the perfor-41

mance of the synthesized algorithms [44,48] are mainly determined by the basic algorithm,42

and the control parameters settings [1–3,12,26,31,36,37,40,41,50] are closely related to the43

corresponding strategies or mechanisms. Then they are often difficult for problems at hand.44

Moreover, the trial vector generation strategies [1, 4, 5, 21,23,24,26,27,31,40,41,43,47,49]45

always control the search ability of algorithm directly, and the operations based on evo-46

lutionary state [27, 38, 46] could effectively alleviate the evolutionary dilemmas. However,47

the underlying and useful information among individuals are still not adequately utilized.48

Therefore, it is necessary and important to design some new strategies and operations to49

further improve DE performance.50

It is well known that the trial vector generation strategy, including mutation and51

crossover, plays an important role in the search capability of DE. In general, different52

mutation and crossover operators always have quite different search characteristics and53

effects. Then a number of methods have been developed to enhance the performance of54

trial vector generation strategy [1, 4, 5, 21, 23, 24, 26, 27, 31, 40, 43, 47, 49]. Some of them55

combine several typical strategies with various search characteristics [26,27,31,40,47], and56

others properly incorporate the neighborhood topology [1, 4, 5, 21, 23, 24, 43, 49]. Specially,57

the neighborhood topology is always used to restrict the scope of interaction among in-58
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dividuals such that the search capability can be adjusted effectively. For example, Ali et59

al. [1] divided the population into equal-sized tribes and utilized the mutation strategy60

with different parameter settings to alleviate the stagnation and premature convergence.61

Liao et al. [21] used cellular topology as the neighborhood topology for each individual62

and incorporated the direction of information flow into the mutation operation. Cai et63

al. [4] employed the neighborhood guided selection method to choose the parent individu-64

als and introduced the direction information of best/worst nearby neighbor in the mutation65

process. Meanwhile, Cai et al. [5] proposed a DE framework with the concept of index-66

based neighborhood by extracting the promising search directions from the neighborhood67

to guide the mutation process. Although these methods make great progress in improving68

DE performance, the mutation operation in each method always remains unchanged even69

for different individuals in the same neighborhood, and the characteristic of each individual70

is not considered in its mutation process. Thus, they cannot adaptively adjust the search71

performance of each individual. To overcome this shortcoming, it is vital to design some72

new neighborhood-based adaptive strategies.73

Besides, another common way to enhance the search performance is to incorporate the74

evolutionary state-based operations into the framework of DE. In this way, the evolution-75

ary dilemmas are dealt with by delineating the evolutionary states and designing special76

operations [27, 38, 46]. Mohamed [27] proposed a restart mechanism to avoid the prema-77

ture convergence by tracking the performance of individual. Yang et al. [46] designed an78

auto-enhanced population diversity mechanism to resolve the issues of premature conver-79

gence and stagnation by measuring the distribution of the population in each dimension.80

Even though the experimental results show that the operations based on evolutionary state81

improve the balance between exploration and exploitation, the evolutionary states of the82

neighborhood are not considered and employed. It should be pointed out that the evo-83

lutionary states of the neighborhood might be helpful to improve the search capability84

and avoid a large number of invalid searches. Thus, it is necessary to develop some new85

operations by considering the neighborhood evolutionary state.86

Based on the above important considerations and motivated by the information of87

neighborhood being helpful to enhance the performance of the algorithm, this paper88

presents a novel differential evolution algorithm (NDE) to achieve a proper balance be-89

tween exploration and exploitation. The main contributions of the paper are as follows.90

1) To adjust the search performance of each individual adaptively, we propose a neighborhood-91

based mutation (NM) strategy by designing two novel mutation operators with differ-92

ent search characteristics based on neighborhood and an individual-based probability93

parameter to choose a more suitable operator. Differing from the neighborhood-based94
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DE variants [1,4,5,21,23,24,26,27,31,40,41,43,47,49], NM strategy uses neighborhood95

information and individual information to design mutation operators and probability96

parameter, respectively. Then the worse or better individuals can suitably choose97

an explorative or exploitative mutation operator to search the decision space. Thus,98

NM strategy could effectively preserve a proper ratio between exploration and ex-99

ploitation according to the performance of each individual.100

2) To identify and relieve the evolutionary dilemmas of neighborhood, we propose a101

neighborhood-based adaptive evolution (NAE) mechanism by tracking its perfor-102

mance and diversity and presenting a dynamic neighborhood model and two exchang-103

ing operations, respectively. The proposed model guides the search to a promising104

region and helps to jump out of the local optimum by adding new individuals to105

the neighborhood. Meanwhile, two exchanging operations deals with the premature106

convergence and stagnation by using the binomial crossover operation to intercross107

the current individual with one randomly generated from the search space and the108

best one in the neighborhood, respectively. Unlike the evolutionary state-based DE109

variants [27,38,46] that always investigate the evolutionary states of the whole popu-110

lation, NAE mechanism employs the performance and diversity of the neighborhood111

to identify its evolutionary states, and deals with the different evolutionary dilem-112

mas by the dynamic neighborhood model and two exchanging operations. Then NAE113

mechanism could effectively identify and alleviate the different evolutionary dilemmas114

of the neighborhood to adjust the search capability and improve the search efficiency.115

3) A simple reduction method is employed to adaptively adjust the population size such116

that the diversity and exploitation capability can be maintained and enhanced at the117

earlier and later evolutionary processes, respectively.118

Therefore, the proposed algorithm could not only adjust suitably the search performance of119

each individual, but also maintain a proper balance between exploration and exploitation.120

Finally, numerical experiments are carried out to evaluate the performance of NDE by121

comparing it with 21 typical algorithms on 30 benchmark functions from CEC2014 [20].122

Meanwhile, NDE is also applied to Parameter Estimation for Frequency-Modulated Sound123

Waves. Experimental results show that the proposed algorithm is very competitive.124

The reminder of this paper is organized as follows. In Section 2, the classical DE125

algorithm is briefly introduced. A novel differential evolution with NAE mechanism is126

proposed in Section 3. The experimental results of the proposed algorithm are reported127

and discussed in Section 4. Finally, conclusions are drawn in Section 5.128
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2. Classical DE algorithm129

The basic DE includes initialization, mutation, crossover and selection. Specially, con-130

sider the minimization problem min{f(~x)|xminj ≤ xj ≤ xmaxj for j = 1, 2, · · · , D}, where131

~x = (x1, x2, · · · , xD) represents the solution vector, D is the dimension of the solution132

space, xminj and xmaxj are the lower and upper bounds of the j-th component of solution133

space, respectively. At the beginning of DE algorithm, initial population P 0 = {~x0
i =134

(x0
i,1, x

0
i,2, · · · , x0

i,D)|i = 1, 2, · · · , NP} is randomly generated by135

x0
i,j = xminj + rand(0, 1) · (xmaxj − xminj ), (1)

where x0
i,j is the j-th component of the i-th vector ~x0

i , NP is the population size and136

rand(0, 1) ∈ [0, 1] is a uniform random number. Then the mutation, crossover and selection137

operators will be executed in turn until the termination criterion is met.138

At each generation g, the mutation operation is applied to each individual ~xgi to generate139

its mutant individual ~vgi . In particular, the operator “DE/rand/1”140

~vgi = ~xgr1 + F · (~xgr2 − ~xgr3) (2)

is only used in this paper, where F is a scaling factor, the indices r1, r2 and r3 are the141

distinct integers randomly generated from [1, NP ] and not equal to i. Then the crossover142

operation is performed for ~xgi and ~vgi to generate its offspring ~ugi . Specially, the binomial143

crossover operator [10] can be described as follows:144

ugi,j =

{
vgi,j, if rand ≤ Cr or j = randn(i),
xgi,j, otherwise,

(3)

where Cr ∈ [0, 1] is the crossover rate, and randn(i) is an integer randomly generated145

from the range [1, NP ] to ensure that ~ugi has at least one component from ~vgi . Finally, the146

following selection operation [10] is executed to decide whether ~xgi or ~ugi can survive in the147

next generation148

~xg+1
i =

{
~ugi , if f(~ugi ) ≤ f(~xgi ),
~xgi , otherwise.

(4)

Note that DE with (4) will get better or remain the same fitness, but never deteriorate.149

The detail procedure of the classical DE can be found in [35].150

3. Proposed algorithm151

Even though the classical DE algorithm is simple and strongly robust, it is often difficult to152

deal with some practical or complicated problems. Then various DE variants have achieved153
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to strengthen its performance and great progress has been made as mentioned in Section154

1, yet there are still several shortcomings. For example, DE variants with neighborhood155

information rarely use the characteristics of individuals in the same neighborhood during156

mutation [1, 4, 5, 21, 23, 24, 43, 49]. The variants based on evolutionary state might not be157

suitable for adjusting the search capability of algorithm for complex problems since they158

only focus on the evolutionary states of the whole population [27, 38, 46]. To overcome159

these drawbacks, we shall propose a novel DE variant with adaptive evolution mechanism160

based on neighborhood in this section. Specially, we design two novel NM operators with161

different search characteristics and choose a suitable one for each individual according to162

its characteristic. Meanwhile, the proposed algorithm identifies the evolutionary states of163

neighborhood by tracking its fitness value and diversity, and relieves the different evolu-164

tionary dilemmas by presenting three operations.165

For the convenience of the later discussions, let N(i) denote the neighborhood of ~xgi ,166

Nsizei and Nrsizei denote the size and radius of N(i) respectively, ~xgnbesti denote the best167

individual among N(i), fitnworsti , fitnbesti and fitnaveri denote the worst, best and average168

fitness values among N(i) respectively, Numgi and Numsi denote the number of the suc-169

cessive unsuccessful update of ~xgnbesti and fitnaveri respectively, Stdnfi denote the standard170

deviation of the fitness values of individuals in N(i) and Stdnfaver denote the average value171

of Stdnfi for all individuals.172

3.1. NM strategy173

As pointed out in [24], population topology is helpful to balance the exploration and174

exploitation by controlling the scope of interaction between particles and affecting the175

dissemination of search information. However, the existing neighborhood-based DE vari-176

ants [4, 5, 21] do not consider the characteristics of individuals within the same neighbor-177

hood, and always use the unchanged mutation strategy such that the search performance178

of each individual cannot be adaptively adjusted. Thus, to alleviate this shortcoming, we179

propose the following NM strategy by designing two novel NM operators and an individual-180

based probability parameter:181

~vgi =

{
~xgnr1 + F (~xgr1 − ~xgr2), if rand(0, 1) < ξ1,i,
~xgi + F (~xgnbest − ~xgi ) + F (~xgnr1 − ~xgnr2) + F (~xgr1 − ~xgr2), otherwise,

(5)

where F is a scaling factor, r1 and r2 ∈ [1, NP ] are two random integers and not equal182

to i, the neighborhood N(i) of the i-th individual ~xgi is constructed by ring topology [24],183

nr1 and nr2 are two random integers from N(i) and not equal to i, ξ1,i is a probability184

parameter based on the performance of ~xgi .185
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Obviously, the first strategy in Eq. (5) takes the individual randomly chosen from the186

neighborhood N(i) as the base individual and searches around it. But another one uses187

the current individual as the base individual and searches the search space along the best188

individual in its corresponding neighborhood. Meanwhile, a difference vector from the189

whole population is employed to enhance their global search capability. Then they can190

make full use of the neighborhood and whole population information, and the former has191

stronger exploration ability than the latter. Thus, NM strategy could effectively improve192

the balance between exploration and exploitation by choosing a suitable strategy based on193

a probability for each individual.194

From Eq. (5), the probability parameter ξ1,i plays an important role in its performance195

since an unreasonable setting will lead to explore or exploit ineffectively the information196

of each individual. To choose a suitable mutation operator for each individual and make197

full use of its characteristic, let198

ξ1,i = (1 + exp(20
fitnaveri − fit(i)
fitnworsti − fitnbesti

))−1, (6)

where fit(i) is the fitness value of ~xgi , and199

fitnaveri =
1

Nsizei

∑

k∈N(i)

fit(k) (7)

with Nsizei being the size of N(i). From Eqs. (6) and (7), ξ1,i becomes smaller or larger200

if ~xgi has better or worse fitness. Then the individual with worse or better performance201

has more chances to employ the mutation operator with more explorative or exploitative202

in Eq. (5). Thus, the proposed strategy can adaptively adjust the search performance of203

each individual.204

In summary, the proposed strategy in Eq. (5) develops two novel NM operators with205

different search characteristics, and an individual-based probability parameter to choose206

a suitable one for each individual. Unlike the methods [4, 5, 21] that do not consider207

the differences between individuals in the same neighborhood, NM strategy searches the208

broader region or the more promising position around the worse or better individual. Thus,209

it could not only make full use of the neighborhood information, but also adaptively adjust210

the search performance for each individual. Therefore, the proposed strategy effectively211

adjusts the exploration and exploitation, which is shown by the experiments in Subsection212

4.2.1.213

3.2. NAE mechanism214

The existing neighborhood models [4, 5, 21, 24] are always fixed, and their evolutionary215

states are not identified and employed to improve the algorithm performance. Then they216
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will waste a great number of computational resources whenever the neighborhood is in an217

evolutionary dilemma, and cannot properly adjust the search capability of each individual,218

especially for complicated problems. To identify and overcome the evolutionary dilem-219

mas of neighborhood effectively, we propose a NAE mechanism by using the performance220

and diversity of the neighborhood and designing a dynamic neighborhood model and two221

exchanging operations in the following.222

In the proposed mechanism, the neighborhood evolutionary state is characterized by223

its performance and diversity. To evaluate the performance of the neighborhood of ~xgi ,224

we employ two counters, Numgi and Numsi, as the indicators to record the number of225

the successive unsuccessful update of ~xgnbesti and the number of the unsuccessful update of226

fitnaveri during Numgi iterations, respectively. Set them to 0 at the beginning, increase227

by 1 when the best individual ~xgnbesti and the average fitness value fitnaveri of N(i) are not228

improved respectively, and return to 0 when a better ~xgnbesti is obtained. On the other hand,229

the diversity of the neighborhood is characterized by the standard deviation (Stdnfi) of the230

fitness values of the individuals inN(i). In general, a larger or smaller Stdnfi means that the231

individuals inN(i) are relatively scattered or crowded. Then the neighborhood with smaller232

or larger Stdnfi is more likely to suffer from the premature convergence or stagnation233

whenever no individual is updated after several successive generations. Clearly, it requires234

less computational costs to evaluate the diversity of neighborhood in the objective space235

than that in the search space.236

According to the counters Numgi and Numsi, the following two evolutionary dilemmas237

of the neighborhood might be encountered when Numgi meets a prescribed limited value238

gm.239

(i) The ratio Numsi/Numgi is close to 0, i.e., fitnaveri is not improved within few240

iterations during Numgi iterations. This might be due to the fact that the best individual241

in the neighborhood might be located at the local optimum, but the other individuals do242

not converge to it. Then it is useless to further search in the current neighborhood, and243

the neighborhood topology should be reconstructed to guide the individuals toward a more244

promising region. To do this, we develop the following dynamic neighborhood model to245

enlarge the neighborhood N(i) of ~xgi by adding new individuals.246

Nrsizei = Nrsizei + 1, (8)

where Nrsizei = (Nsizei − 1)/2 is the radius of N(i). At the beginning, let Nrsizei be 1 to247

ensure the exploration of the algorithm in the early evolutionary stage. Furthermore, to248

ensure the rationality of Nrsizei , let249

Nrsizei = min(Nrsizei , f loor(0.5 · (NP − 1))), (9)
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where min(a, b) returns the minimum one between a and b, and floor(c) is the nearest250

integer smaller than c. Clearly, Nsizei is increased and ~xgi searches within a more promising251

region when the dilemma occurs. Thus, the proposed model could help to jump out of252

local optimum, and effectively adjust the search performance of ~xgi .253

(ii) The ratio Numsi/Numgi is close to 1, i.e., there is almost no progress on fitnaveri254

during Numgi iterations, which may be due to the premature convergence or stagnation.255

According to [46], the evolutionary state of N(i) shall be regarded as the premature conver-256

gence or stagnation when Stdnfi is smaller or larger than the average diversity Stdnfaver of257

all neighborhoods. In general, they can be alleviated by enhancing the diversity of neigh-258

borhood and making full use of the information of the promising individuals, respectively.259

To do this, we design the following two exchanging operations.260

Regenerate ~xgi as261

~x′
g

i =

{
~x′
g

I,i, if Stdnfi < Stdnfaver,
~x′
g

B,i, otherwise,
(10)

where ~I = {I1, I2, · · · , ID} with Ij = xminj + rand(0, 1) · (xmaxj − xminj ) for j = 1, 2, · · · , D,262

~x′
g

I,i = (x′gI,i,1, x
′g
I,i,2, · · · , x′gI,i,D) and ~x′

g

B,i = (x′gB,i,1, x
′g
B,i,2, · · · , x′gB,i,D) are generated by263

x′
g
I,i,j =

{
Ij, if rand(0, 1) < ξ2,i,
xgi,j, otherwise

(11)

and264

x′
g
B,i,j =

{
xgnbesti,j, if rand(0, 1) < ξ2,i,

xgi,j, otherwise
(12)

for j = 1, 2, · · · , D respectively, ξ2,i is the crossover parameter.265

To make full use of the information of ~xgi and ensure the convergence of algorithm266

during the later evolutionary process, the possibility of intercrossing ~xgi with ~xgnbesti or ~I267

should be smaller as the iteration proceeds or it has better performance. Then, let268

ξ2,i = 1−min(
FES

FESmax
,
f itmax − fit(i)
fitmax − fitmin

), (13)

where FES and FESmax are the current and maximum number of fitness evaluations269

respectively, fit(i), fitmax and fitmin are the fitness values of ~xgi , the worst and best270

individuals among the whole population, respectively. From Eqs. (10)-(13), the diversity271

or the promising information of the neighborhood N(i) can be enhanced or exploited by272

exchanging ~xgi with ~I or ~xgnbesti . Thus, these proposed operations could effectively alleviate273

the premature convergence and stagnation.274
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Obviously, the neighborhood is more likely to fall into the local optimum, or suffer from275

the premature convergence and stagnation when Numgi exceeds gm. Then the parameter276

gm plays an important role in the identification of evolutionary states, and should not be277

too large for simple functions, and not too small or too large for the complicated problems.278

In fact, for simple problems, a small gm will lead to a rapid increase of the size of neigh-279

borhood so that the promising information can be exploited to improve convergence. For280

complicated problems, a too small gm could cause a premature judgement of dilemmas on281

the evolutionary states such that some promising information in the current neighborhood282

cannot be fully utilized. Meanwhile, a too large gm will waste a large amount of com-283

putational resources due to the ineffective searches after the neighborhood is truly in the284

evolutionary dilemmas. Thus, let gm = 10 from the sensitivity analysis in Subsection 4.1.285

From the above discussions, the proposed mechanism identifies the evolutionary states286

of the neighborhood by using its fitness value and diversity, and deals with its different287

evolutionary dilemmas by developing a dynamic neighborhood model and two exchanging288

operations. In particular, when Numgi exceeds gm and Numsi/Numgi approaches 0, new289

individuals are added in the current neighborhood to enhance its diversity. This is helpful290

to jump out of local optimum and guide the search toward a more promising region. On291

the other hand, when Numsi/Numgi approaches 1, the current individual ~xgi is exchanged292

with ~I or ~xgnbesti to enhance the diversity or utilize the promising information of better indi-293

viduals. Meanwhile, the exchanging probability becomes smaller as the iteration proceeds,294

or when ~xgi has better performance. Unlike the DE variants [4, 5, 21], the proposed mech-295

anism can identify neighborhood dilemmas, and alleviate them by enhancing its diversity296

and making full use of promising information. Therefore, the proposed mechanism effec-297

tively adjusts the search performance of each individual and improves the search efficiency.298

Furthermore, its effectiveness is illustrated by experiments in Subsection 4.2.2.299

3.3. Parameter setting300

It is well known that the control parameters, including scaling factor F , crossover rate301

Cr and populations size NP , also influence the search capability of algorithm mainly, and302

appropriate parameter settings can enhance its performance [1–3,10,35,37]. In particular,303

the constant method in [35] improves the running efficiency of DE algorithm, yet it always304

takes more time to tune and is unsuitable for all problems. The random method [10] can305

enhance the robustness, but it could not adapt to the different evolutionary processes.306

Unlike the constant and random methods [10,35], the adaptive methods [2,37] can dynam-307

ically adjust parameters and effectively balance the exploration and exploitation. To make308

full use of feedback information, we set F and Cr by employing the weighted adaptive309
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method [37] as follows.310

For the individual ~xgi , its corresponding scale factor311

F g
i = randC(F g

loc, 0.1), i = 1, 2, · · · , NP, (14)

where randC(F g
loc, 0.1) is the cauchy distribution with location parameter312

F g
loc = (1− c) · F g−1

loc + c ·meanWL(Sg−1
F ), (15)

c ∈ (0, 1] is a constant, Sg−1
F is the set of successful F values at g − 1 generation,313

meanWL(Sg−1
F ) =

∑|Sg−1
F |

k=1 wk · F 2
k

∑|Sg−1
F |

k=1 wk · Fk
, (16)

314

wk =
4fk

∑|Sg−1
F |

k=1 4fk
(17)

and 4fk = |f(~ug−1
k )− f(~xg−1

k )|. Similarly, the corresponding crossover rate is set as315

Crgi = randn(Crgmean, 0.1), i = 1, 2, · · · , NP, (18)

where randn(Crgmean, 0.1) is the normal distribution with standard deviation 0.1 and mean316

Crgmean = (1− c) · Crg−1
mean + c ·meanWA(Sg−1

Cr ), (19)

Sg−1
Cr is the set of all successful Cr values at g − 1 generation,317

meanWA(Sg−1
Cr ) =

|Sg−1
Cr |∑

k=1

wk · Crk (20)

and wk is defined in (17). To ensure the validity of F g
i and Crgi , let F g

i be truncated to 1318

if F g
i > 1 and be regenerated by (14) if F g

i < 0, and319

Crgi =

{
0, if Crgi < 0,
1, if Crgi > 1.

(21)

Similar to [37], c is set to 0.1, Floc and Crmean are initialized to 0.5.320

Moreover, as pointed out in [1,3,37], population size reduction can effectively improve321

the performance of algorithm. To further enhance the performance of the proposed method,322

we employ a reduction method [37] to adjust dynamically the population size. In particular,323

the current population size NP is first calculated by324

NP = round[(
NPmin −NP ini

FESmax
) · FES +NP ini], (22)

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where round(a) is the nearest integer around a, NPmin and NP ini are the smallest and325

initial size of population, respectively. Then we delete the individual with the worst fitness326

value when the population size is reduced. From Eq. (22), a too large or too small NP ini
327

could cause a large amount of invalid searches during the earlier evolutionary process or328

weaken the global search ability. Thus, let NP ini = 10D, which is a suitable choice by329

experiments in Subsection 4.1. In addition, set NPmin to 5 since Eq. (5) requires at330

least five individuals. Clearly, the population size is gradually reduced and the better331

individuals are retained as the number of iterations increases. Therefore, it is helpful to332

enhance the exploitation at the later evolutionary stage, and the above parameter settings333

could adaptively adjust the search capability and balance the exploration and exploitation334

effectively.335

In summary, a novel DE variant (NDE) can be proposed and described in Algorithm336

1 by integrating NM strategy, NAE mechanism and the parameter adaptation method in337

this subsection.338

From Algorithm 1, one can see that for each target individual ~xgi , a suitable NM operator339

is chosen to generate its mutant individual according to the individual-based probability ξi,1340

(lines 9-15 in Algorithm 1). After each generation, the neighborhood evolutionary state of341

each individual is identified by tracking the performance and diversity of its corresponding342

neighborhood (lines 26-36). When the evolutionary dilemmas occur, they are alleviated343

by a dynamic neighborhood model and two exchanging operations, respectively (lines 38-344

52). Finally, the linear reduction method is further applied to delete the worst individual345

from the current population as the number of iterations increases (lines 53-56). Thus, the346

proposed algorithm could not only take full advantage of the neighborhood information347

and the characteristic of each individual, but also effectively adjust the search capability348

of the population.349

It should be mentioned that the DE variant [4] employs a probability to produce neigh-350

bors for each individual and selects the best individual from them as the base vector to351

accelerate convergence. However, it might not exploit the promising information around352

the true neighborhood and does not consider the differences between individuals in the353

mutation process. On the contrary, for each individual, the proposed NDE employs the354

index-based ring topology to construct the neighborhood, and chooses a more suitable355

mutation operator by developing two novel NM operators with different search capabili-356

ties. Meanwhile, the PSO variant [28] uses the historical information of neighborhood to357

update the learner particle, and dynamically produces the neighborhood after a certain358

interval, which might not be suitable for the evolutionary process. Unlike this PSO vari-359

ant, the proposed NDE adaptively adjusts the neighborhood of each individual to alleviate360

12
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Algorithm 1 (The framework of NDE)
1: Input: the initial and minimum size of population NP ini and NPmin, the maximum number of fitness evaluations

FESmax, the initial location parameter F 0
loc, the initial average crossover rate Cr0mean, the weighted parameter c and

the limit parameter gm.
2: Set population size NP = NP ini, the current generation g = 0; initialize the population P g = {~xg1, ~x

g
2, · · · , ~x

g
NP } and

evaluate its fitness; fitness evaluation counter FES = NP ; initialize neighborhood radius Nrsizei = 1, Numgi = 0 and
Numsi = 0 for ~xgi with i = 1, 2, · · · , NP ;

3: while FES ≤ FESmax do
4: SF = Ø and SCr = Ø;
5: for i = 1 : NP do
6: Construct N(i) based on ring topology structure, and calculate fitnbesti , fitnworsti , fitnaveri and Stdnfi ;
7: Let oldfitnbesti = fitnbesti , oldfitnworsti = fitnworsti , oldfitnaveri = fitnaveri and oldStdnfi = Stdnfi ;
8: Calculate F g

i by Eq. (14), and correct it; Calculate Crgi by Eqs. (18) and (21), and ξ1,i by Eqs. (6) and (7);
9: if rand ≤ ξi,1 then
10: Randomly select ~xgnr1 from N(i), ~xgr1 and ~xgr2 from P g with nr1 6= r1 6= r2 6= i;
11: ~vgi = ~xgnr1 + F g

i · (~x
g
r1 − ~x

g
r2 );

12: else
13: Randomly select ~xgnr1 and ~xgnr2 from N(i), ~xgr1 and ~xgr2 from P g with nr1 6= nr2 6= r1 6= r2 6= i;
14: ~vgi = ~xgi + F g

i · (~x
g
nbest − ~x

g
i ) + F g

i · (~x
g
nr1 − ~x

g
nr2 ) + F (~xgr1 − ~x

g
r2 );

15: end if
16: Execute the crossover operation for ~xgi and ~vgi to generate its offspring ~ugi by Eq.(3);
17: Evaluate ~ugi ; FES = FES + 1;
18: if f(~ugi ) ≤ f(~xgi ) then

19: ~xg+1
i = ~ugi ; F g

i → SF and Crgi → SCr;
20: else
21: ~xg+1

i = ~ugi ;
22: end if
23: end for
24: Calculate meanWL(SF ) and meanWA(SF ) by Eqs. (16), (17) and (20);

25: Update F g+1
loc and Crg+1

mean by Eqs. (15) and (19), respectively;
26: for i = 1 : NP do
27: Construct N(i) based on ring topology structure, and calculate fitnbesti , fitnworsti , fitnaveri and Stdnfi ;
28: if fitnbesti < oldfitnbesti then
29: Numgi = 0; Numsi = 0;
30: else
31: Numgi = Numgi + 1;
32: if fitnaveri ≥ oldfitnaveri then
33: Numsi = Numsi + 1;
34: end if
35: end if
36: end for
37: Calculate Stdnfaver =

∑NP
i=1 Stdnfi/NP ;

38: for i = 1 : NP do
39: if Numgi = gm then
40: if rand > Numsi/Numgi then
41: Nrsizei = Nrsizei + 1; Nrsizei = min(Nrsizei , f loor(0.5 ∗ (NP − 1)));
42: else
43: if Stdnfi < Stdnfaver then

44: Generate ~x′
g
i by exchanging ~xgi with ~I by Eqs.(11) and (13);

45: else
46: Generate ~x′

g
i by exchanging ~xgi with ~xgnbesti

by Eqs.(12) and (13);

47: end if
48: ~xgi = ~x′

g
i ; Evaluate ~xgi ; FES = FES + 1;

49: end if
50: Numgi = 0; Numsi = 0;
51: end if
52: end for
53: NPnew = round[(NPmin−NP ini

FESmax
) · FES +NP ini];

54: if NPnew < NP then
55: Delete the worst NP −NPnew individuals from P g based on the fitness and their corresponding records;

NP = NPnew;
56: end if
57: g = g + 1;
58: end while
59: Output: The best individual and its fitness value.

13
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the evolutionary dilemmas by designing a dynamic neighborhood model and two exchang-361

ing operations according to its evolutionary state. Moreover, the proposed NDE adopts362

a linear reduction method to adaptively reduce the population size with the increase of363

iterations, while each population size in [4] and [28] is fixed. Therefore, NDE has more364

promising performance to adjust the search capabilities of different individuals and adapt365

to the different evolutionary stages.366

3.4. Complexity analysis367

In this subsection, we shall analyze the complexity of NDE, which is a very important368

criterion for evaluating the performance of an algorithm. Obviously, the main differences369

between NDE and the classical DE algorithm are NM strategy, NAE mechanism and the370

parameter setting method.371

As discussed in the above subsections, the main operations of NM strategy and NAE372

mechanism are to sort the neighbors of each individual and calculate the diversity of all373

neighborhoods based on fitness values, respectively. Similar to [4,21,28], their complexities374

are O(G · (NP ini)2 · log2NP
ini) and O(G · (NP ini)3) respectively, where G is the maximum375

number of iterations. According to [10,37], the complexities of the classical DE algorithm376

and the parameter setting method are O(G · NP ini · D) and O(NP ini · (2 · G + NP ini −377

NPmin) + 2 ·G ·NPmin), respectively. Thus, the complexity of NDE is O(G ·NP ini · (D+378

2) +NPmin · (2 ·G−NP ini) + (NP ini)2 · (G · (log2NP
ini +NP ini) + 1).379

It should be pointed out that the diversity of all neighborhoods does not require to be380

calculated at each generation, and the population size is gradually reduced as the iteration381

proceeds. Therefore, the complexity of NDE is more expensive, but not severe, than that382

of the classical DE algorithm.383

4. Numerical experiments384

In this section, we shall evaluate the performance of NDE by numerical experiments on385

30 well-known benchmark functions f1-f30 from CEC 2014 [20] as listed in Table 1, where386

search range and bias value for each function are also provided. Meanwhile, we will also387

analyze the sensitivities of parameters in NDE, illustrate the effectiveness of NM strategy388

and NAE mechanism. Finally, we shall compare NDE with the classical DE, 14 variants389

of DE and 6 non-DE algorithms, discuss the reliability and efficiency of NDE, and give an390

application. All experiments are conducted in MATLAB R2014a on a PC (Intel i3-4570391

CUP 3.20GHz. RAM 4.00 GB).392

In all experiments, the stopping criterion is that the number of function evaluations393
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Table 1: The benchmark functions of CEC2014
Type Name Search range f(~x∗) (f bias)

Unimodal f1: Rotated high conditioned elliptic function [−100, 100]D 100

functions
f2: Rotated bent cigar function [−100, 100]D 200
f3: Rotated discus function [−100, 100]D 300

Simple multimodal

f4: Shifted and rotated rosenbrock’s function [−100, 100]D 400

functions

f5: Shifted and rotated ackley’s function [−100, 100]D 500
f6: Shifted and rotated weierstrass function [−100, 100]D 600
f7: Shifted and rotated griewank’s function [−100, 100]D 700
f8: Shifted rastrigin’s function [−100, 100]D 800
f9: Shifted and rotated rastrigin’s function [−100, 100]D 900
f10: Shifted schwefel’s function [−100, 100]D 1000
f11: Shifted and rotated schwefel’s function [−100, 100]D 1100
f12: Shifted and rotated katsuura function [−100, 100]D 1200
f13: Shifted and rotated happycat function [−100, 100]D 1300
f14: Shifted and rotated hgbat function [−100, 100]D 1400
f15: Shifted and rotated expanded griewank’s [−100, 100]D 1500

plus rosenbrock’s function
f16: Shifted and rotated expanded scaffer’s function [−100, 100]D 1600

Hybrid
f17: Hybrid function 1 (N=3) [−100, 100]D 1700

functions
f18: Hybrid function 2 (N=3) [−100, 100]D 1800
f19: Hybrid function 3 (N=4) [−100, 100]D 1900
f20: Hybrid function 4 (N=4) [−100, 100]D 2000
f21: Hybrid function 5 (N=5) [−100, 100]D 2100
f22: Hybrid function 6 (N=5) [−100, 100]D 2200

Composition

f23: Composition function 1 (N=5) [−100, 100]D 2300

functions

f24: Composition function 2 (N=3) [−100, 100]D 2400
f25: Composition function 3 (N=3) [−100, 100]D 2500
f26: Composition function 4 (N=5) [−100, 100]D 2600
f27: Composition function 5 (N=5) [−100, 100]D 2700
f28: Composition function 6 (N=5) [−100, 100]D 2800
f29: Composition function 7 (N=3) [−100, 100]D 2900
f30: Composition function 8 (N=3) [−100, 100]D 3000

is less than the maximum number of function evaluations (FESmax), and set FESmax =394

10000D for all algorithms in Subsections 4.1-4.4. All algorithms are run 30 times indepen-395

dently except for NDE in Subsection 4.3.4. The average value (Mean Error) and standard396

deviation (Std Dev) of the function errors f(~x) − f(~x∗) are recorded to measure the per-397

formance of algorithm, where ~x and ~x∗ are the best solution found by the algorithm in398

a run and the global optimum of test function, respectively. To have statistically sound399

conclusions, we adopt a) Wilcoxon rank sum test [42] at 0.05 significance level to show400

the difference between two algorithms on a single problem; b) the multiproblem Wilcoxon401

signed-rank test [11] at 0.05 significance level to identify the differences between a pair402

of algorithms; and c) the Friedman test [11] to show overall rankings of all algorithms403

according to their performances on all problems.404

4.1. The sensitivities of parameters gm and NP ini
405

Now, we study the sensitivities and interactions between the prescribed limited value gm406

and initial population size NP ini in NDE on 6 typical functions f1, f4, f15, f18, f22 and f30407

in Table 1. Among many sensitivity analysis methods [16, 18, 29, 32, 39], the full factorial408

design (FFD) [18, 29] is adopted because it is simple and can demonstrate the interaction409

between parameters more accurately.410
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Table 2: Experimental results of NDE with various values of gm and NP ini

Function f1 f4 f15 f18 f22 f30

D NP ini gm Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev)

30

5D

3 4.08E+03(6.95E+03) 5.49E-12(3.36E-12) 3.32E+00(3.31E-01) 2.60E+01(1.73E+01) 7.50E+01(6.43E+01) 8.91E+02(3.35E+02)
5 4.52E+03(4.71E+03) 5.99E-07(1.09E-06) 3.34E+00(7.92E-01) 1.42E+01(8.37E+00) 1.81E+02(1.11E+02) 8.66E+02(4.82E+02)
10 4.14E+02(1.15E+03) 1.27E+01(2.67E+01) 2.88E+00(7.37E-01) 1.35E+01(5.30E+00) 1.31E+02(5.44E+01) 8.32E+02(3.01E+02)
15 2.50E+03(2.71E+03) 1.38E-05(1.79E-05) 2.93E+00(6.92E-01) 1.16E+01(7.20E+00) 2.60E+02(2.25E+02) 5.72E+02(1.17E+02)
20 2.80E+03(4.26E+03) 4.58E-02(9.62E-02) 2.59E+00(8.96E-01) 9.08E+00(2.18E+00) 1.38E+02(1.05E+02) 6.37E+02(1.67E+02)

10D

3 4.30E-07(8.90E-07) 3.41E-14(7.19E-14) 3.86E+00(1.04E+00) 1.22E+01(4.19E+00) 7.90E+01(7.61E+01) 1.10E+03(5.72E+02)
5 1.95E-05(5.65E-05) 5.12E-14(7.31E-14) 3.04E+00(7.40E-01) 1.23E+01(3.42E+00) 7.68E+01(7.24E+01) 7.53E+02(2.69E+02)
10 5.91E+00(5.58E+00) 2.94E-08(4.84E-08) 2.60E+00(4.45E-01) 5.95E+00(1.50E+00) 2.61E+01(4.46E+00) 5.14E+02(6.93E+01)
15 2.92E+00(7.02E+00) 4.22E-06(9.34E-06) 3.54E+00(8.03E-01) 1.13E+01(4.05E+00) 6.05E+01(6.26E+01) 7.20E+02(2.24E+02)
20 1.06E+01(2.32E+01) 6.34E+00(2.00E+01) 3.60E+00(1.03E+00) 1.05E+01(3.95E+00) 4.66E+01(3.61E+01) 6.90E+02(1.46E+02)

15D

3 3.94E-05(2.84E-05) 3.32E-10(4.92E-10) 2.83E+00(8.75E-01) 7.00E+00(2.74E+00) 9.97E+01(6.93E+01) 6.01E+02(1.64E+02)
5 4.81E+00(9.83E+00) 3.36E-07(2.04E-07) 2.82E+00(4.88E-01) 6.93E+00(1.85E+00) 5.26E+01(6.04E+01) 6.92E+02(2.79E+02)
10 1.82E-02(5.42E-02) 6.34E+00(2.00E+01) 3.33E+00(9.16E-01) 9.71E+00(3.60E+00) 1.19E+02(1.38E+02) 6.22E+02(1.19E+02)
15 1.36E+03(1.81E+03) 4.69E-02(5.09E-02) 2.61E+00(7.84E-01) 9.10E+00(6.13E+00) 1.05E+02(9.78E+01) 6.46E+02(2.71E+02)
20 2.24E+03(2.24E+03) 3.02E-01(4.30E-01) 3.65E+00(6.23E-01) 8.53E+00(5.00E+00) 5.78E+01(5.66E+01) 5.87E+02(8.43E+01)

20D

3 1.47E-02(1.77E-02) 2.55E-06(3.48E-06) 2.95E+00(3.22E-01) 6.05E+00(1.54E+00) 5.85E+01(6.32E+01) 6.69E+02(3.14E+02)
5 5.25E-01(4.55E-01) 4.62E-04(9.34E-04) 2.85E+00(1.15E+00) 6.44E+00(2.97E+00) 8.48E+01(6.49E+01) 5.42E+02(1.11E+02)
10 9.30E-02(2.68E-01) 1.35E-05(2.68E-05) 4.38E+00(1.09E+00) 9.95E+00(4.22E+00) 8.39E+01(8.61E+01) 6.41E+02(1.87E+02)
15 4.48E+02(3.84E+02) 1.72E-01(2.13E-01) 3.37E+00(1.09E+00) 7.80E+00(4.71E+00) 1.19E+02(8.03E+01) 5.17E+02(4.38E+01)
20 2.18E+03(9.37E+02) 1.01E+00(2.41E-01) 3.30E+00(1.17E+00) 7.32E+00(5.65E+00) 1.40E+02(1.05E+02) 5.22E+02(6.07E+01)

50

5D

3 6.10E+04(1.79E+04) 3.33E+01(2.22E+01) 6.60E+00(1.40E+00) 7.09E+01(1.56E+01) 4.60E+02(1.97E+02) 9.00E+03(4.14E+02)
5 8.38E+04(3.89E+04) 7.93E+01(4.19E+01) 5.78E+00(1.01E+00) 8.06E+01(2.86E+01) 6.66E+02(1.45E+02) 8.32E+03(3.70E+02)
10 7.40E+04(3.35E+04) 3.65E+01(4.43E+01) 5.44E+00(3.02E-01) 5.09E+01(2.13E+01) 3.42E+02(2.81E+02) 8.71E+03(6.84E+02)
15 1.17E+05(6.93E+04) 3.77E+01(4.31E+01) 5.75E+00(1.04E+00) 4.03E+01(9.77E+00) 4.04E+02(1.20E+02) 8.81E+03(5.82E+02)
20 1.09E+05(4.37E+04) 3.95E+01(4.39E+01) 5.19E+00(1.03E+00) 3.69E+01(2.42E+01) 4.58E+02(2.24E+02) 9.50E+03(3.44E+02)

10D

3 1.09E+05(4.37E+04) 3.95E+01(4.39E+01) 5.19E+00(1.03E+00) 3.69E+01(2.42E+01) 4.58E+02(2.24E+02) 9.50E+03(3.44E+02)
5 6.54E+04(3.17E+04) 5.50E+01(4.71E+01) 5.96E+00(1.65E+00) 5.04E+01(1.32E+01) 4.25E+02(1.58E+02) 8.45E+03(5.09E+02)
10 6.30E+04(2.54E+04) 8.19E+00(6.55E-01) 4.72E+00(6.11E-01) 2.40E+01(5.41E+00) 2.11E+02(1.34E+02) 8.16E+03(1.70E+02)
15 9.25E+04(3.94E+04) 9.99E+00(1.15E+00) 7.08E+00(1.82E+00) 2.84E+01(1.26E+01) 5.70E+02(2.27E+02) 8.15E+03(2.24E+02)
20 1.23E+05(3.63E+04) 4.92E+01(4.47E+01) 4.92E+00(1.23E+00) 3.84E+01(1.14E+01) 4.58E+02(1.41E+02) 8.60E+03(7.03E+02)

15D

3 2.60E+04(1.32E+04) 2.48E+01(4.10E+01) 6.50E+00(3.02E+00) 2.42E+01(7.75E+00) 6.56E+02(1.80E+02) 8.57E+03(3.58E+02)
5 7.86E+04(4.80E+04) 4.46E+01(4.88E+01) 5.36E+00(1.78E+00) 3.52E+01(6.17E+00) 3.23E+02(3.89E+02) 8.61E+03(4.73E+02)
10 6.03E+04(2.56E+04) 6.27E+01(4.86E+01) 5.91E+00(1.25E+00) 3.60E+01(1.43E+01) 2.94E+02(3.36E+02) 8.64E+03(6.78E+02)
15 1.16E+05(4.49E+04) 5.75E+01(3.73E+01) 5.42E+00(9.83E-01) 3.18E+01(8.89E+00) 5.05E+02(1.98E+02) 8.51E+03(2.94E+02)
20 1.65E+05(3.36E+04) 6.57E+01(4.44E+01) 5.27E+00(8.08E-01) 4.88E+01(2.99E+01) 3.59E+02(2.70E+02) 8.74E+03(3.26E+02)

20D

3 3.40E+04(1.78E+04) 4.47E+01(4.87E+01) 5.76E+00(1.12E+00) 2.51E+01(1.10E+01) 9.42E+02(3.67E+02) 8.43E+03(4.67E+02)
5 5.88E+04(2.69E+04) 4.50E+01(4.85E+01) 5.61E+00(1.02E+00) 3.85E+01(9.79E+00) 4.45E+02(3.78E+02) 8.41E+03(6.27E+02)
10 9.41E+04(1.01E+05) 6.57E+01(4.45E+01) 5.49E+00(1.48E+00) 3.75E+01(1.28E+01) 9.07E+02(1.71E+02) 8.60E+03(7.03E+02)
15 1.46E+05(6.44E+04) 9.21E+01(8.21E+00) 6.12E+00(1.19E+00) 3.34E+01(1.12E+01) 6.45E+02(3.87E+02) 8.78E+03(3.81E+02)
20 3.44E+05(1.30E+05) 7.60E+01(3.19E+01) 6.21E+00(1.95E+00) 4.60E+01(1.43E+01) 7.82E+02(2.94E+02) 8.64E+03(3.73E+02)

In the experiment, gm and NP ini are first set to five and four different levels, i.e.,411

gm ∈ {3, 5, 10, 15, 20} and NP ini ∈ {5D, 10D, 15D, 20D}, respectively, and all possible412

combinations of each level are then run. Other parameters in NDE are consistent with413

Section 3. Table 2 reports their experimental results when D = 30 and 50, where the best414

results are marked by bold on each function (the same below).415

From Table 2, NDE gets the best results on these functions when NP ini = 10D and416

gm = 10 except for f1 and f4 when NP ini = 10D and gm = 3 for D = 30, and f1 when417

NP ini = 15D and gm = 3 for D = 50. To see the interaction between NP ini and gm418

clearly, Figures 1 and 2 depict the performance of NDE with various values of NP ini and419

gm on these functions when D = 30 and 50, respectively. From Figures 1 and 2, we see420

that NDE is sensitive to NP ini and gm. In particular, whether D = 30 or 50, different421

values of NP ini or gm result in significant difference on each function for the same gm or422

NP ini. Then NP ini should not be too small or too large for all problems, while gm should423

be small for simple functions, and not too small or too large for complicated problems.424
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Figure 1: Performance of NDE with various values of NP ini and gm when D = 30. (a) f1, (b)
f4, (c) f15, (d) f18, (e) f22 and (f) f30.
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Figure 2: Performance of NDE with various values of NP ini and gm when D = 50. (a) f1, (b)
f4, (c) f15, (d) f18, (e) f22 and (f) f30.
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These are consistent with the analysis in Subsections 3.2 and 3.3, respectively. Thus,425

let NP ini = 10D and gm = 10 in the following experiments since the more promising426

performance is achieved on these functions at this case.427

4.2. The effectiveness of the proposed strategies428

In this subsection, we illustrate the effectiveness of NM strategy and NAE mechanism.429

4.2.1. The effectiveness of the NM strategy430

To show the effectiveness of NM strategy, we design three NDE variants, NDE1−1, NDE1−2431

and NDE1−3, and compare them with NDE on f1-f30 in Table 1 when D = 30. Three432

variants are NDE with ~vgi = ~xgnr1 +F (~xgr1−~xgr2), ~v
g
i = ~xgi +F (~xgnbest−~xgi )+F (~xgnr1−~xgnr2) +433

F (~xgr1 − ~xgr2) and ξ1,i = 0.5, respectively. Obviously, the variant with only one mutant434

operator or constant probability parameter can illustrate the influence of the combination435

of mutant operators or individual-based probability parameter setting.436

In this experiment, the other parameters in NDE and three variants are consistent with437

Section 3. Table 3 reports their experimental results, as well as statistical and comparison438

results of the three tests, and the last five rows summarize them. Here and in the following,439

“Rank” represents the overall performance ranking of each algorithm, “+”, “-” and “≈ ”440

denote that the performance of NDE is better than, worse than, and similar to that of the441

corresponding method respectively, “R+” and “R-” are the rank sum that NDE is better442

and worse than the compared algorithm, respectively.443

From Table 3, we see that NM strategy is helpful to improve the performance of NDE.444

According to the statistical results of three tests in Table 3, a) NDE significantly outper-445

forms NDE1−1, NDE1−2 and NDE1−3 on 20, 15 and 18 test functions respectively; b) the446

overall performance rankings of NDE, NDE1−1, NDE1−2 and NDE1−3 are 1.7, 3.08, 2.72,447

and 2.5, respectively; and c) R+ values are bigger than R- values in all cases and the448

significant differences can be observed at 0.05 significant level. Then the combination of449

mutant operators can enhance the performance of single mutation operator effectively, and450

the individual-based probability parameter setting makes great progress in improving the451

performance of the random combination of mutant operators. This might be because the452

dynamical selection of two mutation operators with different search characteristics is help-453

ful to balance exploration and exploitation of NDE, and the individual-based probability454

parameter setting suitably adjusts the search ability of each individual. Thus, NM strategy455

effectively balances the exploration and exploitation of NDE and improves its performance.456
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Table 3: Experimental results of NDE and NDE1−1, NDE1−2 and NDE1−3 on CEC 2014
functions with D = 30

Function
NDE1−1 NDE1−2 NDE1−3 NDE

Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev)

f1 4.87E+04(4.09E+04)+ 4.15E-04(8.98E-04)- 1.28E+01(1.83E+01)+ 5.91E+00(5.58E+00)

f2 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)

f3 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)

f4 1.52E+01(2.85E+01)+ 3.98E-13(8.07E-13)- 1.09E-04(2.04E-04)+ 2.94E-08(4.84E-08)

f5 2.03E+01(6.79E-02)+ 2.01E+01(5.63E-02)≈ 2.02E+01(7.76E-02)+ 2.01E+01(4.71E-02)

f6 4.13E+00(1.42E+00)+ 5.23E+00(1.35E+00)+ 4.49E+00(1.86E+00)+ 3.37E+00(1.36E+00)

f7 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)

f8 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)

f9 3.45E+01(1.25E+01)- 2.80E+01(8.86E+00)- 3.18E+01(1.47E+01)- 2.48E+01(4.48E+00)

f10 0.00E+00(0.00E+00)≈ 5.63E-02(3.13E-02)+ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)

f11 1.49E+03(5.40E+02)+ 1.67E+03(4.59E+02)+ 1.52E+03(4.98E+02)+ 1.27E+03(2.41E+02)

f12 2.07E-01(8.97E-02)+ 1.22E-01(4.06E-02)≈ 1.75E-01(1.10E-01)+ 1.22E-01(2.82E-02)

f13 1.30E-01(7.00E-02)+ 1.57E-01(5.35E-02)+ 1.25E-01(3.45E-02)+ 6.80E-02(1.31E-02)

f14 2.58E-01(5.67E-02)+ 1.79E-01(3.30E-02)≈ 2.31E-01(5.21E-02)+ 2.03E-01(2.64E-02)

f15 4.02E+00(9.09E-01)+ 3.06E+00(7.16E-01)+ 3.58E+00(1.58E+00)+ 2.60E+00(4.45E-01)

f16 9.01E+00(6.58E-01)+ 8.81E+00(5.19E-01)+ 8.72E+00(5.59E-01)+ 8.38E+00(4.13E-01)

f17 1.83E+02(1.31E+02)+ 4.25E+02(2.05E+02)+ 1.47E+02(7.52E+01)+ 1.13E+02(5.94E+01)

f18 8.87E+00(2.18E+00)+ 8.85E+00(3.62E+00)+ 6.39E+00(3.58E+00)+ 5.95E+00(1.50E+00)

f19 2.71E+00(7.90E-01)+ 3.45E+00(7.10E-01)+ 2.86E+00(7.22E-01)+ 2.14E+00(4.61E-01)

f20 7.21E+00(2.88E+00)+ 9.93E+00(2.65E+00)+ 5.59E+00(1.51E+00)+ 4.05E+00(9.50E-01)

f21 5.97E+01(6.59E+01)+ 2.02E+02(1.46E+02)+ 2.22E+01(3.79E+01)+ 1.01E+01(5.37E+00)

f22 6.25E+01(5.46E+01)+ 5.60E+01(5.63E+01)+ 5.15E+01(5.42E+01)+ 2.61E+01(4.46E+00)

f23 3.15E+02(0.00E+00)≈ 3.15E+02(1.44E-13)≈ 3.15E+02(2.21E-13)≈ 3.15E+02(2.15E-13)

f24 2.23E+02(1.11E+00)+ 2.17E+02(9.05E+00)- 2.20E+02(7.04E+00)- 2.22E+02(1.67E-01)

f25 2.03E+02(1.69E-01)≈ 2.03E+02(1.77E-01)≈ 2.03E+02(1.98E-01)≈ 2.03E+02(4.91E-02)

f26 1.00E+02(5.45E-02)≈ 1.00E+02(5.06E-02)≈ 1.00E+02(4.38E-02)≈ 1.00E+02(1.79E-02)

f27 3.61E+02(5.21E+01)- 4.01E+02(1.54E+00)+ 3.90E+02(3.18E+01)≈ 3.90E+02(3.06E+01)

f28 8.14E+02(2.66E+01)+ 7.86E+02(1.22E+01)- 8.16E+02(1.96E+01)+ 7.97E+02(1.63E+01)

f29 7.07E+02(8.55E+01)+ 7.17E+02(3.57E+00)+ 6.57E+02(1.71E+02)- 6.66E+02(1.50E+02)

f30 7.72E+02(2.95E+02)+ 7.09E+02(2.21E+02)+ 6.29E+02(1.73E+02)+ 5.14E+02(6.93E+01)

+/-/≈ 20/2/8 15/5/10 18/3/9 - -

R+/R- 238/15 189.5/41.5 204/27 - -

p-value 0.0003 0.0106 0.0022 - -

α = 0.05 YES YES YES - -

Rank 3.08 2.72 2.50 1.70

4.2.2. The effectiveness of the NAE mechanism457

To evaluate the effectiveness of NAE mechanism, NDE is compared with its three vari-458

ants, NDE2−1, NDE2−2 and NDE2−3, on f1-f30 in Table 1 when D = 30. The variants459

are NDE without dynamic neighborhood, exchanging operations and NAE mechanism,460

respectively. Clearly, they can effectively illustrate the influences of NAE mechanism and461

its each component.462

In this experiment, the other parameters in NDE and its variants are consistent with463

Section 3. Table 4 reports their experimental results, statistical and comparison results.464

From Table 4, one can see that NAE mechanism and its components have great influences465

on the performance of algorithm, and NDE is superior to its variants. According to the466

statistical results of three tests in Table 4, a) NDE is better than NDE2−1, NDE2−2 and467

NDE2−3 on 27, 23 and 27 test functions, respectively; b) the overall performance rankings468

of NDE, NDE2−1, NDE2−2 and NDE2−3 are 1.22, 2.68, 2.4 and 3.7, respectively; and c)469

R+ values are bigger than R- values in all cases and the significant differences can be470

observed at 0.05 significant level. Then NAE mechanism improves the performance of471

NDE effectively. These might be attributed to the following two facts. 1) The dynamic472

neighborhood model is helpful to jump out of local optimum. 2) The exchanging operations473

deal with the premature convergence and stagnation of the corresponding neighborhood.474
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Table 4: Experimental results of NDE and NDE2−1, NDE2−2 and NDE2−3 on CEC 2014
functions with D = 30

Function
NDE2−1 NDE2−2 NDE2−3 NDE

Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev)

f1 1.77E+05(1.01E+05)+ 2.50E+06(6.08E+06)+ 6.05E+06(1.24E+07)+ 5.91E+00(5.58E+00)

f2 6.18E-06(1.88E-05)+ 0.00E+00(0.00E+00)≈ 7.21E-09(1.98E-08)+ 0.00E+00(0.00E+00)

f3 1.06E-03(2.01E-03)+ 0.00E+00(0.00E+00)≈ 2.65E-14(3.87E-14)+ 0.00E+00(0.00E+00)

f4 1.06E+01(2.06E+01)+ 6.34E+00(2.00E+01)+ 7.31E+01(5.23E+01)+ 2.94E-08(4.84E-08)

f5 2.02E+01(9.15E-02)+ 2.03E+01(1.92E-02)+ 2.04E+01(4.72E-02)+ 2.01E+01(4.71E-02)

f6 7.68E+00(3.30E+00)+ 1.38E+01(1.17E+00)+ 1.68E+01(1.77E+00)+ 3.37E+00(1.36E+00)

f7 1.02E-13(1.13E-13)+ 0.00E+00(0.00E+00)≈ 9.01E-04(3.32E-03)+ 0.00E+00(0.00E+00)

f8 6.97E+00(9.35E+00)+ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)

f9 4.48E+01(1.01E+01)+ 3.95E+01(4.23E+00)+ 6.60E+01(1.30E+01)+ 2.48E+01(4.48E+00)

f10 1.16E+00(7.08E-01)+ 1.82E-13(5.75E-13)+ 6.94E-04(3.80E-03)+ 0.00E+00(0.00E+00)

f11 1.85E+03(4.42E+02)+ 1.87E+03(2.98E+02)+ 2.27E+03(2.78E+02)+ 1.27E+03(2.41E+02)

f12 2.41E-01(6.21E-02)+ 3.63E-01(6.13E-02)+ 4.48E-01(1.01E-01)+ 1.22E-01(2.82E-02)

f13 1.67E-01(1.96E-02)+ 2.76E-01(5.86E-02)+ 4.78E-01(1.04E-01)+ 6.80E-02(1.31E-02)

f14 2.64E-01(4.20E-02)+ 2.20E-01(2.30E-02)+ 2.94E-01(3.21E-02)+ 2.03E-01(2.64E-02)

f15 3.53E+00(9.88E-01)+ 3.72E+00(6.64E-01)+ 7.73E+00(1.90E+00)+ 2.60E+00(4.45E-01)

f16 9.27E+00(5.11E-01)+ 9.58E+00(4.84E-01)+ 1.05E+01(3.23E-01)+ 8.38E+00(4.13E-01)

f17 1.68E+03(1.73E+03)+ 3.22E+05(7.27E+05)+ 8.26E+05(2.10E+06)+ 1.13E+02(5.94E+01)

f18 1.45E+01(6.02E+00)+ 7.32E+00(2.32E+00)+ 9.74E+00(3.18E+00)+ 5.95E+00(1.50E+00)

f19 3.93E+00(6.03E-01)+ 2.61E+00(5.07E-01)+ 8.37E+00(3.47E+00)+ 2.14E+00(4.61E-01)

f20 1.32E+01(4.74E+00)+ 1.02E+03(2.13E+03)+ 1.24E+04(1.35E+04)+ 4.05E+00(9.50E-01)

f21 2.50E+02(1.41E+02)+ 2.70E+01(4.25E+01)+ 4.90E+04(2.09E+05)+ 1.01E+01(5.37E+00)

f22 1.50E+02(1.32E+02)+ 2.14E+02(8.88E+01)+ 3.54E+02(1.61E+02)+ 2.61E+01(4.46E+00)

f23 3.15E+02(3.18E-13)≈ 3.15E+02(2.21E-13)≈ 3.15E+02(8.13E-06)≈ 3.15E+02(2.15E-13)

f24 2.23E+02(1.29E+00)+ 2.23E+02(1.28E+00)+ 2.28E+02(1.07E+00)+ 2.22E+02(1.67E-01)

f25 2.03E+02(4.12E-01)≈ 2.03E+02(1.61E+00)≈ 2.05E+02(4.07E+00)+ 2.03E+02(4.91E-02)

f26 1.00E+02(6.64E-02)≈ 1.00E+02(7.37E-02)≈ 1.00E+02(1.20E-01)≈ 1.00E+02(1.79E-02)

f27 3.92E+02(3.06E+01)+ 4.69E+02(1.02E+02)+ 6.02E+02(1.31E+02)+ 3.90E+02(3.06E+01)

f28 8.49E+02(4.20E+01)+ 8.33E+02(1.22E+01)+ 8.74E+02(4.52E+01)+ 7.97E+02(1.63E+01)

f29 1.06E+03(1.10E+02)+ 7.32E+02(2.91E+02)+ 1.54E+03(7.54E+02)+ 6.66E+02(1.50E+02)

f30 8.17E+02(2.33E+02)+ 7.42E+02(4.29E+02)+ 3.46E+03(2.75E+03)+ 5.14E+02(6.93E+01)

+/-/≈ 27/0/3 23/0/7 27/0/3 - -

R+/R- 378/0 276/0 378/0 - -

p-value <0.0001 <0.0001 <0.0001 - -

α = 0.05 YES YES YES - -

Rank 2.68 2.40 3.70 1.22

Therefore, NAE mechanism could suitably adjust the search capability of each individual,475

and improve the performance of algorithm effectively.476

4.3. Comparisons and discussions477

To evaluate the advantages of NDE, we make a comparison of NDE with 21 well-known478

optimization algorithms on 30 benchmark functions f1-f30 in Table 1 when D = 30 and479

50.480

These algorithms include the classical DE, five state-of-the-art DE variants (CoDE [40],481

EPSDE [26], JADE [47], jDE [2] and SaDE [31]), nine up-to-date DE variants (CIPDE482

[49], CoBiDE [41], dynNP-jDE [3], JADE sort [50], L-SHADE [37], MPEDE [43], SHADE483

[36], SinDE [12] and TSDE [23]), and six non-DE algorithms (CLPSO [19], CMA-ES [14],484

DNLPSO [28], EPSO [25], GL-25 [13] and HSOGA [15]). The classical DE adopts mutation485

operator “DE/rand/1” to generate the offspring. CoDE [40] implements three mutant486

strategies with different characteristics simultaneously. Four variants, EPSDE [26], JADE487

[47], jDE [2] and SaDE [31], adjust their control parameters adaptively. TSDE [23] enhances488

CoDE [40] by dividing the whole evolutionary process into two stages, and dynNP-jDE [3]489

improves jDE [2] by presenting a simple schema to reduce population size. JADE sort [50]490

and SHADE [36] improve JADE [47] by assigning a smaller CR value to the individual491
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Table 5: Parameters setting
Algorithms Parameter setting

DE [35] NP = 50, F = CR = 0.5

CoDE [40] NP = 30, [F = 1.0, CR = 0.1], [F = 1.0, CR = 0.9], [F = 0.8, CR = 0.2]

jDE [2] NP = 100, τ1 = τ2 = 0.1, Fl = 0.1, Fu = 0.9

JADE [47] NP = 100, µF0 = µCR0 = 0.5, c = 0.1, p = 0.05

EPSDE [26] NP = 50, F ∈ [0.4, 0.9] and CR ∈ [0.1, 0.9] with stepsize = 0.1

SaDE [31] NP = 50, K = 4, Lp = 50

CIPDE [49] NP = 100, c = 0.1, µF = 0.7, µCR = 0.5, T = 90

CoBiDE [41] NP = 60, pb = 0.4, ps = 0.5

JADE sort [50] NP = 100, µF0 = µCR0 = 0.5, c = 0.1, p = 0.05

L-SHADE [37] N init = 20D, H = 5, c = 0.1, p = 0.1

SHADE [36] NP = 100, H = 2, c = 0.1, p = rand(0.02, 0.2)

TSDE [23] NP = 30, [F = 1.0, CR = 0.1], [F = 1.0, CR = 0.9], [F = 0.8, CR = 0.2]

dynNP-jDE [3] NP init = 200, pmax = 4

MPEDE [43] NP = 250, c = 0.1, λ1 = λ2 = λ3 = 0.2, ng = 20

SinDE [12] NP = 40, freq = 0.25

CLPSO [19] NP = 30, c1 = c2 = 1.494, ωmax = 0.9, ωmin = 0.4, m = 5

CMA-ES [14] NP = 4 + b3 ln(D)c, µ = bNP/2c, ωi=1,··· ,µ = ln((NP + 1)/2)− ln(i), Cc = Cσ = 4/(D + 4)

GL-25 [13] NP = 60, α = 1, ω = 5, nT = 2

EPSO [25] NP = 30, g1 = 15, g2 = 25

DNLPSO [28] NP = 30, c1 = c2 = 1.494, ω0 = 0.9, ω1 = 0.4

HSOGA [15] NP = 200, S = 5, Pc = 0.6, Pm = 0.1

NDE NP ini = 10D, NPmin = 5, gm = 10, F 0
loc = CR0

m = 0.5, c = 0.1

with better fitness value, and using the success history information to adaptively set its492

parameters, respectively. L-SHADE [37] further extends SHADE [36] by incorporating493

a linear population size reduction. CoBiDE [41] improves DE algorithm by developing494

a covariance matrix learning and a bimodal distribution parameter setting. SinDE [12]495

is a sinusoidal DE variant that uses the sinusoidal formulas to adjust automatically the496

control parameters. Two recent DE variants, MPEDE [43] and CIPDE [49], employ the497

concept of work specialization, and the collective information of the best candidates in498

mutation and crossover, respectively. CLPSO [19] updates the particle velocity by using499

the personal historical best information of all particles. DNLPSO [28] further enhances500

CLPSO [19] by adopting a learning strategy and dynamically reforming the neighborhood501

after a certain interval. EPSO [25] combines different PSO algorithms and employs a self-502

adaptive scheme to identify the top algorithms according to their previous experiences.503

Two hybrid GAs, GL-25 [13] and SOGA [15], combines the global and local searches,504

and employs a self-adaptive orthogonal crossover operator, respectively. CMA-ES [14] is505

a very efficient evolution strategy (ES). Obviously, these algorithms are more competitive506

or recently published in the literatures. Thus, they are chosen as the compared ones.507

In the following experiments, the parameter settings for them are listed in Table 5,508

where the control parameter settings of each compared algorithm and NDE are the same509

as those in its original paper and Section 3, respectively.510
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4.3.1. Comparison with the classical DE and five state-of-the-art DE variants511

First, we compare NDE with the classical DE and five state-of-the-art DE variants on512

30 benchmark functions f1-f30 in Table 1. These variants include JADE [47], jDE [2],513

CoDE [40], SaDE [31] and EPSDE [26].514

Table 6 reports their experimental results, the statistical results of Wilcoxon rank sum515

test and Friedman test when D = 30 and 50, and the last two rows summarize them.516

When D = 30, from Table 6, the following detail results can be observed.517

1) NDE obtains the best results on unimodal functions f1-f3, and CoDE on f2. This518

is because the dynamic neighborhood size is helpful to speed up the convergence of519

NDE by using the information of the promising individuals.520

2) NDE obtains the best results on simple multimodal and hybrid functions f5, f7-f11,521

and f13-f22, DE on f6, CoDE on f5, f8 and f12, JADE on f4, f7 and f8, and EPSDE522

on f8.523

3) NDE obtains the best results on composition functions f24, f26 and f30, EPSDE on524

f23, f25, f26, f28 and f29, and DE on f26 and f27. From Wilcoxon rank sum test, NDE525

is much better than DE, CoDE, jDE, JADE, EPSDE and SaDE on 4, 5, 3, 3, 3 and526

7 test functions respectively, and slightly worse on 1, 1, 2, 2, 3 and 0 test functions,527

respectively.528

According to the statistical results of two tests in Table 6, a) NDE performs better than529

DE, CoDE, jDE, JADE, EPSDE and SaDE on 25, 22, 25, 22, 24 and 29 test functions530

respectively, slightly worse on 2, 3, 2, 3, 4 and 0 test functions respectively, and similar to531

that on 3, 5, 3, 5, 2 and 1 test functions, respectively; and b) NDE and others get 1.78,532

5.45, 3.18, 3.88, 3.53, 4.63 and 5.53 in term of overall performance ranking on all problems,533

respectively.534

To further show the convergence performance, Figure 3 depicts the evolutionary curves535

of NDE and five DE variants on 12 typical functions f1-f4, f6-f8, f10, f11, f13, f17 and f18.536

From Figure 3, we see that NDE has faster convergence and better accuracy than others537

on these functions except for JADE on f4, CoDE on f6, and EPSDE on f8.538

When D = 50, from Table 6, we also see that NDE obtains the best results on f4,539

f7, f9, f11, f13-f18, f20-f22 and f26, JADE on f1, f2, f8, and f26, jDE on f3, f10 and f26,540

DE on f6, f24 and f27, CoDE on f5, f12 and f19, and EPSDE on f23, f25, f26 and f28-f30.541

According to the statistical results of two tests in Table 6, a) NDE performs better than542

DE, CoDE, jDE, JADE, EPSDE and SaDE on 25, 25, 25, 24, 23 and 29 test functions543

respectively, slightly worse on 4, 4, 3, 4, 6 and 0 test functions respectively, similar to that544
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Figure 3: Evolution curves of NDE and five state-of-the-art DE variants with D = 30. (a) f1,
(b) f2, (c) f3, (d) f4, (e) f6, (f) f7, (g) f8, (h) f10, (i) f11, (j) f13, (k) f17 and (l) f18.
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Table 7: Comparison results of NDE with the classical DE and five state-of-the-art DE
variants based on the multiproblem Wilcoxon signed-rank test on CEC2014 functions

D = 30 D = 50
Algorithm R+ R- p-value α = 0.05 Algorithm R+ R- p-value α = 0.05

NDE vs DE 353 25 <0.0001 YES NDE vs DE 395 40 0.0001 YES

NDE vs CoDE 297 28 0.0003 YES NDE vs CoDE 406 29 <0.0001 YES

NDE vs jDE 347.5 30.5 0.0001 YES NDE vs jDE 394 12 <0.0001 YES

NDE vs JADE 292 33 0.0005 YES NDE vs JADE 369 37 0.0002 YES

NDE vs EPSDE 342 64 0.0016 YES NDE vs EPSDE 347 88 0.0053 YES

NDE vs SaDE 435 0 <0.0001 YES NDE vs SaDE 435 0 <0.0001 YES

on 1, 1, 2, 2, 1 and 1 test functions, respectively; and b) they get 1.83, 5.58, 3.48, 3.78,545

3.28, 4.58 and 5.45 in term of overall performance ranking on all problems, respectively.546

For clarity, Figure 4 depicts the bar charts of the statistical results of NDE and other547

compared algorithms on all functions from CEC 2014 when D = 30 and 50, where the548

blue and red bars represent the overall performance ranking of the Friedman test and the549

number of function obtained the best results, respectively. From Figure 4, we see that550

NDE has the best ranking and the most number of the best results on all functions.551
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Figure 4: Statistical results of NDE with the classical DE and five state-of-the-art DE variants
on CEC 2014. (a) D = 30, (b) D = 50.

Furthermore, Table 7 provides the comparison results of NDE with others on all prob-552

lems based on the multiproblem Wilcoxon signed-rank test when D = 30 and 50. From553

Table 7, we see that NDE obtains higher R+ values than R- values in all cases, and there554

are significant differences at 0.05 significant level. These might be due to the following555

two facts. 1) NAE mechanism can identify the neighborhood evolutionary state of each556

individual and effectively alleviate its evolutionary dilemmas. 2) NM strategy adaptively557

adjusts its search capability by making full use of the characteristic of each individual to558

choose a more suitable mutation operator. Therefore, NDE has better performance than559

DE and five DE variants on these instances.560
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4.3.2. Comparison with nine up-to-date DE variants561

Second, we make a comparison of NDE with nine up-to-date DE variants on 30 benchmark562

functions f1-f30 in Table 1. These variants include CIPDE [49], CoBiDE [41], SinDE [12],563

dynNP-jDE [3], MPEDE [43], TSDE [23], JADE sort [50], SHADE [36] and L-SHADE [37].564

Tables 8-9 report their experimental results, the statistical results of Wilcoxon rank sum565

test and Friedman test when D = 30 and 50 respectively, and the last two rows summarize566

them.567

When D = 30, from Table 8, the following two results can be observed. 1) L-SHADE568

obtains the best results on unimodal functions f1-f3, NDE and CoBiDE on f2 and f3,569

TSDE and SinDE on f2. This might be because L-SHADE employs better individuals to570

guide the search and the population size reduction to adjust the population size. 2) For571

other functions, NDE obtains the best results on f4, f6-f8, f10, f11, f13-f19, f21-f26 and f30,572

JADE sort on f5, f9 and f12, L-SHADE on f4, f15, f20 and f27, dynNP-jDE on f28, TSDE573

on f5, and MPEDE on f6 and f29.574

From the statistical results in Table 8, a) NDE performs better than CIPDE, CoBiDE,575

JADE sort, L-SHADE, SHADE, TSDE, dynNP-jDE, MPEDE and SinDE on 23, 20, 23,576

18, 25, 21, 24, 25 and 22 test functions respectively, slightly worse on 4, 3, 4, 6, 2, 5, 3,577

2 and 3 test functions respectively, and similar to that on 3, 7, 3, 6, 3, 4, 3, 3 and 5 test578

functions, respectively; and b) NDE and others get 2.72, 7.13, 4.92, 5.15, 3.65, 6.27, 5.75,579

6.1, 6.63 and 6.68 in term of overall performance ranking on all problems, respectively.580

When D = 50, from Table 9, we see that NDE obtains the best results on f4, f7 and581

f13-f18, f21-f23, f25, f26 and f30, CIPDE on f8 and f23, JADE sort on f3, f5, f9, f11, f12 and582

f23, L-SHADE on f1 and f2, f20, f23, f25 and f26, SHADE on f10, f23 and f26, TSDE on f19583

and f23, dynNP-jDE and CoBiDE on f23 and f26, MPEDE on f23, f26 and f29, and SinDE584

on f6, f23, f24, f27 and f28. From the statistical results in Table 9, a) NDE performs better585

than CIPDE, CoBiDE, JADE sort, L-SHADE, SHADE, TSDE, dynNP-jDE, MPEDE and586

SinDE on 25, 23, 21, 22, 23, 25, 24, 26 and 25 test functions respectively, slightly worse on587

4, 4, 8, 4, 3, 4, 4, 2 and 4 test functions respectively, and similar to that on 1, 3, 1, 4, 4, 1,588

2, 2 and 1 test functions, respectively; and b) they get 2.55, 6.6, 5.4, 5.3, 4.08, 5.93, 6.25,589

5.87, 6.4 and 6.62 in term of overall performance ranking on all problems, respectively.590

For clarity, Figure 5 depicts the bar charts of the statistical results of NDE and other591

compared algorithms on all functions from CEC 2014 when D = 30 and 50, where the blue592

and red bars are same as Figure 4. From Figure 5, we see that NDE has the best rank and593

the most number of best results for all functions.594

Furthermore, Table 10 provides the comparison results of NDE with others on all prob-595

lems based on the multiproblem Wilcoxon signed-rank test when D = 30 and 50. From596

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 8: Experimental results of NDE and nine up-to-date DE variants on CEC 2014
functions with D = 30

Function Statistic CIPDE CoBiDE JADE sort L-SHADE SHADE TSDE dynNP-jDE MPEDE SinDE NDE

f1
Mean Error 2.86E+03+ 1.55E+04+ 1.27E+02+ 1.19E-14- 2.35E+02+ 1.52E+04+ 3.23E+04+ 1.06E-03- 1.33E+06+ 5.91E+00

Std Dev 2.72E+03 1.27E+04 4.98E+02 5.32E-15 4.27E+02 1.38E+04 2.19E+04 2.36E-03 1.00E+06 5.58E+00

f2
Mean Error 2.96E-14+ 0.00E+00≈ 2.05E-14+ 0.00E+00≈ 1.71E-14+ 0.00E+00≈ 9.09E-15+ 7.10E-06+ 0.00E+00≈ 0.00E+00

Std Dev 5.68E-15 0.00E+00 1.30E-14 0.00E+00 1.42E-14 0.00E+00 1.35E-14 9.03E-06 0.00E+00 0.00E+00

f3
Mean Error 2.53E-01+ 0.00E+00≈ 3.87E-14+ 0.00E+00≈ 3.41E-14+ 4.55E-15+ 5.23E-14+ 7.53E-08+ 6.11E-11+ 0.00E+00

Std Dev 4.62E-01 0.00E+00 2.71E-14 0.00E+00 2.84E-14 1.57E-14 1.57E-14 1.27E-07 2.85E-10 0.00E+00

f4
Mean Error 1.66E-13- 8.07E-06+ 2.54E+00+ 4.55E-14- 5.46E-14- 2.54E+00+ 1.21E+00+ 1.93E-01+ 3.07E+01+ 2.94E-08

Std Dev 1.26E-13 3.09E-05 1.27E+01 2.84E-14 3.47E-14 1.27E+01 8.96E-01 4.48E-01 2.91E+01 4.84E-08

f5
Mean Error 2.06E+01+ 2.03E+01+ 2.00E+01- 2.02E+01+ 2.02E+01+ 2.00E+01- 2.03E+01+ 2.04E+01+ 2.06E+01+ 2.01E+01

Std Dev 3.30E-02 2.70E-01 2.78E-02 3.94E-02 3.71E-02 6.00E-02 3.06E-02 4.92E-02 4.04E-02 4.71E-02

f6
Mean Error 4.53E+00+ 1.45E+00- 7.23E-01- 9.84E+00+ 9.66E+00+ 1.58E+00- 2.15E+00- 1.54E+01+ 3.73E-02- 3.37E+00

Std Dev 2.06E+00 1.49E+00 6.59E-01 2.26E+00 3.56E+00 1.34E+00 1.46E+00 9.41E-01 1.80E-01 1.36E+00

f7
Mean Error 6.82E-14+ 0.00E+00≈ 2.96E-04+ 0.00E+00≈ 3.55E-03+ 2.96E-04+ 2.00E-13+ 5.32E-11+ 0.00E+00≈ 0.00E+00

Std Dev 5.68E-14 0.00E+00 1.48E-03 0.00E+00 6.28E-03 1.48E-03 2.21E-13 1.19E-10 0.00E+00 0.00E+00

f8
Mean Error 0.00E+00≈ 0.00E+00≈ 8.44E+00+ 5.00E-14+ 5.00E-14+ 3.98E-02+ 4.55E-15+ 8.61E+00+ 2.05E-01+ 0.00E+00

Std Dev 0.00E+00 0.00E+00 2.70E+00 5.76E-14 5.76E-14 1.99E-01 2.27E-14 9.02E-01 5.47E-01 0.00E+00

f9
Mean Error 2.07E+01- 3.73E+01+ 1.00E+01- 1.88E+01- 2.59E+01+ 3.72E+01+ 3.66E+01+ 5.54E+01+ 3.10E+01+ 2.48E+01

Std Dev 7.21E+00 6.97E+00 2.00E+00 5.89E+00 8.67E+00 1.20E+01 4.81E+00 7.09E+00 7.62E+00 4.48E+00

f10
Mean Error 1.07E+02+ 5.57E+01+ 2.68E+02+ 3.33E-03+ 1.08E-02+ 2.29E+00+ 9.99E-03+ 2.02E+02+ 7.81E+01+ 0.00E+00

Std Dev 3.03E+01 1.46E+01 2.35E+02 1.30E-02 1.49E-02 2.49E+00 1.49E-02 2.76E+01 2.42E+01 0.00E+00

f11
Mean Error 2.45E+03+ 1.61E+03+ 1.57E+03+ 1.42E+03+ 1.61E+03+ 2.00E+03+ 1.89E+03+ 3.32E+03+ 1.94E+03+ 1.27E+03

Std Dev 4.88E+02 4.27E+02 3.99E+02 2.21E+02 2.45E+02 4.15E+02 1.95E+02 2.42E+02 5.52E+02 2.41E+02

f12
Mean Error 8.74E-01+ 2.38E-01+ 7.24E-02- 2.21E-01+ 2.37E-01+ 8.14E-02- 3.57E-01+ 6.36E-01+ 9.98E-01+ 1.22E-01

Std Dev 1.44E-01 3.19E-01 5.76E-02 4.58E-02 3.41E-02 3.68E-02 5.08E-02 9.11E-02 1.01E-01 2.82E-02

f13
Mean Error 9.24E-02+ 2.42E-01+ 1.40E-01+ 1.68E-01+ 2.21E-01+ 2.37E-01+ 2.74E-01+ 2.24E-01+ 2.40E-01+ 6.80E-02

Std Dev 2.35E-02 6.87E-02 3.29E-02 2.54E-02 3.91E-02 5.66E-02 4.91E-02 2.56E-02 3.41E-02 1.31E-02

f14
Mean Error 2.91E-01+ 2.33E-01+ 2.79E-01+ 2.36E-01+ 2.58E-01+ 2.37E-01+ 2.60E-01+ 2.08E-01+ 2.40E-01+ 2.03E-01

Std Dev 2.76E-02 4.56E-02 4.58E-02 2.13E-02 5.62E-02 3.60E-02 3.53E-02 2.08E-02 2.80E-02 2.64E-02

f15
Mean Error 4.38E+00+ 3.29E+00+ 2.61E+00+ 2.38E+00- 2.74E+00+ 2.95E+00+ 4.94E+00+ 6.21E+00+ 3.99E+00+ 2.60E+00

Std Dev 9.80E-01 7.72E-01 3.48E-01 2.37E-01 4.65E-01 7.13E-01 6.10E-01 7.58E-01 8.95E-01 4.45E-01

f16
Mean Error 8.45E+00+ 1.00E+01+ 9.21E+00+ 9.13E+00+ 9.52E+00+ 9.60E+00+ 9.36E+00+ 1.06E+01+ 1.08E+01+ 8.38E+00

Std Dev 7.90E-01 7.19E-01 8.32E-01 3.95E-01 3.56E-01 6.84E-01 3.91E-01 2.27E-01 4.43E-01 4.13E-01

f17
Mean Error 1.51E+04+ 2.50E+02+ 2.95E+02+ 2.14E+02+ 8.93E+02+ 9.98E+02+ 8.21E+02+ 1.77E+02+ 9.28E+04+ 1.13E+02

Std Dev 6.94E+04 1.48E+02 1.23E+02 1.11E+02 3.73E+02 8.54E+02 5.43E+02 1.20E+02 6.91E+04 5.94E+01

f18
Mean Error 9.74E+01+ 1.14E+01+ 9.97E+00+ 6.00E+00+ 5.27E+01+ 1.26E+01+ 2.26E+01+ 9.14E+00+ 4.82E+02+ 5.95E+00

Std Dev 3.17E+01 4.03E+00 4.52E+00 2.33E+00 2.27E+01 5.24E+00 1.46E+01 3.55E+00 6.17E+02 1.50E+00

f19
Mean Error 4.52E+00+ 2.73E+00+ 3.69E+00+ 3.71E+00+ 4.68E+00+ 2.63E+00+ 4.43E+00+ 3.57E+00+ 3.41E+00+ 2.14E+00

Std Dev 5.95E-01 4.09E-01 7.25E-01 5.04E-01 7.63E-01 3.89E-01 3.67E-01 7.83E-01 6.96E-01 4.61E-01

f20
Mean Error 8.74E+02+ 7.71E+00+ 5.62E+00+ 3.24E+00- 1.83E+01+ 9.61E+00+ 7.83E+00+ 1.14E+01+ 9.01E+00+ 4.05E+00

Std Dev 1.26E+03 3.16E+00 3.09E+00 1.54E+00 9.42E+00 3.97E+00 2.35E+00 3.34E+00 2.88E+00 9.50E-01

f21
Mean Error 7.91E+03+ 1.36E+02+ 1.16E+02+ 1.04E+02+ 2.72E+02+ 1.89E+02+ 1.50E+02+ 8.79E+01+ 3.84E+03+ 1.01E+01

Std Dev 2.76E+04 9.30E+01 8.18E+01 1.01E+02 9.71E+01 1.25E+02 1.03E+02 9.36E+01 4.61E+03 5.37E+00

f22
Mean Error 2.04E+02+ 1.19E+02+ 5.33E+01+ 4.25E+01+ 9.37E+01+ 1.42E+02+ 3.96E+01+ 1.45E+02+ 5.47E+01+ 2.61E+01

Std Dev 1.01E+02 7.56E+01 5.05E+01 3.31E+01 6.42E+01 9.81E+01 1.65E+01 5.71E+01 4.98E+01 4.46E+00

f23
Mean Error 3.15E+02≈ 3.15E+02≈ 3.15E+02≈ 3.15E+02≈ 3.15E+02≈ 3.15E+02≈ 3.15E+02≈ 3.15E+02≈ 3.15E+02≈ 3.15E+02

Std Dev 0.00E+00 0.00E+00 0.00E+00 1.51E-13 0.00E+00 1.51E-13 0.00E+00 1.33E-10 5.78E-14 2.15E-13

f24
Mean Error 2.25E+02+ 2.23E+02+ 2.25E+02+ 2.24E+02+ 2.30E+02+ 2.24E+02+ 2.24E+02+ 2.24E+02+ 2.22E+02≈ 2.22E+02

Std Dev 2.33E+00 9.04E-01 1.20E+00 9.94E-01 6.11E+00 1.49E+00 6.45E-01 4.59E-01 1.28E+00 1.67E-01

f25
Mean Error 2.08E+02+ 2.03E+02≈ 2.03E+02≈ 2.03E+02≈ 2.03E+02≈ 2.03E+02≈ 2.03E+02≈ 2.03E+02≈ 2.04E+02+ 2.03E+02

Std Dev 3.17E+00 3.64E-01 4.96E-01 7.53E-02 4.94E-01 6.12E-01 5.17E-01 1.45E-01 4.82E-01 4.91E-02

f26
Mean Error 1.00E+02≈ 1.00E+02≈ 1.00E+02≈ 1.00E+02≈ 1.00E+02≈ 1.00E+02≈ 1.00E+02≈ 1.00E+02≈ 1.00E+02≈ 1.00E+02

Std Dev(Rank) 1.78E-02 5.29E-02 3.95E-02 3.22E-02 5.09E-02 6.29E-02 4.04E-02 2.67E-02 2.98E-02 1.79E-02

f27
Mean Error 3.21E+02- 3.76E+02- 3.07E+02- 3.00E+02- 3.35E+02- 3.77E+02- 3.76E+02- 3.97E+02+ 3.04E+02- 3.90E+02

Std Dev 3.80E+01 4.39E+01 1.43E+01 1.71E-13 3.34E+01 4.05E+01 4.20E+01 1.79E+01 1.35E+01 3.06E+01

f28
Mean Error 7.96E+02- 8.09E+02+ 8.37E+02+ 8.04E+02+ 8.28E+02+ 8.35E+02+ 7.85E+02- 8.60E+02+ 7.91E+02- 7.97E+02

Std Dev 2.96E+01 2.32E+01 3.28E+01 2.09E+01 2.80E+01 3.23E+01 1.79E+01 2.53E+01 2.34E+01 1.63E+01

f29
Mean Error 7.61E+02+ 5.89E+02- 7.16E+02+ 7.17E+02+ 7.13E+02+ 6.50E+02- 7.60E+02+ 4.00E+02- 1.48E+03+ 6.66E+02

Std Dev 7.01E+01 2.33E+02 1.92E+00 3.37E+00 6.68E+01 1.59E+02 5.07E+01 2.85E+02 2.72E+02 1.50E+02

f30
Mean Error 1.48E+03+ 6.22E+02+ 8.42E+02+ 1.09E+03+ 1.92E+03+ 8.05E+02+ 1.22E+03+ 5.21E+02+ 1.34E+03+ 5.14E+02

Std Dev 4.35E+02 1.37E+02 2.48E+02 4.14E+02 1.17E+03 2.90E+02 3.99E+02 1.14E+02 5.02E+02 6.93E+01

+/-/≈ 23/4/3 20/3/7 23/4/3 18/6/6 25/2/3 21/5/4 24/3/3 25/2/3 22/3/5 - -

Rank 7.13 4.92 5.15 3.65 6.27 5.75 6.1 6.63 6.68 2.72
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Table 9: Experimental results of NDE and nine up-to-date DE variants on CEC 2014
functions with D = 50

Function Statistic CIPDE CoBiDE JADE sort L-SHADE SHADE TSDE dynNP-jDE MPEDE SinDE NDE

f1
Mean Error 1.73E+04- 2.98E+05+ 2.69E+04- 4.31E+02- 1.74E+04- 1.11E+05+ 2.81E+05+ 1.08E+05+ 2.89E+06+ 6.30E+04

Std Dev 8.76E+03 2.05E+05 1.47E+04 5.83E+02 1.68E+04 4.96E+04 1.09E+05 9.12E+04 1.17E+06 2.54E+04

f2
Mean Error 7.57E-12- 1.09E-01+ 9.44E-14- 3.52E-14- 8.75E-14- 2.50E+02+ 5.62E-07+ 1.43E+01+ 3.17E+03+ 3.31E-07

Std Dev 3.51E-11 2.63E-01 2.56E-14 1.24E-14 4.01E-14 7.85E+02 2.31E-06 3.01E+01 3.20E+03 4.22E-07

f3
Mean Error 1.82E+03+ 6.99E-03+ 4.51E-08- 2.25E+02+ 1.98E+02+ 1.66E+01+ 1.67E-06+ 4.71E-04+ 4.13E+02+ 2.03E-07

Std Dev 1.58E+03 1.55E-02 1.48E-07 8.19E+02 9.88E+02 4.15E+01 4.59E-06 1.05E-03 3.44E+02 3.00E-07

f4
Mean Error 1.35E+01+ 4.27E+01+ 1.77E+01+ 2.51E+01+ 1.98E+01+ 1.99E+01+ 9.01E+01+ 6.61E+01+ 9.54E+01+ 8.19E+00

Std Dev 2.90E+01 4.07E+01 4.22E+01 4.19E+01 4.00E+01 3.20E+01 1.27E+01 3.38E+01 4.03E+00 6.55E-01

f5
Mean Error 2.08E+01+ 2.02E+01- 2.00E+01- 2.04E+01+ 2.03E+01≈ 2.01E+01- 2.04E+01+ 2.06E+01+ 2.08E+01+ 2.03E+01

Std Dev 8.94E-02 3.29E-01 1.09E-02 4.19E-02 2.99E-02 9.72E-02 2.37E-02 3.48E-02 4.97E-02 4.57E-02

f6
Mean Error 6.39E+00- 5.62E+00- 8.37E+00- 2.40E+01+ 2.29E+01+ 7.98E+00- 1.15E+01- 3.02E+01+ 1.95E-01- 1.53E+01

Std Dev 2.80E+00 3.18E+00 2.34E+00 1.58E+00 5.27E+00 2.97E+00 5.46E+00 2.14E+00 4.16E-01 2.44E+00

f7
Mean Error 3.65E-03+ 9.09E-15+ 5.02E-03+ 3.18E-14+ 4.14E-03+ 2.66E-03+ 8.00E-13+ 4.77E-03+ 4.93E-14+ 0.00E+00

Std Dev 5.42E-03 3.15E-14 8.19E-03 5.21E-14 5.36E-03 4.71E-03 6.42E-13 4.62E-03 5.73E-14 0.00E+00

f8
Mean Error 0.00E+00- 3.29E-10+ 1.09E+01+ 2.23E-13+ 1.36E-13+ 5.17E-01+ 1.00E-13+ 1.94E+01+ 7.50E+00+ 5.68E-14

Std Dev 0.00E+00 1.26E-09 1.38E+01 6.95E-14 4.64E-14 7.11E-01 3.77E-14 1.34E+00 3.60E+00 5.78E-14

f9
Mean Error 6.36E+01+ 9.18E+01+ 2.64E+01- 3.19E+01- 4.84E+01+ 7.20E+01+ 7.69E+01+ 1.16E+02+ 6.50E+01+ 4.15E+01

Std Dev 1.15E+01 1.68E+01 3.33E+00 5.05E+00 1.24E+01 2.09E+01 8.97E+00 9.93E+00 8.13E+00 6.53E+00

f10
Mean Error 3.88E+02+ 2.71E+02+ 9.52E+02+ 2.71E-01+ 4.50E-03- 8.82E+00+ 8.49E-03- 4.67E+02+ 1.51E+02+ 9.92E-02

Std Dev 8.13E+01 4.83E+01 6.47E+02 1.89E-01 7.97E-03 3.33E+00 1.06E-02 5.23E+01 8.23E+01 2.36E-02

f11
Mean Error 5.73E+03+ 4.21E+03+ 3.49E+03- 3.78E+03+ 3.73E+03+ 4.01E+03+ 4.33E+03+ 6.74E+03+ 4.32E+03+ 3.62E+03

Std Dev 5.23E+02 9.14E+02 3.71E+02 3.27E+02 3.33E+02 5.76E+02 3.70E+02 3.12E+02 7.90E+02 4.24E+02

f12
Mean Error 1.15E+00+ 1.20E-01- 7.95E-02- 3.14E-01+ 2.30E-01≈ 1.06E-01- 3.64E-01+ 7.42E-01+ 1.35E+00+ 2.30E-01

Std Dev 1.12E-01 2.54E-01 3.70E-02 3.32E-02 3.32E-02 4.18E-02 4.54E-02 7.99E-02 1.40E-01 3.85E-02

f13
Mean Error 1.87E-01+ 3.57E-01+ 2.45E-01+ 2.35E-01+ 3.29E-01+ 3.34E-01+ 3.40E-01+ 3.10E-01+ 3.43E-01+ 1.16E-01

Std Dev 4.07E-02 6.84E-02 4.15E-02 2.83E-02 5.26E-02 7.44E-02 5.41E-02 2.94E-02 3.59E-02 1.67E-02

f14
Mean Error 3.56E-01+ 2.84E-01+ 3.52E-01+ 2.84E-01+ 3.15E-01+ 2.89E-01+ 3.05E-01+ 2.80E-01+ 2.81E-01+ 2.45E-01

Std Dev 3.03E-02 2.68E-02 5.39E-02 1.76E-02 8.47E-02 9.31E-02 2.79E-02 1.85E-02 9.84E-02 3.11E-02

f15
Mean Error 9.07E+00+ 6.05E+00+ 6.19E+00+ 6.04E+00+ 8.12E+00+ 6.86E+00+ 1.02E+01+ 1.33E+01+ 7.99E+00+ 4.72E+00

Std Dev 2.85E+00 1.22E+00 8.02E-01 5.78E-01 1.35E+00 1.93E+00 9.86E-01 3.95E+00 1.46E+00 6.11E-01

f16
Mean Error 1.72E+01+ 1.83E+01+ 1.74E+01+ 1.78E+01+ 1.81E+01+ 1.82E+01+ 1.77E+01+ 1.92E+01+ 2.00E+01+ 1.71E+01

Std Dev 1.16E+00 9.34E-01 7.55E-01 3.75E-01 4.95E-01 7.48E-01 3.96E-01 4.42E-01 4.14E-01 5.61E-01

f17
Mean Error 2.68E+03+ 1.06E+04+ 1.86E+03+ 1.41E+03+ 2.21E+03+ 1.32E+04+ 1.23E+04+ 9.45E+02+ 3.59E+05+ 7.76E+02

Std Dev 1.03E+03 6.52E+03 1.09E+03 3.25E+02 4.11E+02 7.37E+03 7.65E+03 3.32E+02 1.98E+05 1.94E+02

f18
Mean Error 1.43E+02+ 8.44E+01+ 1.14E+02+ 1.04E+02+ 1.72E+02+ 1.98E+02+ 2.68E+02+ 4.33E+01+ 3.10E+02+ 2.40E+01

Std Dev 3.04E+01 7.10E+01 3.81E+01 1.50E+01 4.87E+01 2.43E+02 4.65E+02 1.33E+01 3.63E+02 5.41E+00

f19
Mean Error 1.57E+01+ 6.90E+00- 9.51E+00+ 9.44E+00+ 1.32E+01+ 6.06E+00- 1.07E+01+ 1.01E+01+ 9.33E+00+ 8.40E+00

Std Dev 7.57E+00 1.13E+00 2.18E+00 1.84E+00 3.17E+00 1.11E+00 9.05E-01 1.26E+00 7.75E-01 9.00E-01

f20
Mean Error 3.49E+03+ 3.33E+01+ 5.71E+01+ 1.67E+01- 1.82E+02+ 1.55E+02+ 3.40E+01+ 4.08E+01+ 2.14E+02+ 2.24E+01

Std Dev 4.20E+03 1.28E+01 2.67E+01 6.26E+00 1.07E+02 1.42E+02 1.01E+01 1.23E+01 1.41E+02 5.95E+00

f21
Mean Error 1.51E+03+ 3.35E+03+ 6.84E+02+ 5.08E+02+ 1.24E+03+ 3.97E+03+ 2.45E+03+ 5.88E+02+ 2.25E+05+ 3.51E+02

Std Dev 4.28E+02 5.07E+03 1.58E+02 1.55E+02 3.69E+02 2.40E+03 1.54E+03 2.09E+02 1.18E+05 9.42E+01

f22
Mean Error 6.33E+02+ 5.43E+02+ 2.84E+02+ 2.36E+02+ 4.02E+02+ 6.43E+02+ 4.12E+02+ 5.44E+02+ 2.49E+02+ 2.11E+02

Std Dev 2.45E+02 2.12E+02 1.17E+02 8.49E+01 1.74E+02 1.67E+02 1.31E+02 1.29E+02 1.25E+02 1.34E+02

f23
Mean Error 3.44E+02≈ 3.44E+02≈ 3.44E+02≈ 3.44E+02≈ 3.44E+02≈ 3.44E+02≈ 3.44E+02≈ 3.44E+02≈ 3.44E+02≈ 3.44E+02

Std Dev 5.80E-14 3.22E-13 3.09E-13 2.32E-13 3.01E-13 2.32E-13 2.64E-13 4.29E-11 2.89E-13 2.89E-13

f24
Mean Error 2.71E+02+ 2.67E+02≈ 2.75E+02+ 2.75E+02+ 2.79E+02+ 2.71E+02+ 2.66E+02- 2.71E+02+ 2.64E+02- 2.67E+02

Std Dev 1.46E+01 3.53E+00 1.77E+00 6.99E-01 2.98E+00 1.80E+00 2.08E+00 1.54E+00 3.97E+00 2.72E+00

f25
Mean Error 2.21E+02+ 2.07E+02+ 2.18E+02+ 2.05E+02≈ 2.09E+02+ 2.08E+02+ 2.07E+02+ 2.06E+02+ 2.08E+02+ 2.05E+02

Std Dev 8.23E+00 1.07E+00 7.59E+00 3.50E-01 5.87E+00 4.20E+00 1.39E+00 9.67E-01 1.21E+00 3.01E-01

f26
Mean Error 1.14E+02+ 1.00E+02≈ 1.16E+02+ 1.00E+02≈ 1.00E+02≈ 1.12E+02+ 1.00E+02≈ 1.00E+02≈ 1.04E+02+ 1.00E+02

Std Dev 3.34E+01 6.21E-02 3.73E+01 1.86E-02 8.48E-02 3.31E+01 4.29E-02 2.61E-02 1.82E+01 2.95E-02

f27
Mean Error 4.51E+02+ 4.06E+02+ 4.91E+02+ 3.74E+02+ 7.13E+02+ 5.51E+02+ 4.35E+02+ 3.47E+02- 3.34E+02- 3.50E+02

Std Dev 5.05E+01 6.58E+01 7.46E+01 1.42E+02 1.42E+02 7.78E+01 8.15E+01 3.87E+01 2.24E+01 2.77E+01

f28
Mean Error 1.14E+03+ 1.14E+03+ 1.20E+03+ 1.11E+03≈ 1.19E+03+ 1.19E+03+ 1.09E+03- 1.27E+03+ 1.06E+03- 1.11E+03

Std Dev 5.86E+01 6.01E+01 5.76E+01 2.71E+01 5.96E+01 6.96E+01 3.52E+01 5.23E+01 6.01E+01 3.07E+01

f29
Mean Error 9.30E+02+ 1.06E+03+ 8.67E+02+ 8.13E+02+ 8.74E+02+ 9.09E+02+ 1.03E+03+ 6.59E+02- 1.99E+03+ 7.50E+02

Std Dev 5.51E+01 2.07E+02 5.87E+01 4.96E+01 6.04E+01 1.09E+02 1.97E+02 1.41E+02 3.49E+02 5.63E+01

f30
Mean Error 1.03E+04+ 8.72E+03+ 9.11E+03+ 9.01E+03+ 1.03E+04+ 8.97E+03+ 8.46E+03+ 9.31E+03+ 8.20E+03+ 8.16E+03

Std Dev 7.74E+02 5.09E+02 7.31E+02 7.38E+02 1.05E+03 4.88E+02 3.05E+02 7.39E+02 2.99E+02 1.70E+02

+/-/≈ 25/4/1 23/4/3 21/8/1 22/4/4 23/3/4 25/4/1 24/4/2 26/2/2 25/4/1 - -

Rank 6.6 5.4 5.3 4.08 5.93 6.25 5.87 6.4 6.62 2.55
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Figure 5: Statistical results of NDE and nine up-to-date DE variants on CEC 2014. (a) D = 30,
(b) D = 50.

Table 10: Comparison results of NDE with nine up-to-date DE variants based on the
multiproblem Wilcoxon signed-rank test on CEC2014 functions

D = 30 D = 50
Algorithm R+ R- p-value α = 0.05 Algorithm R+ R- p-value α = 0.05

NDE vs CIPDE 333 45 0.0006 YES NDE vs CIPDE 390 45 0.0002 YES

NDE vs CoBiDE 234 42 0.0037 YES NDE vs CoBiDE 342 36 0.0002 YES

NDE vs JADE sort 314 64 0.0028 YES NDE vs JADE sort 339.5 95.5 0.0086 YES

NDE vs L-SHADE 229 71 0.0249 YES NDE vs L-SHADE 295 56 0.0025 YES

NDE vs SHADE 353 25 <0.0001 YES NDE vs SHADE 318 33 0.0003 YES

NDE vs TSDE 292 59 0.0032 YES NDE vs TSDE 407 28 <0.0001 YES

NDE vs dynNP-jDE 328 50 0.0009 YES NDE vs dynNP-jDE 358 48 0.0004 YES

NDE vs MPEDE 338 40 0.0004 YES NDE vs MPEDE 376 30 <0.0001 YES

NDE vs SinDE 283 42 0.0012 YES NDE vs SinDE 381.5 53.5 0.0004 YES

Table 10, we see that NDE obtains higher R+ values than R- values in all cases, and there597

are significant differences at 0.05 significant level. The reason for these might be that the598

exploration and exploitation can be effectively balanced by the following two facts. 1) A599

more suitable mutation operator is chosen to each individual by employing its fitness value.600

2) The neighborhood evolutionary dilemmas are alleviated by designing a dynamic neigh-601

borhood model and two exchanging operations. Therefore, NDE has better performance602

than nine up-to-date DE variants on these instances.603

4.3.3. Comparison with six non-DE algorithms604

Next, NDE is compared with six non-DE algorithms on 30 benchmark functions f1-f30 in605

Table 1. These algorithms include CLPSO [19], GL-25 [13], DNLPSO [28], EPSO [25],606

HSOGA [15] and CMA-ES [14].607

Table 11 reports their experimental results, the statistical results of Wilcoxon rank sum608

test and Friedman test when D = 30 and 50, and the last two rows summarize them.609

When D = 30, from Table 11, the following detail results can be observed.610

1) CMA-ES obtains the best results on unimodal functions f1-f3, and NDE onf2 and f3.611

This might be because the evolution path added in CMA-ES is helpful to improve612
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the quality of evaluation.613

2) NDE obtains the best results on simple multimodal and hybrid functions f6-f22,614

CMA-ES on f4 and f5, and CLPSO on f8.615

3) HSOGA gets the best results on composition functions f23-f26 and f28-f30, and GL-616

25 on f27. This might be because the self-adaptive orthogonal crossover operator in617

HSOGA can effectively maintain the population diversity and enhance the exploita-618

tion of promising regions by using a representative set of points as the potential619

offspring and a local search scheme.620

According to the statistical results in Table 11, a) NDE performs better than CLPSO,621

CMA-ES, GL-25, NDLPSO, EPSO and HSOGA on 27, 24, 27, 26, 29 and 23 test functions622

respectively, slightly worse on 0, 3, 1, 4, 0 and 6 test functions respectively, similar to that623

on 3, 3, 2, 0, 1 and 1 test functions, respectively; and b) they get 1.65, 4.53, 4.32, 4.33,624

5.35, 4.4 and 3.42 in term of overall performance ranking on all problems, respectively.625

When D = 50, from Table 11, we see that NDE obtains the best results on f4, f7-f10,626

f13, f15, f17, f18, f20-f22 and f26, CMA-ES on f1-f3, f5 and f26, EPSO on f11, f14, f16627

and f19, HSOGA on f12, f23-f26 and f28-f30, and GL-25 on f6 and f27. According to the628

statistical results in Table 11, a) NDE performs better than CLPSO, CMA-ES, GL-25,629

NDLPSO, EPSO and HSOGA on 28, 22, 26, 25, 21 and 21 test functions respectively,630

slightly worse on 1, 5, 3, 5, 9 and 8 test functions respectively, similar to that on 1, 3, 1, 0,631

0 and 1 test functions, respectively; and b) they get 2.13, 4.68, 4.03, 4.82, 5.57, 3.02 and632

3.75 in term of overall performance ranking on all problems, respectively.633

For clarity, Figure 6 depicts s the bar charts of the statistical results of NDE and these634

six compared algorithms on all functions from CEC 2014 with D = 30 and 50, where the635

blue and red bars are same as Figure 4. From Figure 6, we see that NDE has the best rank636

and the most number of best results for all functions.637

Furthermore, Table 12 provides the comparison results of NDE with others on all prob-638

lems based on the multiproblem Wilcoxon signed-rank test when D = 30 and 50. From639

Table 12, we see that NDE gets higher R+ values than R- values in all cases, and there640

are significant differences at 0.05 significant level except for EPSO when D = 50. These641

might be because NM strategy suitably chooses a more promising mutation operator for642

each individual based on its fitness value, and NAE mechanism alleviates the evolutionary643

dilemmas. Therefore, NDE has better performance than six non-DE algorithms on these644

instances.645

In summary, it should be noted that it is just the proposed strategy and mechanism646

that make NDE superior to other algorithms on these functions, especially for multimodal647
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Figure 6: Statistical results of NDE and six non-DE algorithms on CEC 2014. (a) D = 30, (b)
D = 50.

Table 12: Comparison results of NDE with six non-DE variants based on the multiproblem
Wilcoxon signed-rank test on CEC2014 functions

D = 30 D = 50
Algorithm R+ R- p-value α = 0.05 Algorithm R+ R- p-value α = 0.05

NDE vs CLPSO 378 0 <0.0001 YES NDE vs CLPSO 424 11 <0.0001 YES

NDE vs CMA-ES 365 13 <0.0001 YES NDE vs CMA-ES 337 41 0.0004 YES

NDE vs GL-25 363 15 <0.0001 YES NDE vs GL-25 407 28 <0.0001 YES

NDE vs NDLPSO 412.5 52.5 0.0002 YES NDE vs NDLPSO 396 69 0.0008 YES

NDE vs EPSO 435 0 <0.0001 YES NDE vs EPSO 326 139 0.0558 NO

NDE vs HSOGA 329 106 0.0164 YES NDE vs HSOGA 324 111 0.0219 YES

and hybrid functions. In fact, the worse or better individuals employ an explorative or648

exploitative mutation operator to adjust their search regions in NM strategy. Meanwhile,649

NAE mechanism alleviates the neighborhood evolutionary dilemmas of each individual650

to improve the search performance. Thus, NDE effectively maintains a suitable balance651

between exploration and exploitation, and is a more promising algorithm.652

4.3.4. The reliability of NDE653

Another important factor to evaluate the performance of an algorithm is reliability, i.e.,654

the experimental results of the algorithm vary slightly as the number of runs increases.655

To measure the reliability of NDE, it is further independently run with 1000 times on 30656

benchmark functions f1-f30 in Table 1 when D = 30 and 50.657

Table 13 reports its experimental results obtained by 1000 independent runs on all658

problems, and also lists those by 30 independent runs for the convenience of comparison.659

From Table 13, we see that there is only a slight variation in the experimental results of660

NDE on each function for different running times whether D = 30 or 50. In particular,661

the difference between the experimental results of 30 and 1000 independent runs is the662

same or no more than one order of magnitude for each function. In fact, the numerical663

results obtained by 1000 independent runs are same and slightly worse than those by 30664
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Table 13: Experimental results of NDE obtained by 30 and 1000 independent runs

Function
D = 30 D = 50

Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev) Mean Error(Std Dev)
30 runs 1000 runs 30 runs 1000 runs

f1 5.91E+00(5.58E+00) 2.18E+01(3.07E+01) 6.30E+04(2.54E+04) 5.94E+04(2.25E+04)

f2 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 3.31E-07(4.22E-07) 6.78E-07(8.62E-07)

f3 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 2.03E-07(3.00E-07) 7.69E-07(1.20E-06)

f4 2.94E-08(4.84E-08) 8.54E-08(2.07E-07) 8.19E+00(6.55E-01) 2.27E+01(3.19E+01)

f5 2.01E+01(4.71E-02) 2.01E+01(4.86E-02) 2.03E+01(4.57E-02) 2.03E+01(5.57E-02)

f6 3.37E+00(1.36E+00) 3.65E+00(1.36E+00) 1.53E+01(2.44E+00) 1.56E+01(2.64E+00)

f7 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f8 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 5.68E-14(5.78E-14) 7.84E-14(5.26E-14)

f9 2.48E+01(4.48E+00) 2.51E+01(5.43E+00) 4.15E+01(6.53E+00) 3.94E+01(8.27E+00)

f10 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 9.92E-02(2.36E-02) 1.06E-01(2.79E-02)

f11 1.27E+03(2.41E+02) 1.32E+03(2.93E+02) 3.62E+03(4.24E+02) 3.70E+03(4.90E+02)

f12 1.22E-01(2.82E-02) 1.47E-01(3.99E-02) 2.30E-01(3.85E-02) 2.31E-01(5.60E-02)

f13 6.80E-02(1.31E-02) 7.76E-02(1.74E-02) 1.16E-01(1.67E-02) 1.24E-01(2.11E-02)

f14 2.03E-01(2.64E-02) 2.11E-01(3.08E-02) 2.45E-01(3.11E-02) 2.57E-01(3.37E-02)

f15 2.60E+00(4.45E-01) 2.70E+00(4.89E-01) 4.72E+00(6.11E-01) 4.99E+00(7.25E-01)

f16 8.38E+00(4.13E-01) 8.42E+00(5.42E-01) 1.71E+01(5.61E-01) 1.73E+01(5.94E-01)

f17 1.13E+02(5.94E+01) 1.14E+02(5.95E+01) 7.76E+02(1.94E+02) 7.61E+02(2.20E+02)

f18 5.95E+00(1.50E+00) 6.62E+00(1.86E+00) 2.40E+01(5.41E+00) 2.58E+01(7.17E+00)

f19 2.14E+00(4.61E-01) 2.29E+00(5.03E-01) 8.40E+00(9.00E-01) 8.68E+00(8.79E-01)

f20 4.05E+00(9.50E-01) 4.86E+00(1.28E+00) 2.24E+01(5.95E+00) 2.47E+01(6.26E+00)

f21 1.01E+01(5.37E+00) 1.32E+01(1.05E+01) 3.51E+02(9.42E+01) 3.72E+02(1.13E+02)

f22 2.61E+01(4.46E+00) 3.84E+01(3.06E+01) 2.11E+02(1.34E+02) 2.42E+02(1.68E+02)

f23 3.15E+02(2.15E-13) 3.15E+02(2.04E-12) 3.44E+02(2.89E-13) 3.44E+02(3.98E-13)

f24 2.22E+02(1.67E-01) 2.22E+02(4.19E+00) 2.67E+02(2.72E+00) 2.67E+02(2.06E+00)

f25 2.03E+02(4.91E-02) 2.03E+02(5.98E-02) 2.05E+02(3.01E-01) 2.05E+02(3.29E-01)

f26 1.00E+02(1.79E-02) 1.00E+02(2.16E-02) 1.00E+02(2.95E-02) 1.00E+02(3.23E-02)

f27 3.90E+02(3.06E+01) 3.94E+02(2.48E+01) 3.50E+02(2.77E+01) 3.59E+02(2.83E+01)

f28 7.97E+02(1.63E+01) 8.05E+02(1.85E+01) 1.11E+03(3.07E+01) 1.11E+03(2.87E+01)

f29 6.66E+02(1.50E+02) 6.74E+02(1.39E+02) 7.50E+02(5.63E+01) 7.67E+02(4.08E+01)

f30 5.14E+02(6.93E+01) 5.33E+02(9.78E+01) 8.16E+03(1.70E+02) 8.42E+03(3.22E+02)

independent runs on 10 and 20 test functions with D = 30, respectively. Meanwhile, they665

are same, slightly worse and better than those by 30 independent runs on 7, 20 and 3 test666

functions with D = 50, respectively. This might be due to the computational errors and667

some worse cases with very small probabilities in a large number of numerical experiments.668

Thus, NDE is robust and reliable.669

4.4. Algorithm efficiency670

To show the efficiency of NDE, we compare it with the classical DE, EPSDE and SaDE on671

5 typical functions including unimodal functions f1-f3, and simple multimodal functions672

f6 and f9 in Table 1 when D = 30. The classical DE employs the DE/rand/1 and binomial673

crossover operation, the scaling factor and crossover rate are set to 0.5. In this experiment,674

the average CPU time of 30 independent runs is recorded to evaluate their efficiencies.675

Table 14 reports the average CPU times of 30 independent runs expended by them.676

From Table 14, we see that NDE is slower than DE and EPSDE, and similar to SaDE.677

Unlike the classical DE and EPSDE, NDE requires to sort the neighbors of each individual678

at each generation and to calculate the diversity of all neighborhoods based on fitness679

values. Then it takes a longer time than the classical DE and EPSDE. Overall, numerical680

results show that NDE is a promising algorithm.681
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Table 14: Average CPU time expended by NDE, DE, EPSDE and SaDE.

Function
unimodal multimodal

f1 f2 f3 f6 f9

DE 19.00 s 18.44 s 19.27 s 54.64 s 18.50 s

EPSDE 24.39 s 22.36 s 25.71 s 60.31 s 23.10 s

SaDE 56.00 s 54.37 s 57.44 s 88.69 s 54.80 s

NDE 59.10 s 57.08 s 59.38 s 96.69 s 57.28 s

Table 15: Numerical and statistic results of NDE and five DE variants on PEFM
Function Best(Result) Worst(Result) Average value Standard deviation p-value α = 0.05

CoDE 0.00E+00 3.91E-12 3.92E-12 1.24E-11 0.0482 YES

jDE 3.06E+00 1.25E+01 7.37E+00 3.01E+00 <0.0001 YES

JADE 3.17E-02 1.82E+00 6.70E-01 5.43E-01 0.0024 YES

EPSDE 3.76E+00 1.29E+01 1.00E+01 2.50E+00 <0.0001 YES

SaDE 0.00E+00 6.61E+00 9.12E-01 2.11E+00 0.0019 YES

NDE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - - - -

4.5. Application682

As an application, we consider the Parameter Estimation for Frequency-Modulated Sound683

Waves (PEFM) [9]. It has an important role in several modern music systems, aims to684

generate a sound similar to target sound and can be modeled as the following optimization685

problem686

min f( ~X) =
100∑

t=0

(y(t)− y0(t))2, (23)

where ~X = (a1, ω1, a2, ω2, a3, ω3),687

y(t) = a1 sin(ω1tθ + a2 sin(ω2tθ + a3 sin(ω3tθ))),

and688

y0(t) = sin(5tθ + 1.5 sin(4.8tθ + 2 sin(4.9tθ))).

Clearly, this problem is highly complex and multimodal, and its minimum value is 0.689

To show the effectiveness of NDE, we compare it with five state-of-the-art DE variants690

CoDE, jDE, JADE, EPSDE and SaDE on this problem. Let FESmax = 60000, Table691

15 reports their numerical results by 30 independent runs, and the statistic results of692

Wilcoxon rank sum test at 0.05 significant level. From Table 15, we see that NDE gets the693

best performance among them, and the significant differences between NDE and others694

can be observed in all cases. Thus, NDE is more effective for this problem.695
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5. Conclusion696

To make full use of the characteristics of individuals and the evolutionary states of the697

neighborhood, this paper proposes a novel differential evolution with NAE mechanism. A698

NM strategy is first designed to adjust suitably the search ability of each individual by699

developing two NM operators with different search characteristics and choosing a suitable700

one for each individual according to its fitness value. Then a NAE mechanism is presented701

to identify and mitigate the evolutionary dilemmas of the neighborhood by tracking its702

fitness value and diversity and designing a dynamic neighborhood model and two exchang-703

ing operations, respectively. Meanwhile, a simple reduction method is employed to adjust704

the population size dynamically. Compared with the DE variants based on neighborhood705

and evolutionary state, the proposed algorithm not only chooses a more suitable mutation706

operator for each individual, but also relieves adaptively the neighborhood evolutionary707

dilemmas of each individual. Thus, NDE not only suitably adjusts the search performance708

of each individual, but also effectively maintains a proper balance between exploration709

and exploitation. Finally, the proposed algorithm is compared with 21 typical algorithms710

by numerical experiments on 30 benchmark functions from CEC2014, and applied to the711

Parameter Estimation for Frequency-Modulated Sound Waves. Experimental results show712

that the proposed algorithm is reliable and has better performance.713

Further research can be focused on extending the NAE mechanism to other algorithms,714

designing adaptive hybrid neighborhood topology to further enhance the performance of715

DE, and applying NDE to practical problems.716
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