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Abstract In the field of image analysis, segmentation is one of the most important
preprocessing steps. One way to achieve segmentation is the use of threshold selection,
where each pixel that belongs to a determined class, based on the mutual visual
characteristics, is labeled according to the selected threshold. In this work, a combination
of two pioneer methods, namely Otsu and Kapur, are investigated to solve the threshold
selection problem. Optimum parameters of these objective functions are calculated using
Bacterial Foraging (BF) optimization algorithm, for its accuracy, and Harmony Search
(HS), for its speed. However, the biggest problem of soft computing family algorithms is
catching into a local optimum. To resolve this critical issue, we investigate the power of
Learning Automata (LA) which works as a controller to make switching between these
two optimization methods. LA is a heuristic method which can solve complex optimi-
zation problems with interesting results in parameter estimation. Despite other techniques
commonly seek through the parameter map, LA explores in the probability space,
providing appropriate convergence properties and robustness. The proposed method is
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tested on benchmark images and shows fast convergence avoiding the typical sensitivity
to initial conditions such as the Expectation-Maximization (EM) algorithm or the com-
plex, and time-consuming computations which are commonly found in gradient methods.
Experimental results demonstrate the algorithm’s ability to perform automatic multi-
threshold selection and show interesting advantages as it is compared to other algorithms
solving the same task.

Keywords Multilevel thresholding . Imagesegmentation .Hybridoptimization .Kapur function .

Otsu function

1 Introduction

Image segmentation facilitates the separation of spatial-spectral attributes contained in
images into their individual constituents; a task that is accomplished quite comfortably
by our visual system and cortical mechanisms. However, mimicking this capability of
human observers in an artificial environment has been found to be an extremely
challenging problem. Formally, image segmentation is defined as the process of
partitioning or segregating an image into regions (also called as clusters or groups),
manifesting homogeneous or nearly homogeneous attributes such as color, texture,
gradient and spatial attributes about location. Fundamentally, a segmentation algorithm
for an image is said to be Bcomplete^ when it provides a unique region or label
assignment for every pixel, such that all pixels in a segmented region satisfy certain
criteria while the same principles are not universally satisfied for pixels from disjoint
regions.

In the context of imagery, segmentation is often viewed as an ill-defined problem with
no perfect solution but multiple acceptable solutions due to its subjective nature [23].
The subjectivity of segmentation has been extensively substantiated in experiments
conducted at the University of California at Berkeley [14] to develop an evaluation
benchmark, where a database of manually generated segmentations of images with
natural content was developed using multiple human observers. In Fig. 1a, two images
from the database as mentioned earlier are displayed. Additionally, several manually
segmented ground truths with region boundaries superimposed (in green) on the original
image are shown in Fig. 1b to f. Analysis of the obtained ground truth results by Martin
et al. [14] divulged two imperative aspects: (I) an arbitrary image may have a unique
suitable segmentation outcome while others possess multiple acceptable solutions, and
(II) the variability of inadequate solutions is primarily due to the differences in the level
of attention (or granularity) and the degree of detail from one human observer to another,
as seen in Fig. 1. Consequently, most present day algorithms for segmentation aim to
provide acceptable outcomes rather than a Bgold standard^ solution.

The most segmentation modus operandi can be viewed as being either spatially blind
or spatially guided. Spatially blind approaches perform segmentation in certain
attribute/feature spaces, predominantly related to intensity. Popular segmentation tech-
niques that fall within the notion of being spatially blind involve clustering [4, 25] and
histogram thresholding [20]. In contrast to spatially blind methods, spatially guided
approaches, as the name suggests, are guided by spatial relationships of pixels for
segmentation. Their primary objective is to form pixel groupings that are compact or
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homogeneous from a spatial standpoint, irrespective of their relationships in specific
feature spaces. However, despite the development of many spatially guided techniques,
the use of region and edge information explicitly or in an integrated framework remains
widely-accepted alternatives for the formation of spatially compact regions. Segmenta-
tion approaches such as region-based [6], energy-based [18] and region and contour
based [8, 15] fall within the notion of being spatially guided.

Histogram thresholding [20] is a spatially blind technique primarily based on the principle
that segments of an image can be identified by delineating peaks, valleys, and/or shapes in its
corresponding intensity histogram. Similar to clustering, histogram thresholding protocols
require minimal effort to realize in comparison with most other segmentation algorithms and
function without the need for any a priori information about the image being partitioned. Owed
to its simplicity, intensity histogram thresholding initially gained popularity for segmenting
gray-scale images which also has the capability of converting a gray-scale image into binary
one.

In general, if the gray level histogram of the image is bi-modal, the image objects are clearly
distinguishable from the background. In this case, it is easy to choose a threshold value by
taking the value that is in the valley between two peaks of the histogram. However, in the real
world, the gray level histograms of the images are always multi-modal and; hence, it is not
simple to determine the exact locations of distinct valleys in multi-modal histograms. Thanks
to growing of evolutionary algorithm, the problem of finding the optimal threshold makes
easier considering a specific target function [27]. Vantaram and Saber [23] have presented a
thorough survey of a variety of thresholding techniques, among which global histogram based
algorithms are widely employed to determine the threshold. This global thresholding technique
can be classified into parametric and nonparametric approaches. In parametric approaches [5],
the gray level distribution of each class has a probability density function that follows a
Gaussian distribution. This method is computationally expensive and time-consuming. Non-
parametric approaches determine the threshold values in an optimal fashion based on a given
criterion. The nonparametric approaches such as Otsu [17] and Kapur [11] are robust and more
accurate than the parametric methods.

Fig. 1 Berkeley segmentation benchmark [14] (a) original images, and (b) to (f) region boundaries of multiple
manually generated segmentations overlaid on the images
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The Otsu and Kapur methods can be easily extended to multilevel thresholding problem but
inefficient in determining the optimal thresholds due to the exponential growth in computation
time. To improve the efficiency, many methods have been proposed for solving the multilevel
thresholding problem [35]. Liao et al. [13] showed that the recursive algorithm significantly
reduces the computational complexity of determining the multi-level thresholds by accessing a
look-up table when compared with conventional Otsu and Kapur methods. However, it still
suffers from the problem of a significant processing time when the number of thresholds
increases.

To eliminate such problems, numerous works on the topic has been presented based on
swarm algorithms, including Genetic Algorithm (GA) [7], Particle Swarm Optimization
(PSO), Artificial Bee Colony (ABC) [1], Ant Colony Optimization (ACO) [21], Bacterial
Foraging (BF) [19], and Honey Bee Mating Optimization (HBMO) [9]. Yin et al. [29] have
proposed a PSO based multilevel minimum cross entropy threshold selection method to
achieve near-optimal thresholds. Zhang and Wu [33] used ABC algorithm for optimizing
Tsallis entropy. After that, Akay [17] employed PSO and ABC to find the optimal multilevel
thresholds. Kapur’s entropy, one of the maximum entropy techniques, and between-class
variance has been investigated as fitness functions. The results of performing this algorithm
on a set of test image, using various numbers of thresholds, were assessed using statistical tools
and suggest that Otsu’s technique, PSO and ABC show equal performance when the number
of thresholds is two, while the ABC algorithm performs better than PSO and Otsu’s technique
when the number of thresholds is greater than two.

Yang and Deb [26] formulated a new meta-heuristic algorithm, called cuckoo search
algorithm which is based on the interesting breeding behavior such as brood parasitism of
particular species of Cuckoos, and the preliminary studies show that it is very promising and
could outperform the existing algorithms such as GA, PSO, ABC, ACO, BF and HBMO [5].

All of these methods have their limitations concerning convergence speed or accuracy, and
all researchers aim at finding a tradeoff between these two important aspects. Besides the
mentioned limitations, there is a shortcoming with which escaping from is rather impossible; it
is local optima. The main idea behind this research is to cope with this deficiency while
increasing the accuracy of optimization. It is evident that each optimization may face different
local solutions; hence, merging two optimization algorithms has a high capability of escaping
from individual local solutions. To reach a robust multilevel thresholding, BF, with its
accuracy and Harmony Search (HS), with its convergence speed, [3] are joined to be able of
approaching the problem of mentioned local optimum. To do switching between BF and HS,
we have investigated the power of a sort of reinforcement learning algorithm, namely Learning
Automata (LA) [16], to give a reward in case of right behavior as well as providing a penalty
when the algorithm faces local optimum. The presented scheme is used for maximizing the
Kapur’s entropy and Otsu. Experimental image thresholding results are obtained for qualitative
analysis. Quantitative results are defined by peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM) and feature similarity index (FSIM). The performance improvement
of the proposed algorithm, so-called BFHS, based segmentation approach is measured regard-
ing PSNR, SSIM, and FSIM, in comparison with the state of the art techniques.

The rest of this paper is organized as follows. Section 2 dedicates to formulate the
foundations of multilevel thresholding. Brief explanations of the algorithms that are used in
this study are given in Section 3. Implementation of the hybrid method is described in
Section 4. The experimental results are provided in Section 5, and, finally, the conclusion
remarks are given in Section 6.
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2 Problem formulation for multilevel thresholding

The optimal thresholding methods search the thresholds such that the segmented classes on the
histogram satisfy the desired property. This is performed by maximizing an objective function
which uses the selected thresholds as the parameters. In this paper, two broadly used optimal
thresholding methods namely entropy criterion (Kapur) method and between-class variance
(Otsu) methods are used.

2.1 Kapur method

The entropy criterion method has been employed in determining whether the optimal
thresholding can provide histogram-based image segmentation with satisfactory desired
characteristics [11, 17]. Kapur has developed the algorithm for bi-level thresholding, and
this bi-level thresholding can be described as follows:

Let there be L gray levels in a given image and let them be in a range {0, 1, 2,…, (L - 1)}.
Then one can define pi = h(i) ×N, (0 ≤ i ≤ (L - 1)) where h(i) denotes the number of pixels for
the corresponding gray-level L, and N denotes total number of pixels in the image which is
equal to ∑i = 0

L − 1h(i). Then the objective is to maximize the fitness function.

f tð Þ ¼ H0 þ H1 ð1Þ

where H0 ¼ − ∑t−1
i¼0

pi
ω0

ln
pi
ω0

� �
, ω0 = ∑i = 0

t − 1Pi, H1 ¼ − ∑L−1
i¼t

pi
ω1

ln
pi
ω1

� �
, ω1 =∑i = t

L − 1pi.

The optimal threshold is the gray level that maximizes Eq. 1. This Kapur’s entropy criterion
method tries to achieve a centralized distribution for each histogram-based segmented region
of the image. This method is extended to multilevel thresholding as follows:

The optimal multilevel thresholding problem can be configured as an m-dimensional
optimization problem, for determination of m optimal thresholds for a given image [t1, t2,
…, tm], where the aim is to maximize the objective function:

f t1; t2;… ; tm½ �ð Þ ¼ H0 þ H1 þ…þ Hm ð2Þ

where H0 ¼ −∑t1−1
i¼0

pi
ω0

ln
pi
ω0

� �
, ω0 ¼ ∑t1−1

i¼0 pi, …, Hm ¼ − ∑L−1
i¼tm

pi
ωm

ln
pi
ωm

� �
, ωm ¼ ∑L−1

i¼tm
pi.

2.2 Otsu method

Thresholding using Otsu’s method is a nonparametric segmentation technique, which is used
to segment the entire image into many regions; as a result, the variance of the various classes
can be maximized. Between-class variance was proposed by [17] as sum of sigma functions of
each class and is defined by Eq. (3):

f tð Þ ¼ σ0 þ σ1 ð3Þ

σ0 ¼ ω0 μ0−μTð Þ2: σ1 ¼ ω1 μ1−μTð Þ2 ð4Þ
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where μT represents the mean intensity of input image. In the case of bi-level thresholding, the
average level of each class (μi), can be obtained using Eq. (5):

μ0 ¼
X t−1

i¼0

ipi
ω0

: μ1 ¼
X L−1

i¼t

ipi
ω1

: ð5Þ

By maximizing the between-class variance function, the optimal threshold value can be
achieved using Eq. (6): t* ¼ argmax f tð Þð Þ ð6Þ

Furthermore, between-class-variance [1] is extended to multilevel thresholding problem as
followed by Eq. (7):

f tð Þ ¼
X m

i¼0
σi ð7Þ

The sigma term and the mean levels can be obtained from Eq. (8):

σ0 ¼ ω0 μ0− μTð Þ2: σ1 ¼ ω1 μ1− μTð Þ2:σ j ¼ ω j μ j− μT

� �2
:σm ¼ ωm μm− μTð Þ2

μ0 ¼
X t1−1

i¼0

ipi
ω0

: μ1 ¼
X t2−1

i¼t1

ipi
ω1

:μ j ¼
X t jþ1−1

i¼t j

ipi
ω j

: μm ¼
X L−1

i¼tm

ipi
ωm

:
ð8Þ

The optimal multilevel thresholding is configured by maximizing the objective function
using Eq. (9):

t!
� �*

¼ argmax
X m

i¼0
σi

� �
ð9Þ

The Kapur and Otsu methods have been proven as an efficient method for bi-level
thresholding in image segmentation. However, when these methods are extended to
multilevel thresholding, the computation time grows exponentially with the number of
thresholds. It would limit the multilevel thresholding applications. To overcome the
above problem, this paper proposes a hybrid Bio-Inspired learning algorithm for
solving multi-level thresholding problem. The aim of the proposed method is to
maximize the Kapur and Otsu objective functions.

3 Brief explanations of the algorithms in the study

Optimization is the process of making something better than the previous form. Over
the last decade, the aggregate intelligent behavior of insect or animal groups in the
natural world for example flocks of birds, colonies of ants, schools of fish, swarms of
bees, and termites have fascinated the interest of researchers. The collective action of
insects, birds or animals is identified as swarm behavior. Many researchers have used
swarm behavior as a framework for solving complicated real-world problems.

The aim of this research is to apply the accuracy of BF and the speed of HS to satisfy
the target function. LA acts as the intelligent part of the algorithm and, on current
conditions of the problem, selects one of the two algorithms so as to reach a satisfaction
in optimizing target function.
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3.1 Bacterial foraging optimization algorithm

The Bacterial Foraging Optimization Algorithm (BF) [3] is inspired by the group
foraging behavior of bacteria such as E.coli and M.xanthus. Specifically, the BF is
inspired by the chemotaxis behavior of bacteria that will perceive chemical gradients
in the environment (such as nutrients) and move toward or away from specific signals.

The information processing strategy of the algorithm is to allow cells to stochasti-
cally and collectively swarm toward the ideal situations. This is achieved through a
series of three processes on a population of simulated cells: 1) ‘Chemotaxis’ where the
cost of cells is derated by the proximity to other cells and cells move along the
manipulated cost surface one at a time (the majority of the work of the algorithm),
2) ‘Reproduction’ where only those cells that performed well over their lifetime may
contribute to the next generation, and 3) ‘Elimination-dispersal’ where cells are
discarded, and new random samples are inserted with a low probability.

A bacteria cost is derated by its interaction with other cells and is calculated as
follows:

g cellkð Þ ¼
XS
i¼1

−dattr � exp −wattr �
X P

m¼1
cellkm−other

i
m

� �2� �� 	

þ
XS
i¼1

−hrepel � exp −wrepel �
X P

m¼1
cellkm−other

i
m

� �2� �� 	
:

ð10Þ

where cellk is a given cell, dattr and wattr are attraction coefficients, hrepel and wrepel are
repulsion coefficients, S is the number of cells in the population, P is the number of
dimensions on a given cells position vector.

The remaining parameters of the algorithm are as follows: Cellsnum is the number of cells
maintained in the population, Ned is the number of elimination-dispersal steps, Nre is the
number of reproduction steps, Nc is the number of chemotaxis steps, Ns is the number of swim
steps for a given cell, Stepsize is a random direction vector with the same number of dimensions
as the problem space, and each value ∈ [−1,1], and Ped is the probability of a cell being
subjected to elimination and dispersal.

3.2 Harmony search algorithm

Harmony Search [3] was inspired by the improvisation of Jazz musicians. Specifically,
the process in which the musicians (who may have never played together before)
rapidly refine their individual improvisation through variation resulting in an aesthetic
harmony.

The information processing objective is achieved by stochastically creating candidate
solutions in a step-wise fashion, where each element is either pulled out randomly from
a memory of high-tone results, adjusted from the retention of high-quality solutions or
assigned randomly within the bounds of the problem. The memory of candidate
solutions is initially random, and a greedy acceptance criterion is employed to admit
new candidate solutions only if they sustain an improved objective value, substituting
an existing member.
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3.3 Learning automata

LA operates by selecting actions via a stochastic process. Such actions operate within
an environment while being assessed according to a measure of the system perfor-
mance. Figure 1a shows the typical learning system architecture. The automaton selects
an action (X) probabilistically. Such actions are applied to the environment, and the
performance evaluation function provides a reinforcement signal β. This is used to
update the automaton’s internal probability distribution whereby actions that achieve
desirable performance are reinforced via an increased probability. Likewise, those
underperforming actions are penalized or left unchanged depending on the particular
learning rule which has been employed. Over time, the average performance of the
system will improve until a given limit is reached. Regarding optimization problems,
the action with the highest probability would correspond to the global minimum as
demonstrated by rigorous proofs of convergence available in [10, 16].

A wide variety of learning rules has been reported in the literature. One of the most
widely used algorithms is the linear reward/penalty (LRP) scheme, which has been
shown to guarantee convergence properties (see [16]). With a large number of discrete
actions, the probability of selecting any particular action becomes low and the conver-
gence time can become excessive. To avoid this, LA can be connected in a parallel
setup like the one shown in Fig. 2b. Each automaton operates a smaller number of
actions, and the ‘team’ works together in a cooperative manner. This scheme can also
be used where multiple actions are required.

If action x (parameter) is defined over the range (xmin, xmax), the probability density
function f(x, n) at iteration n is updated according to the following rule:

f x: nþ 1ð Þ ¼ α f x:nð Þ þ β nð ÞH x:rð Þ½ � if x∈ xmin:xmaxð Þ
0 otherwise



ð11Þ

where α is chosen to re-normalize the distribution according to the following condition:

Z
max

xmin

f x: nþ 1ð Þdx ¼ 1 ð12Þ

Fig. 2 (a) Reinforcement learning system and (b) Interconnected automata
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where β(n) is the reinforcement signal from the performance evaluation and H(x, r) is a
symmetric Gaussian neighborhood function centered on r = x(n). It yields

H x:rð Þ ¼ λ� exp −
x−rð Þ2
2σ2

 !
ð13Þ

where λ and σ are parameters that determine the height and width of the neighborhood
function. They are defined in terms of the range of actions as follows:

σ ¼ gw � xmax−xminð Þ; λ ¼ gh
xmax−xminð Þ ð14Þ

Free parameters thus control the speed and resolution of learning gw and gh. Let action x(n)
be applied to the environment at iteration n, returning a cost or performance index J(n).
Current and previous costs are stored as a reference set R(n). The median and minimum values
Jmed and Jmin may thus be calculated by means of β(n), which is defined as follows:

β nð Þ ¼ max 0:
Jmed−J nð Þ
Jmed−Jmin


 �
ð15Þ

To avoid problems with infinite storage requirements and to allow the system to adapt to
changing environments, only the last m values of the cost functions are stored in R(n). Eq. (15)
limits β(n) to values between 0 and 1 and only returns nonzero values for those costs that are below
themedian value. It is easy to understand howβ(n) affects the learning process as follows: during the
learning, the performance and the number of selecting actions can be wildly variable, generating
extremely high computing costs. However, β(n) is insensitive to such extremes and high values of
J(n) resulting from a poor choice of actions. As the learning continues, the automaton converges
towardsmoreworthy regions of the parameter space as such actions are chosen to be evaluatedmore
often. When more of such responses are being received, Jmed gets reduced. Decreasing Jmed in β(n)
effectively enables the automaton to refine its reference around better responses (previously
received), and hence resulting in a better discrimination between selected actions.

In order to define an action value x(n) which has been associated with a given probability
density function, a uniformly distributed pseudo-random number z(n) is generated within the
range of [0, 1]. Simple interpolation is thus employed to equate this value to the cumulative
distribution function:

Z x nð Þ

xmin

f x: nð Þdx ¼ z nð Þ ð16Þ

4 Implementation of the Hybrid Method

In the proposed method a pixel is randomly selected to assign it to each member of the hybrid
method, from now on BFHS, the population as a position of the pixel. In this study, four
different pixel classes are used to segment the images and the idea is to show the effectiveness
of the algorithm and its performance against other algorithms solving the same task. However,
the implementation can easily be transferred to cases with a greater number of pixel classes.
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To approach the histogram of an image by Kapur and Otsu functions, it is necessary to
calculate the optimum values of the parameters for each function. This problem can be solved
by optimizing Eq. (2) and Eq. (9), the initial values of the relevant parameters are summarized
in Table 1.

In the LA optimization, each parameter is considered like an Automaton, which can choose
actions. Such actions correspond to values assigned to the parameters by a probability
distribution within the interval. For this 2-dimensional problem, one automaton will be created
to represent the parametric approach of the corresponding histogram. One of the main
advantages of the LA algorithm regarding multi-dimensional problems is that the automatons
are coupled only through the environment, which is considered of type P in this study.

As a matter of fact, if each of automata’s actions fails, it will be punished, and if each of
them is successful, it will get a reward. An action fails when it cannot improve A(n) = {s, Nc,
Ns, Nre, Ned, dattract, wattract, hrepellent, wrepellent, Ped, HM, HMCR, PAR, BW, NI} in an iteration,
therefore, it will be punished. If an action can improve A(n), it will get a reward. At the
beginning of performing the proposed algorithm, LA probability vector is equal for both
actions. BF action is chosen with 50 % probability [0 … 50] and also HS action is selected
with 50 % probability (50 … 100]. In fact, given probabilities are both set to 50 %. LA
generates a random number with uniform distribution. Regarding the random number and
probability vector of LA, one of the actions is selected. If the chosen action is successful, it
gets the reward, and its probability value increases according to learning algorithm. However,
if it fails, its probability will be decreased accordingly. Therefore, LA learns in different
conditions to find out which action is better to be executed more.

The quality of the approach is converted into a reinforcement signal β(n) (through
Eq. 15). After the reinforcement value β(n) is defined as a product of the elected
approach A(n), the distribution of probability is updated for n + 1 of each automaton
(according to the Eq. 11). To simplify parameters in Eq. (14), they will take the same

Table 1 Initial parameters of BFHS

Method Parameter Value

Bacterial Foraging (BF) Number of bacterium (s) 20

Number of chemotactic steps (Nc) 10

Swimming length (Ns) 10

Number of reproduction steps (Nre) 4

Number of elimination of dispersal events (Ned) 2

Depth of attract (dattract) 0.1

Width of attract (wattract) 0.2

Height of repellent (hrepellent) 0.1

Width of repellent (wrepellent) 10

Probability of elimination and dispersal (Ped) 0.02

Harmony Search (HS) Harmony memory (HM) 100

Harmony memory consideration rate (HMCR) 0.75

Pitch adjusting rate (PAR) 0.5

Distance bandwidth (BW) 0.3

Number of improvisations (NI) 250
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value for the automaton, such that gw = 0.02 and gh = 0.3. In this work, the optimization
process considers a limit up to 2000 iterations.

The final step is to determine the optimal threshold values Ti, just as it is illustrated in Fig. 3.
The optimization algorithm can thus be described as follows (see Table 2):

5 Results and discussions

In this research, two sets of experiments were conducted. In the first set, experiments are done
on ten benchmark gray-scale images, Lenna, Pepper, Baboon, Hunter, Map, Cameraman,
Living room, House, Airplane, Butterfly (refer to Fig. 4), with size of 512 × 512 and the
uniformity metric (Eq. 17) [12] is used in order to compare image segmentation performance.
Whereas in the second set, experiments are done on a set of satellite images [31], The obtained
results are then compared with HS, BF and GA as shown visually in Figs. 7, 8, 9, 10, 11 and
12 and quantitatively in Tables 4, 5, 6, 7, 8 and 9.

5.1 First set of experiments

The hybrid algorithm (BFHS) along with BF, KPSO [22], and GA are used to segment these
benchmark images. BF and KPSO parameters are adjusted according to [22]. GA parameters
are adjusted on [28]. The region uniformity is first stated by Levine and Nazif [12], which is
primarily used as a criterion for measuring the quality of image segmentation. The uniformity
of a feature over a region is defined as being inversely proportional to the variance of the
values of that feature evaluated, at every pixel belonging to that region, with an appropriate
weighting factor.

u ¼ 1−2� c�
X c

j¼0

X
i∈R j

f i−μ j

� �2
N � f max− f minð Þ2 ð17Þ

where c is the number of thresholds. Rj is the segmented region j. N is the total number of
pixels in the given image. fi shows the gray level of pixel i. μi is the mean gray level of pixels

Fig. 3 Thresholding points
determination
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Table 2 Pseudo-code of the hybrid method

1: Initialization

Initialize A(n) = {s, Nc, Ns, Nre, Ned, dattract, wattract, hrepellent, wrepellent, Ped, HM, HMCR, PAR, 

BW, NI} to the parameters of Table 1, set iteration number n = 0, gw = 0.02, gh = 0.3

2:

3: Repeat

4: LA select an action i based on the probability vector p
5: If selected action is BF procedure, then

6: Loop l = l +1 //Elimination-dispersal loop

7: Loop k = k + 1 //Reproduction loop

8: Loop j = j + 1 //Chemotaxis loop

9:
For i = 1, 2, . . ., s takes a chemotactic step for 

bacterium i as follows:

10:

Compute the value fitness function using Eq. 

(10). Let Pbest = g(i, j, k, l) to save this value 

since we may find a better cost via the run.

11:

Tumble: i) with 

(i), m = 1, 2, . . ., P, a random 

number on [-1, 1].

12: do MOVE

13: do SWIM

14: m = 0

15: While m < Ns

16: m = m + 1.

17: If g(i, j + 1, k, l) < Pbest, then

18:

Pbest = g(i, j + 1, k, l)

// where C(i) is the direction of the tumble for bacterium i
19: Else, m = Ns.

20: go to 10 to process the next bacterium.

21: End Loop

22:
Step 5. Perform reproduction and elimination-dispersal 

operation.

23: End Loop

24: End Loop

25:
If the maximum number of chemotactic, reproduction and elimination 

dispersal steps are reached, then go to 26. Otherwise, go to 6.

26: A(n) = Pbest

27: elseif selected action is HS then

28: Improvise a new harmony xnew as follows:

29: While j < n do

30: If r1 < HCMR then

31: xnew(j) = xa(j) where a
32: If r2 < PAR then

33:
xnew(j) = xa(j) r3 × BW

// r1, r2,r3 rand(0, 1)

34: If xnew(j) < l(j) then
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in the jth region. fmin and fmax are the minimum and maximum gray level of pixels in the given
image, respectively. Typically, u ∈ [0, 1] and a larger amount for u declares that the thresholds
are specified with better quality on the histogram.

Figure 5 shows segmented images using the proposed algorithm with 5, 4, and 3
thresholds, respectively. Average uniformity obtained from algorithms on these bench-
mark images with thresholds of 2, 3, 4, and 5 are tabulated in Table 3.

Due to the low ability in local search, GA algorithm leads to the worst results for
all cases. Moreover, obtained results from KPSO are not better than BFHS for all
cases. The reason is that occasionally KPSO converges toward a local optimum and
thus, obtained results are not appropriate. Although BFHS is responsible for exiting
from local optimum, it sometimes may not be successful.

Indeed, the inappropriate result of KPSO causes fast convergence of particles to a
local optimum. Obtained results from the proposed algorithm are better than other
algorithms in all cases. Basically, in the proposed algorithm, LA tries to perform an
approach which involves the best result according to the current conditions of the
algorithm in the optimization process. Hence, when the problem conditions are such
that an algorithm would not be able to improve optimization process, it is used less
by LA. As a result, both BF and HS algorithms abilities are utilized in the proposed
algorithm. It is observed in the course of experiments that the uniformity amount is
improved by increasing the number of thresholds for all algorithms.

5.2 Second set of experiments

In this part of experiments, a distinct study on the application of BFHS, BF, HS and
GA with two different objective functions (Kapur and Otsu) is made for multilevel
thresholding for image segmentation. For the entire test of satellite images that have
been considered (see Fig. 6), the BFHS performs as well as or is better than the BF,

(Continued)

35: xnew(j) = l(j)
// l is the lower bound

36: If xnew(j) > u(j)
37: xnew(j) = u(j)

// u is the upper bound

38: else

39:
xnew(j) = l(j) r × (u(j) - l(j))
// r rand(0, 1)

40: End Loop

41: Update the HS as xworst = xnew if f(xnew) > f(xworst)

42: If NI is completed or the stop criterion is met, jump to 43; else go to 28.

43: A(n) = xbest

44: Update probability vector p of LA using learning rule.

45: Obtain the minimum, Jmin, and median, Jmed of J(n).

46: Evaluate (n) via Eq. (15).

47: Until n < 2000
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HS, and GA. The experimental results provide evidence for outstanding performance,
accuracy and convergence of the proposed algorithm in comparison to other methods.

Fig. 4 Standard images which are used for testing the hybrid method. (a) Lenna, (b) Pepper, (c) Baboon, (d)
Hunter, (e) Map, (f) Cameraman, (g) Living room, (h) House, (i) Airplane, (j) Butterfly
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On the other hand, it is proved that the computational cost of BFHS is lower than
other evolutionary approaches used in the comparison Fig. 7.

Fig. 5 Thresholded images obtained by the hybrid method on Kapur thresholding (a)–(j) represents 3-level
thresholding, (a’)–(j’) represents 4-level thresholding, (a^)–(j^) represents 5-level thresholding
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Fig. 5 (continued)
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Although, satellite images often need segmentation in the presence of uncertainty, caused
due to the factors like highly dependent on environmental conditions, poor resolution, and
poor illumination, and have a very low spatial resolution. Owing to the presence of different
bands with different wavelength region in the satellite images, the efficiency of the algorithms
is affected and containing high resolution is one more cause of inefficiency. As a result, it leads
to computational complexity during segmentation.

In satellite images, the rate of information is very high because of that existing features in
the image is very dense. Due to that, the rate of change from one region to another region is
very rapid. Therefore, in the case of segmentation of remote sensing images or satellite images,
accurate segmentation is a very challenging task.

To achieve an accurate and fast segmentation of satellite images, BFHS based robust
technique with two most popular objective functions of multilevel thresholding are utilized
in this paper, which shows the effectiveness of their segmented results.

While estimating the segmented images, PSNR gives the similarity of an image against a
reference image based on the mean square error (MSE) of each pixel which was also reported
in [2]. The SSIM is used to compare the structure of original and thresholded image [24]. The
SSIM index is calculated from [2]. FSIM [34] is used to calculate the similarity between two
images, which can be calculated from [2].

5.2.1 Based on Kapur’s entropy

In this section, the results acquired for various satellite images using Kapur’s objective
function are discussed. Table 4 depicts the number of thresholds, objective values and
corresponding optimal threshold values obtained by BFHS, BF, HS and GA methods. It is
examined that the objective value evaluated by the proposed method yields highest among all
the techniques being compared to different satellite images. PSNR (dB) and MSE values
obtained using the proposed BFHS based method are listed in Table 5 and compared with the
result acquired using BF, HS, and GA methods respectively. Despite the quality estimation
factor using PSNR and MSE, algorithm efficiency (CPU Timing (in seconds)) and feature
measurement assessment parameters are also checked using FSIM and SSIM, which is shown
in Table 6. It can be clearly observed from Tables 4, 5 and 6 that the proposed BFHS-Kapur’s

Fig. 5 (continued)
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based technique offers superior objective values in comparison with other evolutionary
algorithms such as BF, HS, and GA.

Table 3 Comparison of uniformity of the proposed algorithm and four comparative approaches

Image T GA BF KPSO BFHS

Lenna 2 0.8844 0.9730 0.9728 0.9781

3 0.9164 0.9781 0.9783 0.9802

4 0.9198 0.9816 0.9811 0.9833

5 0.9269 0.9835 0.9834 0.9841

Pepper 2 0.8659 0.9719 0.9720 0.9729

3 0.8970 0.9773 0.9771 0.9785

4 0.9054 0.9784 0.9769 0.9793

5 0.9080 0.9814 0.9825 0.9825

Baboon 2 0.8534 0.9720 0.9731 0.9792

3 0.8705 0.9759 0.9752 0.9803

4 0.8812 0.9801 0.9772 0.9829

5 0.8944 0.9831 0.9838 0.9862

Hunter 2 0.8545 0.9722 0.9732 0.9793

3 0.8718 0.9765 0.9762 0.9812

4 0.8812 0.9804 0.9777 0.9832

5 0.8961 0.9839 0.9838 0.9862

Map 2 0.8546 0.9729 0.9732 0.9795

3 0.8732 0.9770 0.9764 0.9815

4 0.8837 0.9806 0.9786 0.9839

5 0.8996 0.9841 0.9838 0.9868

Cameraman 2 0.8591 0.9736 0.9736 0.9799

3 0.8751 0.9783 0.9767 0.9816

4 0.8850 0.9811 0.9794 0.9840

5 0.8996 0.9842 0.9840 0.9878

Living room 2 0.8592 0.9736 0.9746 0.9800

3 0.8801 0.9785 0.9767 0.9817

4 0.8868 0.9816 0.9798 0.9842

5 89.96 0.9844 0.9851 0.9880

House 2 0.8638 0.9738 0.9747 0.9801

3 0.8803 0.9796 0.9768 0.9820

4 0.8896 0.9826 0.9821 0.9842

5 0.9020 0.9845 0.9855 0.9880

Airplane 2 0.8641 0.9753 0.9750 0.9802

3 0.8810 0.9800 0.9771 0.9828

4 0.8924 0.9827 0.9826 0.9846

5 0.9073 0.9848 0.9866 0.9882

Butterfly 2 0.8641 0.9753 0.9750 0.9802

3 0.8808 0.9800 0.9772 0.9829

4 0.9031 0.9828 0.9873 0.9850

5 0.9124 0.9849 0.9874 0.9885
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5.2.2 Based on between-class variance

The performance evaluation of Otsu approach for numerous satellite images is
discussed. The number of thresholds, objective values, and corresponding optimal
thresholds determined using proposed BFHS technique are listed in Table 7, and
results are compared with those obtained using BF, HS, and GA methods respectively.
PSNR (dB) and MSE values obtained using the proposed BFHS based method are
listed in Table 8 and compared with the results acquired using BF, HS and GA
methods, respectively. High PSNR values might be obtained from methods that
minimize MSE. Indeed, PSNR gives the similarity of an image against a reference
image based on the MSE of each pixel. Apart from quality measurement using PSNR
and MSE, algorithm efficiency (CPU time) and feature measurement assessment
(FSIM and SSIM) are also checked and presented in Table 9. It can be evidently
realized from Tables 7, 8 and 9 that the proposed BFHS-Otsu’s based technique
provides higher objective values than the other evolutionary algorithms like BF, HS,
and GA. Figure 8 shows the segmented images for different threshold levels (m = 2–5)
obtained for BFHS-Otsu, BF-Otsu, HS-Otsu, and GA-Otsu. Figures 9, 10, 11 and 12
show the segmented images for various threshold levels (m = 2–5) obtained for BFHS-
Otsu.

5.3 Convergence and computational cost

The convergence curves of BF-Otsu, HS-Otsu, and BFHS-Otsu algorithms have been
plotted for the Lenna image for various threshold levels (m = 2–5), as shown in
Fig. 13. Convergence curves are fairly identical in their plots of HS, BF, and BFHS
algorithms. These show that for different thresholds values, BF algorithm converges at
the slowest speed and locates local optima only. The HS has fastest convergence
speed but fails to locate the global optima. The BFHS not only has fast convergence
but also managed to locate the true global optima.

Fig. 6 Five different satellite images are used in the experiments. (a–e) represent original satellite images, (f–j)
illustrate corresponding histogram image
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Due to the fact that several learning algorithms are sensitive and dependent on the initial
value of parameters, it is worth taking this dependency into account. In this experiment, initial
values for all methods are initialized in different values while the same histogram is considered
for the approximation task. Two sets of randomized values using a uniform distribution were
generated to set the initial values of the BF, HS, and BFHS.

Fig. 7 Results of 1st test satellite image using BFHS, BF, HS and genetic algorithm (GA) with Kapur’s entropy.
(a–d) 2-level to 5-level thresholding based segmented image with the best thresholds obtained from BFHS
algorithm using Kapur’s entropy criterion, (e–h) 2-level to 5-level thresholding based segmented image with the
best thresholds obtained from BF algorithm using Kapur’s entropy criterion, (i–l) 2-level to 5-level thresholding
based segmented image with the best thresholds obtained from HS algorithm using Kapur’s entropy criterion and
(m–p) 2-level to 5-level thresholding based segmented image with the best thresholds obtained from GA using
Kapur’s entropy criterion
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In the BFHS case, the LA algorithm does not require initialization as it works with
random initial values; however, in order to assure a valid comparison, the same initial
values are considered for the BF, the HS, and the BFHS methods. Figure 14 shows a
clear pixel misclassification in some sections of the image as a consequence of such
sensitivity.

Fig. 8 Results of 1st test satellite image using BFHS, BF, HS and GAwith Otsu entropy. (a–d) 2-level to 5-level
thresholding based segmented image with the best thresholds obtained from BFHS algorithm using Otsu’s
entropy criterion, (e–h) 2-level to 5-level thresholding based segmented image with the best thresholds obtained
from BF algorithm using Otsu’s entropy criterion, (i–l) 2-level to 5-level thresholding based segmented image
with the best thresholds obtained from HS algorithm using Otsu’s entropy criterion and (m–p) 2-level to 5-level
thresholding based segmented image with the best thresholds obtained from GA using Otsu’s entropy criterion
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The experiment aims to measure the number of required steps and the computing time spent
by the Expectation-Maximization (EM) [32], the (Levenberg-Marquardt) LM [30] and the LA
algorithm needed to calculate the parameters of the Kapur and Otsu in satellite images. All
experiments consider four threshold levels (m = 2–5). Table 10 shows the averaged measure-
ments as they are obtained from 20 experiments.

Fig. 9 Results of 2nd test satellite image using BFHS (a–d) 2-level to 5-level thresholding based segmented
image with the best thresholds obtained from BFHS algorithm using Kapur’s entropy criterion, (a’–d’) 2-level to
5-level thresholding based segmented image with the best thresholds obtained from BFHS algorithm using
Otsu’s entropy criterion

Fig. 10 Results of 3rd test satellite image using BFHS (a–d) 2-level to 5-level thresholding based segmented
image with the best thresholds obtained from BFHS algorithm using Kapur’s entropy criterion, (a’–d’) 2-level to
5-level thresholding based segmented image with the best thresholds obtained from BFHS algorithm using
Otsu’s entropy criterion
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It is evident that the EM is the slowest to converge (iterations), and the LM shows the highest
computational cost (elapsed time) because it requires complex Hessian approximations. On the
other hand, the LA shows an acceptable compromise between its convergence time and its
computational cost.

Fig. 11 Results of 4th test satellite image using BFHS (a–d) 2-level to 5-level thresholding based segmented
image with the best thresholds obtained from BFHS algorithm using Kapur’s entropy criterion, (a’–d’) 2-level to
5-level thresholding based segmented image with the best thresholds obtained from BFHS algorithm using
Otsu’s entropy criterion

Fig. 12 Results of 5th test satellite image using BFHS (a–d) 2-level to 5-level thresholding based segmented
image with the best thresholds obtained from BFHS algorithm using Kapur’s entropy criterion, (a’–d’) 2-level to
5-level thresholding based segmented image with the best thresholds obtained from BFHS algorithm using
Otsu’s entropy criterion
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Fig. 13 Convergence curves of
BF, HS, and BFHS algorithms for
different threshold levels
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5.4 Time complexity

The time complexity of BFHS is based on the complex nature of its inline processes, namely, the
LA-based switching, calculating the quality of the segment, applying BF, and applying HS.
Assuming T1 is the number of iterations taken by the BF to converge, and T2 is the number of
iterations taken by the HS to converge. Then the complexity of LA-based switching is O(s T1 T2Nc

Np Nd), while the complexity of calculating the quality of a partition will depend on the time
complexity of the validity index which is some constant, q, multiplied by Np for all the indices used
in this paper. Therefore, the complexity of this step will be O(q T1 T2Np). The parameters T1, T2,Nc,
s, and ξ can be fixed in advance. Typically, T1, T2,Nc, s, ξ,Nd≪Np. Letα be themultiplication of T1,
T2,Nc, s,Nd (α= s× T1 × T2 ×Nc×Nd). Ifα≤Np then the time complexity of BFHSwill be O(Np).
However, if α≈Np, then the time complexity of BFHS will be O(Np

2).

Table 10 Average iterations and time requirements of the EM, the LM, and the LA algorithm

Iterations Image 1 Image 2 Image 3 Image 4 Image 5

Elapsed time

EM 1855 1833 1861 1870 1925

7.06 s 4.42 s 5.58 s 5.71 s 10.23 s

LM 985 988 945 958 1028

10.48 s 6.62 s 10.19 s 10.43 s 16.96 s

LA 970 991 951 951 1009

3.92 s 2.51 s 3.03 s 3.1 s 5.65 s

Fig. 14 Segmented images after applying the BF, the HS, and the BFHS algorithms with different initial
conditions
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6 Conclusion

In this paper, an automatic image multi-threshold approach based on the combination of Bacterial
Foraging (BF) optimization algorithm, Harmony Search (HS) algorithm and Learning Automata
(LA) is proposed. In this approach, the initial population is produced by combining chaotic systems
with opposition-based learning routine to improve global convergence rate. In this paper, BFHS, BF,
HS and GA algorithms were exploited to maximize Kapur’s entropy and between-class variance
(Otsu) separately to find optimum multilevel thresholds. The results suggest that the hybrid
algorithm (BFHS) with Kapur’s and Otsu’s entropy criterion can be efficiently used in multilevel
thresholding segmentation for two set of images, namely standard and satellite image.

The numerical illustrations and fidelity assessments for almost every sample images, considered
in this paper, demonstrate that the BFHS-Kapur’s and BFHS-Otsu’s outperform other competitive
algorithms with each objective functions. The best part of BFHS is its computational efficiency, the
accuracy of segmentation. Moreover, experimental evidence shows that LA algorithm has an
acceptable compromise between its convergence time and its computational cost when it is
compared to the Expectation-Maximization (EM) method and the Levenberg-Marquardt (LM)
algorithm. The results have shown that the stochastic search accomplished by the LA method
shows a consistent performance with no regard to the initial value and still indicating a greater
chance to reach the global minimum.

The study also explores the comparison between the two objective functions with each optimi-
zation technique, which reveals that Kapur’s entropy is superior for each sample images. The
advantage ofKapur’s entropy is that it uses a global and objective property of the histogram; because
of its general nature, this criterion can be used for segmentation purpose. The validity and accuracy
of the proposed BFHS based multilevel thresholding technique are reported both qualitatively and
quantitatively. To measure the performance of proposed approach, uniformity, best objective value,
MSE, SD, FSIM, SSIM, and PSNR, which assesses the segmentation quality, considering the
coincidences between the segmented and the original images, has been used.

It is concluded that the order of CPU runtime from low to high are sorted in the order of
BFHS <HS<BF <GA. This is due to the fast convergence rate of modified search initializa-
tion that the input parameters such as the number of iteration, the number of population size
used are lesser than BF, HS, and GA.

The experimental results are very promising and encourage future research for applying
BFHS to complex image processing application such as satellite image enhancement, satellite
image denoising, and optimization based image classification and also in various computer
vision problems. The performance of few more objective functions such as minimum cross
entropy and Renyi’s entropy can also be estimated using BFHS techniques for a standard set of
images as well as for satellite images to check the robustness of this algorithm for multilevel
thresholding problem.
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