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a b s t r a c t 

It is prevalent that the Pareto-based dominant framework is inefficient in non-dominated 

sorting because the performance sharply deteriorates when there are numerous weak 

dominance relations. In order to address this issue, the paper presents a novel ranking 

strategy called Global Margin Ranking (GMR) which deploys the position information of 

individuals in objective space to gain the margin of dominance throughout the population. 

The method not only considers the distribution of population, but also incorporates the as- 

sociated information of individuals, without incurring user-defined parameters. Moreover, 

in view of the challenges faced by Multi-objective Particle Swarm Optimization (MOPSO) 

in selection of gBest and pBest , we present an innovative strategy for selecting gBest and 

pBest by integrating the GMR and the individual’s density information. We compare the 

GMR method with a variety of other ranking methods in terms of the distribution of ranks, 

the ranking landscape and convergence of the evolutionary process. The relatively exten- 

sive experimental results on some benchmark functions show that MOPSO/GMR performs 

better than those specialized MOEAs. 

© 2016 Published by Elsevier Inc. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Particle swarm optimization (PSO) [23] is one of the most well-known population-based metaheuristics which imitates

the behavior of a flock of birds foraging in nature. In order to locate the regions of promising solutions, the particles in the

swarm fly through the search space by interacting with each other to detect the global and personal information called gBest

and pBest that direct their motion. The PSO with a single objective has a simple but a speedy convergence ability applied

extensively in optimization and scheduling, and acquires approving results. Whereas there always exist multi-objectives in

scientific research and practical engineering [24,38,44] , it is usually tough or even unable to get a desired solution with con-

ventional mathematical programming approaches because of the multi-objective problems (MOPs) either mutually restricted 

or having a discrete or non-convex optimal. 

Then, the application of PSO for MOP has received increased attention. Coello [10] proposed MOPSO by bringing the PSO

into multi-objective optimization for the first time. By drawing on the concept of decomposition, Al Moubayed [2] developed

a D 

2 MOPSO, and Cai et al. [13] presented a decomposition-based MOPSO. Cabrera et al. [8] presented a Micro-MOPSO which

characterized for using a very small population size. 
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However, it will encounter challenges and predicaments when expanding the PSO to solve MOPs. Since the evolutionary

mechanism has been altered, we do not obtain a bare single optimal solution but a solution set. There exist some differences

between MOPSO and the standard PSO in both updating and preserving the solution set, as well as global best ( gBest ) and

history best ( pBest ) particles adoption. In particular, there is no absolute optimal solution for gBest . 

Nowadays, many researchers tend to study Pareto-based optimal methods [7] in the field of MOP. By constructing as well

as updating the Pareto solution set of evolutionary population, the constructed Pareto non-dominated set may climb toward

the true optimal front. However, Pareto-based dominant framework will gain approving results when the dominance relation

is distinct in objective space, whereas it will correspond to very poor performance when there are lots of weak dominance

relations (e.g., the individuals p 2 and p 4 in Fig. 2 ), or, when multi-modal and deceptive problems have an isolated optimum

[15] . 

In view of this situation, there are several types of Pareto dominance processing techniques listed as follows: 

• Randomized schemes, such as roulette wheel selection [1] , which would lead to low efficiency and poor caliber of solu-

tions; 
• Relaxed Pareto-based dominance methods, such as ε-dominance [25] , r -dominance [5] , grid-based approach [42] etc. This

sort of approaches does not address the deficiency of Pareto-based methods; 
• Reference-point-based dominance methods [20,36] , which utilizes the information of reference point to regulate the

solutions to the Pareto front. However, its excessive reliance on the reference point may bring stochastic and probabilistic

problems; 
• Non-Pareto dominance methods, such as Average Ranking (AR) [6] , maxmin fitness [4] , Relation Favor (RF) [18] , Prefer-

ence order ranking (PO) [28] , Global Detriment (GDR) [19] etc., which also have some flaws that will be discussed in

Section 3.1 . 

In order to overcome the inefficiency of existing Pareto-based dominant framework, this paper proposes a new ranking-

based dominant mechanism. The main contributions of this paper are listed as follows. 

• A novel sorting scheme called GMR is proposed to simplify and accelerate the process of dominance relation assessment.

GMR uses the margin information of particles among the whole population where not only the individual information

has been weighed in but also the population distributivity is concerned; 
• A density estimator of particle is designed, which takes into account the distance among the particles in the swarm; 
• In light of GMR, a succinct and efficient gBest and pBest selection strategy is conducted for MOPSO. 

The remaining part of the paper proceeds as follows: Section 2 surveys the theoretical background of multi-objective

optimization problem and multi-objective PSO algorithm. Section 3 proposes and details the proposed Global Margin Rank-

ing along with global best and history best selection strategy. Some empirical results on the complexity of the algorithm

implemented are also given. Section 4 lays out the analysis of the convergence. Section 5 compares the efficiency of the

ranking methods. Section 6 discusses the numerical experiments. Finally, Section 7 draws the conclusions and proposes the

future work. 

2. Background details 

2.1. Multi-objective optimization problems 

Without loss of generality, a general MOOP can be described mathematically as follows: 

min F (X ) 
X ∈ �

= ( f 1 (X ) , f 2 (X ) , . . . , f M 

(X )) 
T 

(1)

{ 

X = ( X 1 , X 2 , . . . , X n ) 
T 

F : � → R 

M 

f i : � → R 

n (i = 1 , 2 , . . . , M) 

where X denotes to the decision vector, the objective function vector F(X) includes M ( M ≥ 2) objectives, � is the feasible

set, R 

n refers to the decision space, R 

M represents the objective space, and f : R 

n → R 

M is the objective mapping function. 

Pareto dominance: Given two vector x , y ∈ R 

n and their corresponding objective vectors F(x), F(y) ∈ R 

M , x dominates y

(denoted as x � y ) if and only if ∀ i ∈ (1 , 2 , . . . , m ) , f i ( x ) ≤ f i ( y ) and ∃ j ∈ (1 , 2 , . . . , m ) , f i ( x ) < f i ( y ) . 

Pareto optimal solution: A decision vector x ∈ R 

n is said to be Pareto optimal , if 
 ∃ y ∈ R 

n : y � x . 

Pareto set: The set of Pareto optimal solutions (PS) is defined as: P S = { x ∈ R 

n | 
 ∃ y ∈ R n : y � x } . 
Pareto front: The Pareto front (PF) is defined as: P F = { F ( x ) | x ∈ P S} . 

2.2. PSO algorithm 

In PSO algorithm, each particle represents a potential solution, which utilizes two crucial forms of information in the

decision process. The algorithm evolve a swarm of particles towards the optimal solution(s) by iteratively updating the
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Fig. 1. A framework of multi-objective PSO algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

velocities and positions of the particles based on Eqs. (2) and (3) : 

v i (k + 1) = ω · v i (k ) + c 1 · r 1 · ( P i − x i (k )) + c 2 · r 2 · ( P g − x i (k )) (2) 

x i (k + 1) = v i (k + 1) + x i (k ) (3) 

where, i = 1 , 2 , 3 . . . N is the running index of particles, and N denotes the size of population; v i (k ) represents the velocity

of particle i in k th dimension. Similarly, x i ( k ) denotes the position of particle i in k th dimension. ω is the inertia weight and

the constants c 1, c 2 are the acceleration coefficients. r 1 and r 2 are random values uniformly distributed in [0, 1]; P i is the

personal best position found so far by particle i while P g is the global best position found so far in the entire swarm. 

The deployment of PSO algorithm for MOP problems has certain advantages: 

• Similar to genetic algorithm (GA) and other evolutionary algorithms (EAs), PSO is also based on the sizable population

of individuals in solution space to hunt for non-dominated solutions; 
• Since the particle swarm trails after the direction of the best position by itself and the global optimal particle which in

some sense, has “memory”. In that case, it has a considerable efficiency. A schematic framework of MOPSO is shown in

Fig. 1 . 

As can be seen from Fig. 1 , the MOPSO differ from PSO in that it contains the processes of construction and maintenance

of the external archive. Also it has a completely different mechanism in terms of the selection on gBest and pBest . 

Due to the inherent characteristics of tracking feature on particle swarm, employing the optimal particle selection mech-

anism of PSO into MOPSO directly will make particles track the dominated solutions. As a result, the algorithm, which will

march towards the local area of Pareto front, will be trapped into local optimum. With regard to this, when expanding the

PSO for MOPs, we have to remove the obstacles in selecting optimal guides including gBest and pBest . On the other hand,

for the external archive, a congested and chaotic set of non-dominated solutions would make the output of the algorithm

extremely non-uniform, which often makes the results impractical. 

Based on these ideas and motivations, a ranking-based MOPSO is investigated and discussed in the following sections.  
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Fig. 2. A sketch map on global margin ranking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. The proposed algorithm 

3.1. Global margin ranking strategy 

As mentioned in Section 1 , the current approaches in drawing non-inferior individuals in multi-objective evolutionary

algorithms (MOEAs) mainly include Pareto-based dominance strategy [7] , relaxed dominance [5,25] which has the essence

of the Pareto-based relations, and the up-to-date non-Pareto ranking [4,6,18,19,28] . In a study on ranking methods, Mario

et al. [19] proposed a fitness assignment method named GDR which is an acceptable sorting approach to some extent.

However, GDR and other non-Pareto methods have general disadvantages in the following aspects: 

• The ranking values of extreme points (away from one objective but incline to the other) can be too large and thus

these points are likely to be abandoned, even though they have a profound meaning in multi-objective optimization and

decision-making [14] because they are important reference points for estimating not only the range of objective values

and Pareto front but also the uniformity of the population; 
• The calculation of AR [6] is relatively simple, but lacks diversity in ranking, and thus will bring great pressure to the sub-

sequent selection, as well as affect the calculation results, since sorted values obtained are at a concentrated interval or

there exist plenty of equal ranking values. In an analysis of preference relations, Lopez [26] revealed that average ranking

and preference order relation stress the solutions far from the “knee” region while the generally accepted assumption is

that the most interesting solution by decision maker is the knee of the Pareto front (a “knee” region is around the region

of maximum bulge on the Pareto curve). 

From the definition of dominance, this paper utilizes the individual position information in the objective space to obtain

the margin of dominance in the entire population. By using the information of margin, we can get the global dominance

value of the individual in the solution space, which takes into account how significant the margins among solutions are. In

global margin ranking, we acquire the global general ranking by combining the individual’s density information throughout

the population for evaluating the quality of individuals to perform optimization. The definition of global margin ranking is

given below. 

Definition 1 (global margin rank) . Define the GMR for individual as the sum of the difference of all objective values, as

described in Eq. (4) . 

GMR ( X i ) � 

∑ 

X i 
 = X j 
max 

( ( 

M ∏ 

m =1 

f m 

(X i ) −
M ∏ 

m =1 

f m 

( X j ) 

) 

, 0 

) 

(4)

where, X i and X j are two different solutions, M is the number of objectives. 

With the concept of Pareto dominance, the smaller GMR ( X i ), the more solutions X i will dominate. According to Eq. (4) , for

any two individuals in space, X i is superior to X j if and only if GMR ( X i ) < GMR ( X j ). If GMR ( X i ) = 0, X i will not be dominated

by any other individual in solution space.  
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Fig. 3. A graphic illustration on sorting schemes (numbers in the brackets indicate the ranking calculated by AR, GDR and GMR respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen from Definition 1 that this framework integrates every objective with all individuals’ information to get the

ranking values. For solution X i and X j , 
∏ M 

m =1 f m 

( X i ) < 

∏ M 

m =1 f m 

( X j ) indicates X i is superior to X j in every objective. Moreover,

it should have ( 
∏ M 

m =1 f m 

( X j ) −
∏ M 

m =1 f m 

( X i ) ) for the value of GMR ( X j ), which can gain the part that X j is inferior to X i . By

comparing with the solutions pairwise in the objective space, we can get the sum of parts whose solutions are superior or

inferior to each other. For a more intuitive explanation and comparison, we take GDR and AR as the counterpart, and give a

brief illustration through Fig. 2 . 

Suppose there are two objectives f 1 and f 2 , and the eight particles p 1 − p 8 . Specifically, the global margin ranking for par-

ticle p 4 is GMR ( P 4 ) = 

∑ 

max (( 
∏ 2 

m =1 f m 

( P 4 ) −
∏ 2 

m =1 f m 

( P j )) , 0)( j = 1 , 2 , 3 , 5 , 6 , 7 , 8) , since 
∏ 2 

m =1 f m 

( P 4 ) < 

∏ 2 
m =1 f m 

( P j )( j =
1 , 2 , 3 , 5 , 6 , 7 , 8) , from which we can derive GMR ( P 4 ) = 0 . Apparently, P 4 dominates all the remaining individuals. It can

be calculated easily that the GMR [1 : 8] = [2 . 25 , 1 . 25 , 6 . 25 , 0 , 35 , 28 , 10 , 5 . 25] with the sort order p 4 < p 2 < p 1 < p 8 < p 3 <

p 7 < p 6 < p 5 ; However, GDR [1 : 8] = [2 . 5 , 1 . 75 , 2 , 0 . 375 , 3 . 125 , 2 . 875 , 3 . 625 , 5 . 25] where the sort order is p 4 < p 2 < p 3 < p 1
< p 6 < p 5 < p 7 < p 8 , and AR [1 : 8] = [6 , 5 , 6 , 4 , 9 , 7 , 7 , 7] with the sort order p 4 < p 2 < p 3 = p 1 < p 6 = p 7 = p 8 < p 5 . Fig. 3

gives the graphic illustration upon this scenario. 

It can be seen from Fig. 3 that the GDR method grades p 8 (extreme point) in the last seat and will eliminate it

while the proposed GMR method will retain it. On the other hand, it can be proved that the AR method generates du-

plicate ordering value easily which will bring great selection pressure. Moreover, it is apparent that the GMR has a better

distribution. 

3.2. Distribution preserving combined with GMR 

One of the desired targets of MOO is to obtain the candidates as many as possible with a broad and uniform distribution

which is a calibration on the merits of the algorithm [12] . Many researchers have carried out the research to achieve this

point. In previous studies on MOEAs, the main approach of maintaining the distribution of population was niche technology

which drew the conception of “like attracts like” [32] . The recent methods are used mainly in the following ways: clustering

technique which uses the dissimilarity or similarity between individuals [29] , crowding distance methods [16,30] and cell-

based (or grid-based) schemes [41] as well as entropy [40] which are based on density information of individuals. Entropy

is a measure of distribution on randomness and dispersion. The more dispersed the solutions, the bigger the entropy is; on

the contrary, the more centralized, the smaller the entropy is. Therefore, entropy-based approach can maintain the diversity

of population to some extent. However, from the definition of entropy it can be seen that this technology mainly focuses on

the whole population without characterizing the relations among individuals, and lacks the ability of regulating in diversity

and distribution in evolution process. Crowding distance and grid-based approaches mostly calculate the Euclidean distance

pairwise, using the density information to conserve the diversity. This category of methods somewhat takes into account

the relationship between individuals. 

In this paper, we use the sum of Euclidean distance of the individual to the rest of the items in decision space as a

measurement of aggregation of individuals in solution space, and give the definition of the global density:  
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Fig. 4. Schematic diagram of the top 50% strategy with global general ranking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 2 (global density) . 

GD ( X i ) = 

pop ∑ 

j = 1 

i 
 = j 

d i, j (5)

Here, GD ( X i ) represents the global density of particle X i , d i , j is the Euclidean distance between X i and X j . The greater the

value of GD ( X i ) is, the fewer the particles around X i are, with a greater difference among individuals and a better distribu-

tion. 

Definition 3 (global general ranking) . 

GGR ( X i ) � 

GMR ( X i ) 

GD ( X i ) 
(6)

Here GGR ( X i ) denotes the global general ranking of X i . The smaller the GGR ( X i ) is, the more dominance X i has, which also

indicates that the decent GD of X i has a better distribution. According to Global General Ranking obtained by Eq. (6) , we

adopt a strategy that puts the first half into the external archive and eliminate the second half, in order to get the optimal

front of the population. The process continues until the algorithm terminates. 

As we can see from Fig. 2 , by using the Eqs. (5) and (6) to gain the distribution information and

global general ranking of each particle D ( X i ) = [16 . 31 , 15 . 25 , 13 . 87 , 18 . 30 , 19 . 60 , 14 . 87 , 20 . 16 , 26 . 50] , GGR ( X i ) =
[0 . 14 , 0 . 08 , 0 . 45 , 0 , 1 . 79 , 1 . 88 , 0 . 50 , 0 . 20] , if we adopt the strategy of eliminating the later 50%, the p 4 , p 2 , p 1 , p 8 will

be retained, which have both distribution and uniformity. A schematic illustration is shown in Fig. 4 . 

3.3. Elitist selection and external archive maintenance 

3.3.1. Elitist selection 

The selection of particle optimal position and global optimal position is the leading aspects in PSO, and particles in the

swarm are tracking these positions with iterating to optimize. In single-objective PSO, gBest and pBest can be determined

simply and uniquely, whereas in MOPSO there are numerous potential feasible solutions which are unable to be distin-

guished through fitness values. Adopting which selection mechanism is the key to find or approach the optimal boundary.

The choosing of pBest is relatively simple, and the mainstream research is Pareto-based dominance [3] , which adopts non-

dominated particle between current position and previous best position as pBest . If do not dominate each other, then select

them randomly. 

The selection of gBest is relatively complicated, and many researchers have studied it, mainly in the following categories.

• Stochastic selection [10] . For non-dominant individuals stored in external archive, random picking is the simplest way.

But this will be prone to raise a greater selection probability in regions where particles are concentrated, which is not

conducive to the distribution among optimal front, and also drops the diversity of the population;  
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• Crowding density [13,30] . Calculate the Euclidean distance between current particles and non-inferior solutions in exter-

nal archive, and then choose a particle with minimum distance as gBest . 

In this paper, we present a novel and efficient method for selecting gBest and pBest based on the GMR value and global

density of particle. 

gBest : As can be seen from the analysis in Sections 3.1 and 3.2 , for the particle with the smallest global general ranking

value which both have domination and distribution, picking it as the gBest can be more close to the real optimal

boundary to speed convergence, and avoid being trapped into local optimum. 

pBest : Compare the GGR value of current particle with previous optimal one. If GGR value of current particle is smaller

than previous optimal one, then select the current one as pBest ; otherwise, remain the previous one. 

The optimal particles selection strategy using GMR and global density information has a high efficiency which is compa-

rable with standard PSO, and only needs to evaluate the ranking value and density information, so the proposed algorithm

can have a considerable convergence speed similar with PSO. 

3.3.2. External archive maintenance 

Preserving and maintaining non-dominated solutions in a fixed size is an important part of the MOPSO, the general ap-

proach is to establish an external archive to lodge the non-dominated solutions. When the number of non-inferior solutions

reach the predetermined value, it needs to be trimmed to improve the search efficiency of the algorithm and maintain the

diversity of solutions so as to offer a greater search space. Adopting a suitable gBest can diversify the external archive, which

can push the algorithm to obtain a more uniform optimal front. There are few approaches focusing on archiving, such as

clustering-based schemes [21,29] , niching-based (or crowding) techniques [33] etc. 

This paper sets the size of external archive to N which is also the size of the population, by using the global general

ranking in definition 3 , we fetch the top 50% solutions ( N /2) in ascending order into the external archive. Since the distri-

bution of entire population has changed in external archive, it is necessary to re-calculate the global general ranking to get

N to gain the optimal front. 

3.4. Procedure of the proposed MOPSO/GMR algorithm 

According to the framework of general PSO, combined with the global margin ranking strategy, MOPSO/GMR algorithm

is described as Algorithm 1 . 

3.5. Computational complexity analysis 

Algorithmic complexity signifies the execution time as the order of magnitude with the increasing of scale on input.

Here, we detail the time complexity on some major scenarios. 

For MOPSO/GMR, the major computational costs lie in the calculation of GMR which depicted in Definition 1 . The

complexity of GMR is O ( MN 

2 ), the computation of GGR requires O ( N 

2 ) computations. To obtain pBest and gBest requires

O ( N ) computations. External archive maintenance requires O ( MN ) computations. Therefore, the overall complexity of the

MOPSO/GMR is O ( MN 

2 ). 

4. Convergence analysis 

Generally, the convergence of an MOEA can be considered from two aspects. One is convergence in a finite time which is

the ideal situation; the other is convergence with iteration t → ∞ which has a significant guidance for the design of MOEA.

Rudolph [31] gives a definition of convergence which is shown in Eq. (7) . 

lim 

t→∞ 

( | P F know 

(t) | − | P F true ∪ P F know 

(t) | ) = 0 (7) 

with probability 1 as t → ∞ . 

The convergence analysis of PSO has been studied by researchers. By using the discrete time dynamic system theory,

Trelea [37] discussed the dynamic behavior and the convergence of the PSO algorithm. Jiang [22] analyzed the PSO algo-

rithm determined by parameter tuple { ω, c 1, c 2} using stochastic process theory, and offered the convergent condition and

corresponding parameter selection to guarantee its convergence. Sun [35] proved the fixed point theorem of the quantum-

behaved PSO converges to the global optimum in probability. In addition, Chakraborty [9] first analyzed how the control

parameters { ω, c 1, c 2} impact the convergence of general Pareto-based MOPSO, and deduced the conditions which ensure

the algorithm converge to the center of Pareto front. 

In single-objective optimization, since the fitness of each individual can be obtained specifically and definitely, it is pos-

sible to compare their values, and then acquire their certain numerical relations. Therefore, their set of feasible solutions is

a totally ordered set, that is, the relation between individuals is totally ordered relation. Whereas in MOP, the relations of

individuals is not a totally ordered set, and there does not exist the numerical relation but the dominance. So their feasible

solution is a partially ordered set. 
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Algorithm 1 Pseudo code of MOPSO/GMR. 

INPUT: pop. size N, external archive size N, 

obj. number M, max iteration t 

OUTPUT: optimal front 

BEGIN 

Step 1: Initialization: 

t ← 0 

randomly generate N particles in domain; 

initialize algorithm parameters; 

initialize the external archive, set null; 

set the particles’ current position as pBest; 

Step 2: Evolutionary Computation: 

i. Global Margin Ranking calculation: 

using the Definition 1 to get the ranking values; 

ii. Global Density calculation: 

using the Definition 2 to gain the density 

information of each particle; 

iii. Global General Ranking calculation: 

using Definition 3 to get the general ranking of each particle; 

Step 3: Non-inferior solution selection: 

using the Elitist selection strategy aforementioned in Section 3.3 ; 

add the obtained non-inferior solutions into external archive; 

Step 4: Updating: 

using the Eq. (2) to update velocity, Eq. (3) to update position; 

Step 5: external archive maintenance 

using the strategy above-mentioned in Section 3.3 

to maintenance the external archive; 

Step 6: Meet the terminal conditions? 

No, t ← t + 1 , goto Step 2; 

Yes, end, output optimal front in external archive. 

END 

 

 

 

 

 

 

Specifically, the proposed MOPSO/GMR has a quantitative characteristic both on optimal particle selection and iteration,

which signifies that the MOPSO/GMR has a totally ordered feasible solutions. 

Theorem 1. A non-inferior set with Global General Ranking is a totally ordered set. 

Proof. Consider a MOOP with objectives of M , population size is N , the codomain on each objective is [0, �1 ], [0, �2 ]... [0,

�M 

], respectively. 

For any particle X i , it can be quantified specifically according to Definition 1 GMR ( X i ) =∑ 

X i 
 = X j max (( 
∏ M 

m =1 f m 

( X i ) −
∏ M 

m =1 f m 

( X j )) , 0) , we have f m 

( X i ) ∈ [0, �i ]. 

Therefore, 
∏ M 

m =1 f m 

( X i ) ∈ [0 , �1 �2 · · ·�M 

) ( 

M ∏ 

m =1 

f m 

( X i ) −
M ∏ 

m =1 

f m 

( X j ) 

) 

∈ 

(
− �1 �2 · · ·�M 

, �1 �2 · · ·�M 

)

max ( 

( 

M ∏ 

m =1 

f m 

( X i ) −
M ∏ 

m =1 

f m 

( X j ) 

) 

, 0) ∈ [0 , �1 �2 · · ·�M 

) 

∴ GMR ( X i ) ∈ [ 0 , (N − 1) �1 �2 · · ·�M 

) (8)

Similarly, according to Definition 2 , it follows 

d i, j = 

√ √ √ √ √ √ 

M ∑ 

m = 1 

i 
 = j 

( f m 

( X i ) − f m 

( X j )) 
2 
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Fig. 5. Ranking landscape in 1st generation 1 . (For interpretation of the references to color in the text, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have d i, j ∈ [0 , 
√ 

�2 
1 

+ �2 
2 

+ · · ·�2 
M 

) [ 
0 , 

√ 

�2 
1 

+ �2 
2 

+ · · ·�2 
M 

)
⊂

[
0 , 

√ 

M max ( �1 , �2 · · · , �M 

) 
)

Let �max = max ( �1 , �2 · · · , �M 

) 

d i, j ∈ 

[
0 , 

√ 

M �max 

)
∴ GD ( X i ) ∈ 

[
0 , (N − 1) 

√ 

M �max 

)
(9) 

According to Eqs. (8) and (9) , we obtain 

GGR ( X i ) ∈ [0 , + ∞ ) (10) 

namely, for any particle X i in non-inferior set, it has a certain corresponding value within the range of real numbers. �

According to the specialized literature and Theorem 1 , it can be verified that the proposed MOPSO/GMR has a similar

convergence as PSO. 

5. Ranking efficiency analysis 

One of the eligible criterion to assess the quality of a ranking approach is the ranges and shapes of the obtained solutions.

A satisfying ranking approach should depend upon the optimal front as much as possible with a uniform distribution in

decision space. In [19] the authors used relative entropy [11] to measure the distribution of approaches including Pareto-

based one. However, the metric of relative entropy just detects the range of ranks but not the value or distribution in the

population. 

To measure the capability of the proposed ranking scheme guiding the population towards the optimal front, we make

a visual comparison with other three frequently used ranking methods: GDR [19] , AR [6] and non-dominated sorting (NDS)

[16] . 

Similar to the fitness distribution used in mono-objective optimization, we visualize the procedure of how a ranking

method guiding the stage and process of evolution during the iteration in objective space. Here, we investigate the distribu-

tion of ranks for different ranking schemes with a tangible population upon a specific problem. By integrating the GDR, AR

and NDS into MOPSO, incorporate with the proposed gBest and pBest selection strategy, we implement these candidates to

ZDT1 and ZDT3 which are described in Appendix A . We employ the ZDT1 and ZDT3 mainly for the demonstrability of the

ranking landscapes. 

In order to eliminate the impact of randomization, as well as ensuring the homogeneity, a preserved population, which

is generated by a randomized algorithm, was adopted as all the initial populations for ranking candidates. Then we generate

the ranking landscape by plotting decision variables against the ranks assigned by the ranking schemes in search space. Due

to the similarity of the results earned on test instances, and the identical convergence for each algorithms, the demonstra-

tions are only in 1st and 5th generation. The obtained ranking landscapes are shown in Figs. 5 and 6 . Since we adopt the

same initial population, the landscapes in 1st iteration are virtually identical on ZDT1 and ZDT3 which are shown in Fig. 5 .

The deeper the color is, the more chances the particles will have to be drawn to reproduce. 

It can be seen from Fig. 5 that GMR has obtained a relatively uniform sort in the first iteration. Particles with lower

ranking values which are more likely to be chosen for the next generation, have been comparatively drawn near the True

Pareto front, while GDR, AR and NDS almost concentrate in the left corner within interval (0, 0.6) in the 1st objective.

Whereas in Fig. 6 , the MOPSO/GMR is approaching convergence at the 5th generation, and particles with lower values of

ranking are distributed evenly in the front as well. 1 
1 The landscape only represents the sort values of ranking methods, not the final optimum values. The algorithm will perform to obtain optimal front in 

the light of density information and ranking values.  
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Fig. 6. Ranking landscape in 5th generation 1 . (For interpretation of the references to color in the text, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is noticeable that in latter iterations the AR approach has limited range of ranks both in Figs. 5 and 6 , which will

decrease the pressure upon selecting the optimal individuals, affecting the performance of algorithm. This can be drawn

from the definition of AR. For GDR, as mentioned in the Section 3.1 , since extreme points would have a comparatively large

sort value to be struck, it is scarcely able to obtain the complete Pareto optimal front. The NDS approach performs well in

these two-dimensional issues, but it has a narrow range of ranks, the same as AR scheme. However, in Section 6.3.4 , we

benchmark the properties of ranking-based schemes against the Pareto-based algorithms in terms of graphic comparison

on convergence and distribution, where the performance of NDS approach will deteriorate when the dominance relations

are complicated. For MOPSO/GMR in Fig. 6 , the dark blue points scatter uniformly in decision space, which implies that the

GMR gains better ability to guide the population convergence. Moreover, from the Colorbar it can be seen that the GMR

achieves a richer variety of ranks, which can enhance the selection pressure. 

For a more intuitive description of each ranking schemes, a metric called weighted generational distance (WGD) which

borrows from the concept of Generational Distance [39] is introduced. Generational Distance is used to measure how far the

evolved solution set is from the true Pareto front. Here, we incorporate the ranking of particle X i with Generational Distance

to evaluate the performance of ranking efficiency from the evolutionary perspective. 

Consider a population of N ranked solutions ([1, N ]). The weighted generational distance is defined as the product of a

ranking value with the corresponding distance between each solutions and the nearest neighbor in the Pareto optimal set,

which is formulated as Eq. (11) : 

Definition 4 (weighted generational distance) . 

W GD � 

√ 

N ∑ 

i =1 

( d 2 
i 

× r i ) 

N 

(11)

where, d i refers to the Euclidean distance between the found non-dominated solution and the nearest member of the true

Pareto set. r i denotes the ranking of particle X i . 

The WGD provides a metric of how a ranking scheme guides the search process. Lower WGD value means that the

ranking scheme can obtain a wider range of ranks with an ideal distribution. 

As given in Fig. 7 , the GMR has the lowest value of WGD while AR and GDR have relatively high values, which is identical

with the phenomenon in Fig. 6 . 

Therefore, as can be seen from the above analysis, GMR has outperformed its rivals both in maintaining the solution in

terms of diversity and convergence. 

6. Evolutionary analyses of MOPSO/GMR 

6.1. Parameters and instances 

In this section, some more experiments with some classic and representative MOEAs and MOPSOs (NSGA-II [16] , SPEA2

[46] , MOEA/D [43] , sMOPSO [27] , D 

2 MOPSO [2] ) have been adopted in order to evaluate the performance of the proposed

MOPSO/GMR algorithm. Standard benchmark test problems include ZDT{1,2,3,4} suites [45] and DTLZ{1,3,4,7} suites [17] .

The selected test problems cover various MOPs with linear, convex, concave, connected, and disconnected PFs, with two 
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Fig. 7. Histogram of WGD metric results on (a) ZDT1. (b) ZDT3. 

Fig. 8. Spacing metric on ZDT{1,2,3,4}, DTLZ{1,3,4,7} and UF{2,8} series problems. 
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Table 1 

Parameters for NSGA-II, SPEA2, MOEA/D, D 2 MOPSO, sMOPSO and MOPSO/GMR. 

Algorithm Parameter Value 

NSGA-II Crossover probability 1 

SPEA2 Mutation probability 0 .1 

MOEA/D Probability 1 

Differential weight 0 .5 

Mutation distribution index 20 

Neighborhood size 30 

sMOPSO Turbulence probability 0.01 (ZDT4:0.05) Pop. size:100 

Inertia weight 0 .4 Gen. :200 

c1 2 

c2 2 

D 2 MOPSO Inertia weight 0 .4 

MOPSO/GMR c1 2 

c2 2 

Fig. 9. Two set coverage metric between each two algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or three optimization objectives. The parameters of related algorithms and benchmark functions are shown in Table 1 and

Appendix A respectively. Besides, as we mentioned in Section 4 , in [9] the authors analyzed and validated that for any prac-

tical problems with ω= 0.4 the swarm will never converge if (c1 + c2) / 2 > 2(1 + ω) , so in our implementation we adopt the

parameter tuple { ω, c1 , c2 } = { 0 . 4 , 2 , 2 } for the convergence, which also recommended by the authors in compared method-

ologies. 

6.2. Performance metrics 

Generally speaking, the assessment of an algorithm is mainly from the following two aspects: a) the proximity to the

real Pareto front, the closer, the better; b) the diversity among solutions, the wider the range is, the better. Taking all the

above factors into consideration, the following three widely used metrics are adopted to perform the proposed approaches:

inverted generational distance (IGD) [47] , spacing (S) [34] and two set coverage (C) [45] , brief explanations of the metrics

are shown as follows: 

• Inverted generational distance (IGD): measures the distance between true Pareto front and the obtained Pareto front.

Let P ∗ denotes a set of uniformly distributed solutions in the objective space along the Pareto front. P is an approximation

to the PF which is obtained by the algorithm. The IGD is described as: 

IGD (P, P * ) � 

| P ∗| ∑ 

i =1 

dist(P ∗
i 
, P ) 

| P ∗| (12)

where, dist(P ∗
i 
, P ) is the Euclidean distance between a point x ∗ ∈ P ∗ and its nearest neighbor in P , and | P ∗| is the cardi-

nality of P ∗. It can be seen from the definition of IGD that for a large | P ∗| it can approximately cover the entire Pareto

front, which is another aspect of metric in terms of diversity. Generally, the lower the IGD value is, the better the quality

of P for approximating the whole Pareto front is. The IGD equals 0 indicates the obtained Pareto front contains every

point of the true Pareto front.  
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Fig. 10. Non-inferior solutions obtained by candidates on bi-objective instances. (For interpretation of the references to color in the text the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

• Spacing (S): measures the range variance of neighboring solutions in the non-dominated set by comparison with the

solutions converged to the true Pareto front. This metric is defined as: 

S � 

√ 

1 

n − 1 

n ∑ 

i =1 

( d − d i ) 
2 

(13) 

where, d i = min j ( 
∣∣ f 1 (X i ) − f 1 (X j ) 

∣∣ + 

∣∣ f 2 (X i ) − f 2 (X j ) 
∣∣) is the minimal distance between two solutions and d = 

1 
n 

∑ n 
i =1 d i 

is the mean value for all d i , n is the number of vectors in the Pareto front. A smaller value of this metric indicates a

uniform distribution of solution in the non-dominated set as the solutions will be equally spaced. If S equals 0, it shows

that all solutions on Pareto front are equidistantly placed. 
• Two set coverage (C): this metric is adopted to compare two sets of non-dominated solutions. Let P ′ and P ′ ′ be two sets

of non-dominated solutions obtained by two algorithms respectively. The percentage of solutions in P ′ ′ dominated by

that of P ′ is calculated with C ( P ′ , P ′ ′ ) which is defined as: 

C(P ′ , P ′′ ) � 

| {a ′′ ∈ P ′′ |∃ a ′ ∈ P ′ , a ′ � a ′′ or a ′ = a ′′ } | 
| P ′′ | (14) 

If all points in P ′ dominate or equal all points in P ′ ′ , this implies that C ( P ′ , P ′ ′ ) = 1. Otherwise, if no point in P ′ dominates

any points in P ′ ′ then C ( P ′ , P ′ ′ ) = 0. Since the Pareto dominance relation is not symmetric, we will consider both C ( P ′ ,
P ′ ′ ) and C ( P ′ ′ , P ′ ). This metric relates to the relative coverage comparison of two sets. 

6.3. Assessment results 

6.3.1. IGD metric results 

This section provides the results obtained from the IGD metric described in Section 6.2 . Tables 2 and 3 show the re-

sults obtained by the candidates upon the test instances. Thirty independent runs are implemented for each test problem to 
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Fig. 11. Non-inferior solutions obtained by candidates on tri-objective instances. (For interpretation of the references to color in the text, the reader is 

referred to the web version of this article.) 

Table 2 

IGD metric results on bi-objective instances. 

NSGA-II SPEA2 MOEA/D sMOPSO D 2 MOPSO MOPSO/GMR 

ZDT1 Mean 7.34E −03 2.69E −04 5.64E −03 3.80E −02 4.10E −02 8.20E −04 

Std. 9.12E −05 8.16E −05 4.74E −04 7.94E −03 5.90E −03 2.10E −05 

+ = + + + 

ZDT2 Mean 6.10E −03 2.78E −03 2.54E −03 4.92E −02 3.70E −02 2.04E −03 

Std. 7.70E −05 3.37E −04 1.97E −04 5.44E −03 2.24E −03 4.12E −05 

= = = + + 

ZDT3 Mean 5.03E −03 4.62E −03 7.66E −03 4.60E −03 5.40E −02 3.90E −03 

Std. 8.90E −05 5.22E −04 8.93E −04 3.40E −04 3.18E −03 5.22E −05 

= = + = + 

ZDT4 Mean 6.10E −03 9.23E −03 1.96E −02 6.10E −02 9.70E −02 6.73E −03 

Std. 7.08E −04 8.94E −04 9.20E −03 7.09E −03 3.30E −03 8.19E −04 

− = + + = 

UF2 Mean 3.55E −02 5.27E −02 1.24E −02 3.02E −02 4.42E −02 4.29E −02 

Std. 2.45E −03 4.22E −03 2.94E −03 4.91E −03 5.93E −03 5.14E −03 

= + = + = 

w/t/l 1/3/1 1/4/0 3/2/0 4/1/0 3/2/0 

 

 

 

 

 

 

avoid randomness. The statistics values including mean value (Mean) and standard deviations (Std.). In addition, the paired

Wilcoxon signed-rank test is used to compare the significance between two algorithms. In Tables 2 and 3 , “+”,“−”,“= ” indi-

cate the proposed algorithm is better than, worse than or similar to its competitor respectively according to the Wilcoxon

signed-ranked test at significance level α = 0.05. The results are summarized as “w/t/l”, which denotes that MOPSO/GMR

wins on w functions, ties on t functions, and loses on l functions, compared with its corresponding competitor.  
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Table 3 

IGD metric results on tri-objective instances. 

NSGA-II SPEA2 MOEA/D sMOPSO D 2 MOPSO MOPSO/GMR 

DTLZ1 Mean 2.85E −02 7.43E −03 5.82E −03 1.29E+00 3.07E −01 4.23E −03 

Std. 3.60E −03 2.31E −04 4.12E −04 2.80E −01 6.71E −02 2.90E −04 

+ = = + + 

DTLZ3 Mean 6.36E −03 2.91E −03 7.92E −03 7.80E −01 5.30E −02 5.91E −03 

Std. 8.95E −04 1.80E −04 6.40E −04 2.71E −03 4.31E −03 6.53E −04 

= − = + + 

DTLZ4 Mean 3.52E −03 6.29E −03 7.65E −03 3.11E −02 5.20E −01 5.95E −04 

Std. 5.40E −04 4.11E −04 5.61E −04 5.72E −04 4.59E −03 4.55E −05 

= + + + + 

DTLZ7 Mean 7.21E −03 2.37E −02 6.32E −02 3.98E −01 3.94E −01 5.63E −03 

Std. 6.43E −04 5.64E −03 3.87E −03 4.46E −02 3.82E −02 5.46E −05 

= + + + + 

UF8 Mean 6.87E −02 6.18E −02 5.64E −02 6.62E −02 5.59E −02 5.29E −02 

Std. 5.43E −03 4.94E −03 3.81E −03 6.94E −03 3.95E −03 2.43E −03 

+ + = + = 

w/t/l 2/3/0 3/1/1 2/3/0 5/0/0 4/1/0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of the problem ZDT4, UF2 and DTLZ3, the NSGA-II, MOEA/D and SPEA2 achieve the best results. Although the

results of MOPSO/GMR slightly deviate from the norm of other candidates, it is very close to. 

However, the MOPSO/GMR outperforms others for the remaining instances, especially to the MOPSOs. This reveals that

MOPSO/GMR provides better approximation Pareto fronts when both convergence and diversity are considered. In addition,

the Std. values of MOPSO/GMR are smaller than most of the other candidates in test problems, demonstrating the stability

of our method. 

From the two tables we can clearly see that MOPSO/GMR gain the best results for the IGD metric in most scenes of this

metric. 

6.3.2. Spacing metric results 

Boxplot is useful for identifying outliers as well as comparing distributions on discrete data, and it can specifically present

the form of Spacing metric since it measures the distribution of obtained solutions in the approximated Pareto front, so we

adopt this methodology to visualize this metric. Fig. 8 displays the boxplots generated by eight algorithms on benchmark

functions. The whiskers in all figures represent the upper and lower borders in each data set. 

This figure is quite revealing in several ways. First, the NSGA-II performs well on all test functions except DTLZ7, which

indicates the NSGA-II has an incomplete convergence since the DTLZ7 has some different Pareto fronts. Second, sMOPSO

produces lots of outliers on ZDT1. This indicates the poor stability, which can be observed from standard deviation in IGD

metric in Table 2 . Last but not least, the proposed MOPSO/GMR has a notable distribution duo to its incorporation of margin

ranking and general density. 

6.3.3. Two set coverage metric results 

Fig. 9 shows the Two Set Coverage metric between each set of candidates. The performance is indicated by grey-scale

rectangles, where darker ones refer to the best achieved C values. 

From Fig. 9 we can see that the MOPSO/GMR is drawn in the darkest color which means the solutions obtained by

MOPSO/GMR dominates a higher ratio of solutions produced by others. Notice that on ZDT4 both NSGA-II and MOPSO/GMR

get the similar darker colors which indicates both algorithms achieve the nearly same part of solutions. This can also be

observed in the Fig. 10 in Section 6.3.4 . 

6.3.4. Convergence results 

To visually demonstrate the convergence and distribution of the proposed algorithm, this section will deliver a graphic

illustration on convergence and distribution after quantitative analysis in the above sections. Figs. 10 and 11 express how

the obtained non-inferior solutions distribute in the objective space through the eight candidates. Orange lines and surfaces

represent the standard optimal fronts. 

On ZDT test suites, each algorithm can obtain a front close to the PF from the overall perspective, but there is a difference

in distribution, which can be seen from Fig. 10 . Compared with the other two MOPSO algorithms, MOPSO/GMR has obvious

advantages in both distribution and convergence. Fig. 11 shows the visualization by candidates on DTLZ test suites. As for

the DTLZ suites which have multiple local PF and traps, the results are slightly different. It is clear that the MOPSO/GMR

is able to find a uniform distribution of solutions on each test problem. In Fig. 11 , results of sMOPSO on DTLZ3 outperform

those of DTLZ4, since the DTLZ3 is mainly used to examine the ability to converge to the global Pareto front while DTLZ4

mainly focuses on the ability to maintain the distribution of solutions, which validates the effectiveness of sigma method

[27] from another aspect.  
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For those well-known MOEAs, such as NSGA-II, PESA2 and MOEA/D, can obtain better convergence, whereas the other

MOPSOs are unstable in face of complex test functions, which is the same as ZDT suites. However, the proposed MOPSO/GMR

has a better convergence and diversity among these candidates. 

7. Conclusions and future work 

This paper presents a framework of non-dominant sorting strategy called GMR. Unlike those Pareto-based techniques on

the basis of pairwise comparison, GMR employs the margin information of particles from the entire population to obtain

the ranking values in solution space. By integrating the GMR of particles with density information, we propose a novel gBest

and pBest selection approach. A new multi-objective particle swarm optimization algorithm based on GMR is proposed,

combined with the aforementioned sorting and updating mechanism. The effectiveness and efficiency of GMR strategies are

verified by the complexity and convergence analysis as well as experimental studies. The experimental results indicate the

algorithm equipped with the proposed GMR can not only earn a richer variety of ranks but also attain a well-distributed

solution set. 

Although the convergence analysis has been made, an extensive mathematic assessment should be implemented as a

part of our future work. Furthermore, further research needs to be conducted on incorporating the ranking strategy into

some other swarm intelligence and evolutionary algorithms. Moreover, it would be a promising vision to expand the ranking

methods into high-dimensional issues. 
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Appendix A. Related benchmark functions. 

Instance Expression Dim. Obj. Domain Properties 

ZDT1 

⎧ ⎨ 

⎩ 

f 1 (x ) = x 1 , f 2 (x ) = g(1 −
√ 

f 1 /g ) 

g(x ) = 1 + 9 
m ∑ 

i =2 

x i / (m − 1) 
30 2 0 ≤ x i ≤ 1 Convex PF 

ZDT2 

{ 

f 1 (x ) = x 1 , f 2 (x ) = g(1 − ( f 1 /g ) 
2 
) 

g(x ) = 1 + 9 
m ∑ 

i =2 

x i / (m − 1) 
30 2 0 ≤ x i ≤ 1 Non-convex PF 

ZDT3 

⎧ ⎨ 

⎩ 

f 1 (x ) = x 1 , f 2 (x ) = g(1 −
√ 

f 1 /g − ( f 1 /g ) sin (10 π f 1 )) 

g(x ) = 1 + 9( 
m ∑ 

i =2 

x i ) / (m − 1) 
30 2 0 ≤ x i ≤ 1 Disconnected 

PF 

ZDT4 

⎧ ⎨ 

⎩ 

f 1 (x ) = x 1 , f 2 (x ) = g(1 −
√ 

f 1 /g ) 

g(x ) = 1 + 10(m − 1) + 

m ∑ 

i =2 

( x 2 − 10 cos (4 πx i )) 
30 2 0 ≤ x 1 ≤

1 − 5 ≤ x i ≤
5(i = 

2 , 3 , · · · , m ) 

Non-convex, 

Multimodal PF 

UF2 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f 1 (x ) = x 1 + 

2 
| J 1 | 

∑ 

j∈ J 1 
y 2 

j 

f 2 (x ) = 1 − √ 

x 1 + 

2 
| J 2 | 

∑ 

j∈ J 2 
y 2 

j 

J 1 = { j | j is od d and 2 ≤ j ≤ n } 
J 2 = { j| j is ene v and 2 ≤ j ≤ n } 
y i = 

{
x j − [0 . 3 x 2 1 cos (24 πx 1 + 

4 jπ
n 

) + 0 . 6 x 1 ] cos (6 πx 1 + 

jπ
n 

) j ∈ J 1 
x j − [0 . 3 x 2 1 cos (24 πx 1 + 

4 jπ
n 

) + 0 . 6 x 1 ] sin (6 πx 1 + 

jπ
n 

) j ∈ J 2 

30 2 0 ≤ x i ≤ 1 

(i = 

1 , 2 , · · · , m ) 

Convex, 

Complex PF 

DTLZ1 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f 1 (x ) = 0 . 5 x 1 x 2 · · · x m −1 [1 + g( x m )] 

f 2 (x ) = 0 . 5 x 1 x 2 · · · (1 − x m −1 )[1 + g( x m )] 

. 

. 

. 

f m −1 (x ) = 0 . 5 x 1 (1 − x 2 )[1 + g( x m )] 

f m (x ) = 0 . 5(1 − x 1 )[1 + g( x m )] 

g( x m ) = 100[ | x m | + 

∑ 

x i ∈ x m 
( x i − 0 . 5) 

2 − cos (20 π( x i − 0 . 5))] 

10 3 0 ≤ x i ≤ 1 

(i = 

1 , 2 , · · · , m ) 

Linear, 

Multimodal PF 

Continued 
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Instance Expression Dim. Obj. Domain Properties 

DTLZ3 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f 1 (x ) = [1 + g( x m )] cos ( x 1 
π / 2 ) · · · cos ( x m −2 

π / 2 ) cos ( x m −1 
π / 2 ) 

f 2 (x ) = [1 + g( x m )] cos ( x 1 
π / 2 ) · · · cos ( x m −2 

π / 2 ) sin ( x m −1 
π / 2 ) 

f 3 (x ) = [1 + g( x m )] cos ( x 1 
π / 2 ) · · · sin ( x m −2 

π / 2 ) 

. 

. 

. 

f m (x ) = [1 + g( x m )] sin ( x 1 
π / 2 ) 

g( x m ) = 100[ | x m | + 

∑ 

x i ∈ x m 
( x i − 0 . 5) 

2 − cos (20 π( x i − 0 . 5))] 

10 3 0 ≤ x i ≤ 1 

(i = 

1 , 2 , · · · , m ) 

Non-convex, 

Multimodal PF 

DTLZ4 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f 1 (x ) = [1 + g( x m )] cos (x α1 
π / 2 ) · · · cos (x αm −2 

π / 2 ) cos (x αm −1 
π / 2 ) 

f 2 (x ) = [1 + g( x m )] cos (x α1 
π / 2 ) · · · cos (x αm −2 

π / 2 ) sin (x αm −1 
π / 2 ) 

f 3 (x ) = [1 + g( x m )] cos (x α1 
π / 2 ) · · · sin (x αm −2 

π / 2 ) 

. 

. 

. 

f m (x ) = [1 + g( x m )] sin (x α1 
π / 2 ) 

g( x m ) = 

∑ 

x i ∈ x m 
( x i − 0 . 5) 

2 

10 3 0 ≤ x i ≤ 1 

(i = 

1 , 2 , · · · , m ) 

Non-convex, 

Biased PF 

DTLZ7 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f 1 (x ) = x 1 
f 2 (x ) = x 2 

. 

. 

. 

f m −1 ( x m −1 ) = x m −1 

f m (x ) = [1 + g( x m )] h ( f 1 , f 2 , · · · f m −1 , g) 

g( x m ) = 1 + 

9 
| x m | 

∑ 

x i ∈ x m 
x i 

h ( f 1 , f 2 , · · · f m −1 , g) = m −
m −1 ∑ 

i =1 

[
f i 

1+ g (1 + sin (3 π f i )) 
]

10 3 0 ≤ x i ≤ 1 

(i = 

1 , 2 , · · · , m ) 

Mixed, 

Discontinuous, 

Multimodal PF 

UF8 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f 1 (x ) = cos (0 . 5 x 1 π) cos (0 . 5 x 2 π) + 

2 
| J 1 | 

∑ 

j∈ J 1 
( x j − 2 x 2 sin (2 πx 1 + 

jπ
n 

)) 
2 

f 2 (x ) = cos (0 . 5 x 1 π) sin (0 . 5 x 2 π) + 

2 
| J 2 | 

∑ 

j∈ J 2 
( x j − 2 x 2 sin (2 πx 1 + 

jπ
n 

)) 
2 

f 3 (x ) = sin (0 . 5 x 1 π) + 

2 
| J 3 | 

∑ 

j∈ J 3 
( x j − 2 x 2 sin (2 πx 1 + 

jπ
n 

)) 
2 

J 1 = { j| 3 ≤ j ≤ n, and j − 1 is a mul tipl ication of 3 } 
J 2 = { j| 3 ≤ j ≤ n, and j − 2 is a mul tipl ication of 3 } 
J 3 = { j| 3 ≤ j ≤ n, and j is a mul tipl ication of 3 } 

30 3 0 ≤ x i ≤ 1 

(i = 

1 , 2 , · · · , m ) 

Non-convex, 

Complex PS 
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