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Abstract: 

In this paper, we propose a novel hybrid multi-objective immune algorithm with adaptive 

differential evolution, named ADE-MOIA, in which the introduction of differential evolution (DE) into 

multi-objective immune algorithm (MOIA) combines their respective advantages and thus enhances the 

robustness to solve various kinds of MOPs. In ADE-MOIA, in order to effectively cooperate DE with 

MOIA, we present a novel adaptive DE operator, which includes a suitable parent selection strategy 

and a novel adaptive parameter control approach. When performing DE operation, two parents are 

respectively picked from the current evolved and dominated population in order to provide a correct 

evolutionary direction. Moreover, based on the evolutionary progress and the success rate of offspring, 

the crossover rate and scaling factor in DE operator are adaptively varied for each individual. The 

proposed adaptive DE operator is able to improve both of the convergence speed and population 

diversity, which are validated by the experimental studies. When comparing ADE-MOIA with several 

natural-inspired heuristic algorithms, such as NSGA-II, SPEA2, AbYSS, MOEA/D-DE, MIMO and 

D2MOPSO, simulations show that ADE-MOIA performs better on most of 21 well-known benchmark 

problems. 

Keywords: Multi-objective optimization; Immune algorithm; Differential evolution; Adaptive 

parameter control 

 
1. Introduction 

Optimization problems widely exist in many domains of scientific research and engineering 

application [1-4]. Based on the number of objectives needed to be optimized, they are generally 

classified into two categories, such as single-objective optimization problems (SOPs) and 

multi-objective optimization problems (MOPs). Generally, MOPs bring more challenges as they are 

aimed at optimizing several conflicting objectives simultaneously, while SOPs only locate a global 

optimal value. Due to the complex landscape in decision and objective spaces of MOPs, it is practically 

impossible for traditional deterministic approaches to travel the entire solution space and find a 

satisfactory result within a limited time. As a result, evolutionary algorithms (EAs) are presented for 

solving MOPs, which demonstrate the excellent global search capability in finding optimal solution set 

[5, 6]. The ability to handle complex MOPs that are characterized with discontinuities, multimodality, 

disjoint feasible spaces and noisy function evaluations, reinforces the potential effectiveness of 

multi-objective EAs (MOEAs) [7, 8]. 
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The first reported literature of MOEAs may be the vector evaluated genetic algorithm (VEGA) in 

mid-1980s [9]. After that, MOEAs attract more and more interests of researchers and numbers of 

various MOEAs are presented. The first generation of MOEAs published around 1990s mostly adopted 

the Pareto-rank based selection and fitness sharing, the representatives of which include multi-objective 

genetic algorithm (MOGA) [10], niched Pareto genetic algorithm (NPGA) [11] and non-dominated 

sorting genetic algorithm (NSGA) [12]. In 2000s, the second generation of MOEAs was designed 

based on the elitist selection strategy, such as strength Pareto evolutionary algorithm (SPEA) [13] and 

its improved version (SPEA2) [14], Pareto envelop-based selection algorithm (PESA) [15], and a fast 

non-dominated sorting genetic algorithm (NSGA-II) [16]. Recently, as more and more heuristic 

algorithms including scatter search [17], simulated annealing [18], particle swarm optimization [19], 

ant colony optimization [20], differential evolution [21] and immune algorithm [22], are presented, it is 

found that multiple heuristic algorithms can be hybridized to achieve stronger search capabilities 

[23-25]. This is realized by combining the advantages of various heuristic algorithms to overcome the 

natural weakness of each algorithm. For example, an archive-based hybrid scatter search algorithm 

(AbYSS) is proposed [23], which embeds the mutation and crossover operators of EAs into the 

framework of scatter search. The experimental studies show that this hybrid approach obviously 

outperforms the state-of-the-art algorithms, such as SPEA2 and NSGA-II. A novel hybrid 

multi-objective evolutionary algorithm [24] is designed for real-valued MOPs by combining the 

concepts of personal best and global best in particle swarm optimization into MOEAs. Multiple 

crossover operators are also adopted here to enhance its global search capability. In [25], a 

multi-objective particle swarm optimizer based on decomposition and dominance (D2MOPSO) is 

presented, which incorporates the dominance relationship with the decomposition approach. The 

improved version of D2MOPSO is also proposed by the same authors with the introduction of a new 

mechanism for leaders’ selection and a new archiving technique [26]. These new features facilitate the 

attaining of better diversity and coverage in both objective and solution spaces. 

Differential evolution (DE) algorithm is a simple and efficient random search technology that is 

mainly used for continuous global optimization problems [27, 28]. Because of its excellent global 

search ability and easy implementation, DE is recently investigated to mix with MOEAs for 

compensating the defects of lacking diversity in some MOEAs [29-34]. In [29], a differential evolution 

algorithm for multi-objective optimization with rough sets (DEMORS) theory is proposed, which uses 

the concept of ε -dominance to keep the population diversity. Two stages are sequentially performed, 

in which the first stage generates an initial population close to the true Pareto front by using the 

multi-objective version of DE and the second stage exploits the rough sets theory to further improve the 

convergence and the diversity of population founded in the first stage. DEMORS is justified to 

outperform some state-of-the-art MOEAs and extended to solve the complex constrained MOPs in [30]. 

A novel multi-objective evolutionary algorithm based on decomposition (MOEA/D) is designed by 

Zhang et al. [31], which decomposes MOPs into multiple SOPs using the weighted aggregation of each 

objective. A basic DE operator is adopted to replace the simulated binary crossover operator and the 

experimental studies confirm the advantages of DE when handling some complex MOPs with variable 

linkages in decision space [32]. Recently, an adaptive differential evolution for MOEA/D (ADEMO/D) 
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is reported in [33], which introduces the adaptive control strategy of SaDE [28] into the framework of 

MOEA/D. The improved version of ADEMO/D [34] replaces the self-adaptive DE strategy with a 

novel adaptive selection strategy (AdapSS) [27]. 

On the other hand, artificial immune system (AIS) is a new developing heuristic algorithm 

imitating the information processing mechanism of biological immune system [35], which has found 

numbers of applications in the fields of computer security [36], optimization [37], and anomaly 

detection [38]. Especially, immune algorithm has been successfully applied for MOPs and shown pretty 

promising performance in accelerating the convergence speed and maintaining the population diversity 

[37]. However, when dealing with some complex MOPs, such as DTLZ and WFG test problems [39, 

40], it is quite difficult to fast approach the true Pareto front in limited generations. As the previous 

studies have shown that the hybridization of MOEAs with DE is especially effective for solving some 

complex MOPs, it is reasonable to believe that the embedment of DE into multi-objective immune 

algorithms (MOIAs) is promising. Especially, MOIAs may suffer from the lack of population diversity 

due to the elitist clonal selection principle. The global search capability of DE operator can repair that 

defect and enhance the robustness of MOIAs to handle various kinds of MOPs. However, to the best of 

our knowledge, this integration of MOIAs with DE is rarely investigated. Therefore, in this paper, we 

propose a novel multi-objective immune algorithm with adaptive DE (ADE-MOIA), where the 

adaptive DE (ADE) operator substantially improves both of the convergence speed and population 

diversity. The ADE operation is designed by a suitable parent selection strategy and a novel adaptive 

parameter control method. By dividing the population into a dominated subpopulation and a 

non-dominated subpopulation, three parents to run DE operator are respectively chosen from the 

corresponding subpopulations. The difference between the dominated and non-dominated parents may 

provide a correct evolutionary direction in DE. Besides that, as the choice of systematic parameters in 

DE has great impact on the optimization performance, an adaptive control approach is presented to tune 

the crossover rate (CR) and scaling factor (F), which is aimed at decreasing the influence of parameter 

settings and enhancing its robustness. In our ADE operation, CR is gradually changed with the 

evolutionary process while F is adaptively modified for each individual based on the success rate of 

offspring. The advantage of the proposed ADE operator is verified by the experimental studies. To 

investigate the performance of ADE-MOIA, 21 well-known benchmark problems such as ZDT 

problems [41], WFG problems [40] and DTLZ problems [39], are used. When compared with various 

natural-inspired heuristic algorithms, such as NSGA-II [16], SPEA2 [14], AbYSS [23], MOEA/D-DE 

[32], MIMO [37] and D2MOPSO [26], ADE-MOIA performs best on most of benchmark problems. 

The remainder of this paper is organized as follows. Section 2 describes the related background, 

such as MOPs, AIS and related work of immune algorithm. The realization of ADE-MOIA is 

introduced in Section 3, where the cloning, ADE, perturbance and archive update operators are 

respectively described in detail. The experimental studies are conducted in Section 4, which gives a 

comparative study among ADE-MOIA and various nature-inspired heuristic algorithms. Moreover, the 

advantage of ADE operator is analyzed and its effectiveness is confirmed by the experimental results. 

At last, the conclusions are summarized in Section 5. 
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2. Related Background 

2.1 Multi-objective Optimization Problems 

There exist many MOPs in various practical applications, which may need to handle constraints 

and optimize multiple conflicting objectives simultaneously. Without loss of generality, the 

mathematical description of MOPs for minimization can be expressed as follows. 

 

1 2( ) { ( ), ( ),..., ( )}

. . : ( ) 0, 1, 2,...,

( ) 0, 1,2,...,

m

i

j

Minimize f x f x f x f x

s t g x i q

h x j p

=

≤ =

= =

  (1) 

where 1 2( , ,..., )nx x x x= ∈Ω  is a decision vector with n  dimensions, Ω  is the decision space, m  

is the number of objectives, ( )ig x  ( 1, 2,..., )i q=  are q inequality constraints and ( )
j

h x  

( 1,2,..., )j p=  are p equality constraints. 

The goal of MOPs is to minimize all the objective functions in Eq. (1) and the concepts of Pareto 

optimum theory [42] are important for MOPs, which are described as follows. 

Definition 1 (Pareto-dominance): A decision variable vector x  is said to dominate another decision 

variable vector y  (noted as x y� ) if and only if 

 ( {1,2,..., }: ( ) (y)) ( {1, 2,..., }: ( ) (y))
i i j j

i m f x f j m f x f∀ ∈ ≤ ∧ ∃ ∈ <   (2) 

Definition 2 (Pareto-optimal): A solution x  is said to be Pareto-optimal if and only if 

 :y y x¬∃ ∈Ω �   (3) 

Definition 3 (Pareto-optimal set): The set PS  includes all the Pareto-optimal solutions, as defined by 

 { | : }PS x y y x= ¬∃ ∈Ω �   (4) 

Definition 4 (Pareto-optimal front): The set PF  includes the value of all the objective functions 

corresponding to the Pareto-optimal solutions in PS . 

 1 2{ ( ) ( ( ), ( ),..., ( )) | }T

m
PF F x f x f x f x x PS= = ∈   (5) 

 
2.2 Artificial Immune System 

The concept of artificial immune system (AIS) put forward for the first time may trace back to 

1996 [43]. Since then, AIS steps into a period of rapid development and becomes a research hotspot in 

the field of artificial intelligence [44-54]. It is a novel intelligence approach imitating the information 

processing principle of natural immune system. When external antigen is detected by the biological 

immune system, its B-cell will be immediately adapted to eliminate invaders by the reactive procedures, 

such as clonal selection and affinity maturation by hyper-mutation. The antibodies that can identify 

antigen better will be selected to reproduce by cloning and this process is called clonal selection, while 

hyper-mutation realizes the affinity maturation process by varying the clones in high frequency. After 

that, some antibodies with high affinity will retain as memory cells to prevent the re-invasion. This 

information processing principle can be simulated in AIS to improve the convergence speed and 

maintain the population diversity when solving MOPs.  

In the variation process of biological immune system, antibodies are always mutated in order to 

better identify the specific antigen. This is similar with the optimizing process when handling MOPs. In 

MOIAs, the multi-objective problems and the corresponding constraints are considered as antigen. Its 
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potential solution is regarded as an antibody while the affinity is seen as the fitness of a solution to the 

target problems. That is to say, taking the MOPs defined in Eq. (1) as example, a solution vector 

1 2( , ,..., )nx x x x= ∈Ω  is considered to be an antibody and 1 2( ) { ( ), ( ),..., ( )}mf x f x f x f x=  is regarded 

as an antigen. An antibody population is composed by a number of antibodies. When an antibody is 

said to be non-dominated, it indicates that there is no other antibodies in the antibody population that 

can dominate it.  
  
2.3 Related Work on Immune Algorithm 

Immune algorithm is a new developing intelligent algorithm, which has attracted great interests of 

researchers in recent years. Most immune algorithms are performed by simulating the two important 

immune principles, such as clonal selection and affinity maturation by hyper-mutation. The first 

immune optimization algorithm [22] is designed to solve SOPs by embedding the concept of clonal 

selection into genetic algorithm. Then, an immune network algorithm called opt-aiNet [44] is presented 

to solve the multimodel problems, in which the antibodies going to be cloned, inhibited or retained are 

determined by the immune network. Based on the clonal selection principle, a novel CLONALG 

algorithm [45] is proposed to solve the multimodel and combinatorial optimization problems, which 

fully simulates the affinity maturation procedures of immune response.  

Motivated by the outstanding performance of immune algorithm in solving SOPs, immune 

algorithm is designed to solve MOPs. Generally speaking, most of the current MOIAs can be classified 

into two categories, such as pure MOIAs and hybrid MOIAs. Pure MOIAs fully mimic the information 

processing procedures of immune principles, such as clonal selection and immune network theory, 

while hybrid MOIAs cooperate with other nature-inspired heuristic algorithms and combine their 

respect advantages to enhance the comprehensive performance. Some representatives from the two 

kinds of MOIAs are introduced as follows. 

Based on the clonal selection principle, multi-objective immune system algorithm (MISA) [46] is 

proposed, in which an affinity evaluation strategy selects antibodies to perform clonal propagation and 

an external memory archive collects the previously founded non-dominated solutions. The enhanced 

performance of MISA is achieved by two mutation approaches, i.e., uniform mutation for cloning 

population and non-uniform mutation for the not-so-good solutions [46]. In [47], a novel 

non-dominated neighbor immune algorithm (NNIA) is presented, which uses two heuristic search 

operators, elitist strategy and a novel selection approach based on the non-dominated neighbors. NNIA 

selects a few of non-dominated individuals with larger crowding-distance values as active population 

and only performs proportional cloning, recombination and mutation to the active population. This 

elitist strategy greatly improves the convergence rate, but may lead to the loss of population diversity in 

some complex MOPs. This weakness of NNIA is repaired by using a multi-population co-evolutionary 

strategy developed in [48]. A multi-objective immune algorithm based on a multiple-affinity modal 

(MAM-MOIA) is designed in [49], where six affinity models are put forward. The clonal selection, 

reproduction and mutation operators are correspondingly performed based on the specific affinity 

measure strategy. In [50], a multi-objective optimization immune algorithm using clustering (CMOIA) 

is reported, which performs a clustering-based clonal selection strategy to maintain the balance 

between exploration and exploitation. A weight-based multi-objective artificial immune system 

 

 

 



6 

(WBMOAIS) is proposed [51], which follows the basic framework of opt-aiNet [44]. It assigns a 

random weighted sum of multiple objectives as the fitness and develops a new truncation method to 

eliminate similar individuals in memory. Thus, a well distributed set of non-dominated solutions can be 

obtained. In [52], a novel immune clonal algorithm (NICA) is presented for MOPs, which performs an 

entire cloning operator and pure hyper-mutation operator for affinity maturation. Moreover, a novel 

archive updating operation is also operated for maintaining the population diversity. 

For hybrid MOIAs, a new hybrid genetic/immune strategy for multi-objective optimization 

(GISMOO) [53] is proposed, which combines the advantages of Pareto GA and AIS. The evolutionary 

procedures of GISMOO have two stages, where the genetic operations are adopted to generate child 

population in the first stage and then the immune operators are employed to produce offspring from the 

non-dominated individuals in the second stage. A novel evolutionary artificial immune algorithm is 

presented in [54] for MOPs, which combines the global searching capability of EA and the immune 

learning ability of AIS. The concept of clonal selection principle is exploited in a new selection strategy 

that can maintain the balance of exploration and exploitation. In [55], a hybrid immune algorithm for 

MOPs (HIMO) is designed by combining the advantages of Gaussian and polynomial mutations. An 

adaptive switch control factor is used to tune the executions of two mutations. The performance of 

HIMO is further enhanced by a micro-population immune multi-objection algorithm (MIMO) [37], 

which presents an efficient adaptive mutation strategy and a fine-grained selection method.  
 

ADE operator

Update archive

Cloning operator

Initialization

Output result

Yes

No

Perturbance 
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Fig. 1 The algorithmic flowchart of ADE-MOIA 
 
3. The Proposed Algorithm ADE-MOIA 

In this section, the details of our proposed algorithm ADE-MOIA are introduced. The major 

contribution of ADE-MOIA is to embed an ADE operator into the framework of MOIAs. This is the 

first try to investigate the performance of DE-based MOIAs. To clearly describe ADE-MOIA, the 

algorithmic flowchart of ADE-MOIA is demonstrated in Fig. 1, where the antibody population is 

sequentially performed by the procedures of cloning, ADE, perturbance and archive update after the 

initialization phase. Once the termination condition, usually set to the maximal running generations, is 
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satisfied, the non-dominated antibodies in external archive are exported as the final result. 

When initialization, an initial population 1 2{ , ,..., }NP x x x=  is created, where the decision 

variables of  ( 1, 2,..., )ix i N=  are randomly generated in Ω  and the corresponding objective values 

are evaluated. After performing the fast non-dominated sorting [16] in P, the non-dominated and 

dominated individuals are obtained and respectively preserved in the external archive (EXA) and 

dominated archive (DA). The pseudo-code of initialization, named Algorithm 1, is described in Fig. 2. 

 

Algorithm 1: Initialization 

1 for i = 1 to N 

2    randomly generate an individual ix  
3    evaluate the objectives of ix   
4    add ix  to the population P 
5 end for  

6 EXA = Find_nonDominated( P ); //find non-dominated solutions in P  

7 DA = Find_Dominated ( P ); //find the dominated solutions in P  

Fig. 2 The pseudo-code of initialization 

 

3.1 Cloning Operator 

It is assumed that the evolutionary population is P  with size N and the cloning population is 

1 2{ , ,..., }C NCP a a a=  with size NC. At first, NC antibodies having the larger crowding-distance values 

are selected from EXA. Afterward, the cloning is activated and the evolutionary population will be 

 
1

NC

i i

i

P q a
=

= ×∪    (6) 

where iq  stands for the number of clones corresponding to each antibody ia  ( 1,2,..., )i NC= , 

calculated by 

 

1

( )

( )
i

i NC

jj

CD a
q N

CD a
=

 
 = ×
 
 ∑

   (7) 

where ( )iCD a  is the fitness value of antibody ia  ( 1,2,..., )i NC=  and set as the crowding-distance 

value, computed by the following equation. 

 
1

( )
( )

max min

m
j i

i

j j j

CD a
CD a

f f=

=
−

∑    (8) 

where m  is the number of objectives, maxjf  and minjf  are respectively the maximal and 

minimal values of the j-th objective, ( )j iCD a  is the crowding distance of the j-th objective for the 

antibody ia  ( 1,2,..., )i NC=  and obtained by 
, if ( ( ) min  or  ( ) max);

( )
min{ ( ) ( )},   ( ) ( ) ( ) ( , [1, ]),otherwise

j i j j i j

j i
j k j l j k j i j l

f a f f a f
CD a

f a f a f a f a f a k l N

∞ == ==
=  − > > ∈

  (9) 

It is noted that when the antibody locates in the boundary, its crowding distance is ∞  and the number 

of clones can’t be obtained by Eq. (7). In this case, the crowding distance of the boundary antibody is 
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set as twice of the maximal crowding distance except for the boundary solutions. The pseudo-code of 

this operator named Algorithm 2 is shown in Fig. 3, where NC is the size of clone population and the 

function CrowdingDistanceAssignment(P) calculates the crowding distance value of each antibody in 

population P.  

 

Algorithm 2: Cloning Operator 

1 PC = EXA; 
2 if ( |PC| > NC ) 

3     CrowdingDistanceAssignment(PC); 

4     PC = Sort( PC );// sort PC according to the crowding distance in descending order 

5     PC = SelectforClone( PC );//select the first NC antibodies in PC  

6 end if 

7 for i = 1 to |PC| 

8     calculate the number qi of clones for ix  according to Eq. (7) 
9     clone qi individuals of ix  and add them to P 
10 end for  

Fig. 3 The pseudo-code of cloning operator 
 

3.2 Evolutionary Operator 

3.2.1 DE Operator 

Differential evolution has very strong global search capability and shown pretty good convergence 

ability [27-34]. Thus, DE operator is widely adopted in MOEAs [29-34]. In ADE-MOIA, a novel ADE 

operator is presented, which is tailor-made to effectively cooperate with MOIA. The weakness of 

MOIAs in population diversity can be repaired by the strong global search capability of DE. Our 

proposed ADE operator includes a suitable parent selection strategy and a novel adaptive parameter 

control approach. This makes ADE operator become more effective for MOIAs. The ADE operation is 

given as follows. 

 
1 2 3

( )
i r r r

v x F x x= + × −   (10) 

where ( ]0,1.0F ∈  is a scaling factor. It is important to note that the selected parent vectors used in Eq. 

(10) have great impact on the optimization performance. The most popular DE operators includes 

DE/rand/1/bin, DE/best/1/bin, DE/current-to-best/1/bin, DE/rand/2/bin, DE/best/2/bin [28], which are 

mostly adopted to solve SOPs and especially effective for some SOPs with certain complex features. 

When solving MOPs, these popular DE operators are not perfectly fit as all the non-dominated 

solutions are regarded as the best candidate for MOPs. The selection of parent vectors in MOPs is 

challenging. In our proposed ADE operator, in order to promote the population diversity, three parent 

vectors picked from the EXA and DA are aimed at providing a correct evolutionary direction, where 
1r

x  

and 
2r

x  different from ix  are randomly chosen from EXA while 
3r

x  is randomly selected from DA.  

After that, a trial point iy  will be obtained from its parents ix  and iv  using the following 

crossover rules. 
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,  if ( )

,  otherwise

j

j i j i

i j

i

v R CR or j I
y

x

 < =
= 


  (11) 

where the superscript j  represents the j-th variable of decision vectors; iI  is a random integer 

number in [1, n] that ensures at least one dimension of trial vector is inherited from the mutant vector; 

jR  is a random real number from (0, 1.0) for each j-th variable; the crossover rate CR  is a 

pre-defined real number in [0, 1.0], which controls how much information the offspring will inherit 

from the parents.  
 
3.2.2 Adaptive Parameters Control 

As introduced above, DE operator generates a new individual depending on the mutation and 

crossover. Thus, the parameter settings of scaling factor (F) in Eq. (10) and crossover rate (CR) in Eq. 

(11) are quite important for DE-based algorithms. On the one hand, the scaling factor F can affect the 

convergence speed and population diversity by changing the search step size. Usually, the DE-based 

algorithms favor a global search to explore the entire feasible region in the early stage of the 

evolutionary process, and then go with a local search to speed up the convergence. On the other hand, 

the crossover rate CR decides how much information of the parents will pass to offspring, which has 

obvious impact on the convergence speed and population diversity.  

In our ADE operator, the parameter of CR is set as follows. 

 
1 1 / 0.8

0.55 arctan( )
0.1gen

gen maxgen
CR

π

− −
= + ×   (12) 

where gen and maxgen are respectively the current and maximum generation times. The CR value in 

each generation is gradually reduced with the increase of generation times. Figure 4(a) shows the 

tendency of the CR value, where the CR value gradually reduces from 0.9 and stagnates almost in the 

range (0.1, 0.2) after half of maxgen generations. Therefore, as the CR value is large, the child 

population is generated more randomly and resultantly the ADE operator encourages global search in 

the first stage. After the running by half of maxgen generations, the child population will inherit more 

information from the parents and thus the child population only changes little. As a result, the local 

search is activated at the last stage. 

 
   (a)                             (b)  

Fig. 4 The tendency of CR  in (a) and the distribution of (0.5,0.1)Cauchy  in (b) 
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Besides that, the scaling factor F for each i
x  in Eq. (10) is adaptively set as follows. 

 ( ,0.1), (0.1,0.9)
i m i

F Cauchy F F= ∈   (13) 

where m
F  is initialized to 0.5 at first. As an example, the distribution of Cauchy(0.5, 0.1) is shown in 

Fig. 4(b). With the running of generations, m
F  is updated according to the improvement situation of 

child population, as follows.  
 = ( ) ( / | |)

success

m success success

x F

F average F x F
∈

= ∑       (14) 

It is noted that the F value is collected into the set success
F  only when the child generated by this F 

value is a non-dominate solution to its parent. When the size of success
F  is larger than %p  of the 

population, the Cauchy distribution center m
F  is recalculated by using Eq. (14) and each i

F  in Eq. 

(13) is generated using the updated value of m
F . In our paper, the value of %p  is set to 10%  based 

on the observation of various experiments. 
 
3.3 Perturbance 

After ADE operator, polynomial mutation (PM) operator is further performed to generate new 

individuals as the perturbance operator. For antibody 1 2( , ,..., )ny y y y= , PM is operated as follows. 

 { ( ) , if
   , otherwise

k k k k m
k

k

y ub lb r p
z

y

σ+ × − <
=   (15) 

where k
z  and k

y  are respectively the k-th decision variables after and before mutation; k
ub  and 

k
lb  are respectively the upper and lower bounds of the k-th decision variables; r is a random real 

number in [0, 1.0]; k
σ  is a small variation that is obtained by 

 

1

1

1

1

(2 ) 1 , if 0.5

1 (2 2 ) otherwise,
k

r r

r

η

η

σ
+

+

× − <

− − ×




= 


  (16) 

where r is a uniformly random number in [0, 1.0] that compares with the threshold value 0.5; η  is the 

mutation distribution parameter, which controls the magnitude of the expected mutation of the solution 

variable. Generally, larger value of η  generates smaller variance on average. The pseudo-code of PM 

operator is illustrated in Fig. 5, named Algorithm 3, where n is the dimension of variables and pm is the 

probability for perturbance.  
 

Algorithm 3: PM operator 

1 for k = 1 to n   
2     if random(0,1) < mp   
3         calculate kσ  according to Eq. (16) 
4         calculate k

z  according to Eq. (15) 
5         if k kz ub>  
6             k kz ub=  
7         else if k kz lb<  
8             k kz lb=  
9         end if 
10     end if 

11 end for  

Fig. 5 the pseudo-code of PM operator 
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3.4 Archive Update 

After the evolutionary operations such as ADE and PM operators are completed, all the offspring 

and the antibodies in EXA are combined. The same individuals in the mixed population are moved and 

only keep one sample. Then, the fast non-dominated sorting is performed on the mixed population to 

record all the non-dominated individuals in EXA and other dominated individuals in DA. Once the size 

of EXA exceeds the predefined size N, a fine-gained selection mechanism introduced by us [37] is 

executed to remain the population diversity. This is achieved by continuously deleting the most 

crowded individual and then updating its neighbor’s crowding distance until the size of EXA is N. At 

last, only the individuals with lager crowding distances will be retained in EXA. The pseudo-code of 

archive update is described in Fig. 6, named Algorithm 4. 
 

Algorithm 4: Archive Update 

1 A = Union( EXA,Pchild ); // merge the offspring and EXA to A 

2 EXA = Find_nonDominated( A ); //find nondominated antibodies in A 

3 DA = Find_Dominated ( A ); //find the dominated solutions in A 

4 while ( |EXA| > N ) 

5 CrowdingDistanceAssignment(EXA); //calculate the crowding distance 

6 EXA = Sort(EXA); //sort EXA according to the crowding distance 

7 EXA = DeleteCrowded(EXA); //delete the most crowded one in EXA 

8 end while  

Fig. 6 The pseudo-code of archive update 

 

3.5 The Complete Algorithm ADE-MOIA  

The above subsections have described the procedures of initialization, cloning, ADE, perturbance 

and archive update, which compose the main components of ADE-MOIA. The pseudo-code of the 

complete algorithm ADE-MOIA is demonstrated in Fig. 7, named Algorithm 5. After the initialization 

process (Algorithm 1), the initial EXA and DA are obtained correspondingly. Then, ADE-MOIA turn 

into the loop of evolutionary process until the generation times gen reaches the predefined maximum 

times max_gen. During the evolutionary phase, the cloning operator (Algorithm 2) is performed first, 

which generates the evolutionary population P. Afterward, the ADE operator that is introduced in 

Section 3.2 and the perturbance operator (Algorithm 3) are executed on the evolutionary population P. 

In order to perform ADE operator, the values of CR and F are respectively determined according to Eqs. 

(12) and (13). Then, the intermediate individual iy  is generated based on Eqs. (10) and (11), and 

further disturbed to get the child iz  as described in Algorithm 3. The objectives of new child are 

evaluated and collected into the child population Pchild. Once the parent ix  is dominated by the child 

iz , this value of F will be recorded into the success value set Fsuccess. If the size of Fsuccess is larger than 

p% of N, the value of Fm is updated by Eq. (14). At last, the archive update process in Algorithm 4 is 

executed. The above evolutionary phase will repeat until the predefined maximum generation times are 

achieved. At the end of algorithm, the non-dominated solutions in EXA are reported as the final result. 
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Algorithm 5: The pseudo-code of ADE-MOIA 

1 Initialization (Algorithm 1); 

2 0gen = ; 

3 {};successF =  

4 while gen < max_gen 

5     Cloning Operator (Algorithm 2); 

6     set the value of CR according to Eq. (12); 

7     for i = 1 to N  

8         set iF  according to Eq. (13); 

9         generate iv  according to Eq. (10); 

10         generate iy  according to Eq. (11); 

11         perform perturbance on iy  to get iz  (Algorithm 3); 

12         evaluate iz ; 

13         add iz  to the child population Pchild. 

14         if ( i iz x� )  

15             s success uccess iF F F= ∪  

16         end if 

17     end for 

18 if | | %successF p N> ⋅  

19        update mF  according to Eq. (14) 

20        {};successF =   

21 end if 

22 Archive Update (Algorithm 4). 

23 set 1gen gen= +  

24 end while 

25 Output EXA 

 
Fig. 7 The pseudo-code of complete ADE-MOIA 

 
4. Experimental Results 

In this section, in order to verify the performance of our algorithm, several experimental studies are 

launched. Firstly, the experiment-related knowledge, such as benchmark problems, performance metric 

and the parameter settings of all the compared algorithms, are introduced. Secondly, the performance of 

our proposed algorithm ADE-MOIA is compared with several competitive nature-inspired 

multi-objective algorithms, such as NSGA-II [16], SPEA2 [14], AbYSS [23], MOEA/D-DE [32], 

D2MOPSO [26] and MIMO [37]. At last, in order to investigate the advantages of our proposed ADE 

operator, ADE-MOIA is further compared with its variants SBX-MOIA and DE-MOIA, in which 

SBX-MOIA and DE-MOIA replace the ADE operator with the SBX and basic DE operators, 

respectively. Moreover, the advantage of adaptive parameters control in ADE operator is also validated 

by the comparison with the fixed parameter settings. 
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4.1 Benchmark Problems 

Various types of benchmark problems are used in order to validate the comprehensive 

performance of our proposed algorithm. First of all, the most widely used ZDT problems [41] are 

adopted. Due to the lack of characteristics such as variable linkages and objective function modality in 

the ZDT family, it is not very challenging to solve ZDT problems. Therefore, the bi-objective version 

of WFG family is included, which is generated by WFG toolbox in [40]. They have the various 

properties of convexity, concavity, discontinuity, non-uniform and the existence of many local optimal 

fronts, which are described in TABLE 1. Moreover, the triple-objective test suite, DTLZ [39], is also 

included to further assess the performance of our algorithm when solving MOPs with more than two 

objectives. Note that for ZDT1- ZDT3 test problems, the number of decision variables is 30, while the 

size of decision variables is 10 for ZDT4, ZDT6 and all of WFG and DTLZ test problems. Especially 

for WFG test problems, 10 decision variables are composed by 8 position parameters and 2 distance 

parameters. Totally, 21 test functions (ZDT1-ZDT4, ZDT6, WFG1-WFG9 and DTLZ1-DTLZ7) are 

covered in our experimental studies, which make the comparison results more comprehensive and 

convincible. 

TABLE 1 
PROPERTIES OF THE MOPS CREATED BY THE WFG TOOLKIT 

Problems Separability Modality Bias Geometry 
WFG1 separable uni polynomial, flat convex, mixed 

WFG2 non-separable f1 uni, f2 multi no bias convex, disconnected 

WFG3 non-separable uni no bias linear, degenerate 

WFG4 non-separable multi no bias concave 

WFG5 separable deceptive no bias concave 

WFG6 non-separable uni no bias concave 

WFG7 separable uni parameter dependent concave 

WFG8 non-separable uni parameter dependent concave 

WFG9 non-separable multi, deceptive parameter dependent concave 

 

4.2 Performance Measures 

(1) The inverted generational distance metric 

When comparing the performance of multi-objective algorithms, two evaluation criteria are 

generally considered. One is the convergence speed, which is observed from the distance between the 

approximated Pareto front and the true Pareto front. A closer distance generally indicates a faster 

convergence speed. The other one is the population diversity that is determined by the distribution of 

approximated Pareto front. The more uniform and smooth approximated Pareto front usually means the 

better population diversity. Since the inverted generational distance (IGD) metric [32] can 

simultaneously reflect the capabilities of convergence and diversity, it is adopted to evaluate the 

performance of all the algorithms in our experimental studies.  

Assume that *PF  is a set of points evenly distributed along the true Pareto front and PF  is a 

set of solutions that are found by the multi-objective algorithms. Then, the IGD metric is defined as  
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where ( , )d v PF  returns the minimum Euclidean distance from v  to the points of PF . If *PF  is 

distributed uniformly and large enough to represent the complete true Pareto front, the result of 
*( , )IGD PF PF  not only expresses the diversity of PF , but also reflects the convergence capability. 

Theoretically, a closer distance of PF  to *PF   and a more uniform distribution of PF  will result 

in a smaller value of *( , )IGD PF PF . 

(2) The coverage of two sets metric 

The coverage of two sets metric [56] is another performance metric, which can identify the 

Pareto-dominance relationship between two compared sets. Assuming that A, B are two approximated 

Pareto-optimal sets. The result of the coverage of two sets ( , )
C

I A B  returns the proportion of the 

individuals in B that are equal to or dominated by the individuals in A, which can be formulated as 

follows. 

 
{ }| ; : |

( , )
| |C

b B a A a b
I A B

B

∈ ∃ ∈
=

�

  (18) 

where the symbol “ a b� ” means b is equal to or dominated by a. The value ( , ) 1
C

I A B =  means that 

all the individuals in B are equal to or dominated by the individuals in A, while ( , ) 0
C

I A B =  implies 

no individual in B is equal to or dominated by the individuals in A. It is noted that both ( , )
C

I A B  and 

( , )
C

I B A  are required to be considered as ( , )
C

I A B  is not necessarily equal to 1 ( , )
C

I B A− . 

Therefore, for set A, it is preferred to get a larger value of ( , )
C

I A B  and a smaller value of ( , )
C

I B A . 
 

4.3 Parameter Settings 

In our simulations, in order to validate the performance of ADE-MOIA, we compare ADE-MOIA 

with six natural-inspired multi-objective algorithms, including two classical MOEAs (NSGA-II [16] 

and SPEA2 [14]), an archive hybrid scatter search algorithm (AbYSS) [23], a decomposition-based 

evolutionary multi-objective algorithm (MOEA/D-DE) [32], a novel PSO multi-objective algorithm 

(D2MOPSO) [26] and a newly proposed micro-population immune multi-objective algorithm (MIMO) 

[37]. All these algorithms have shown very good performance in solving MOPs. Therefore, the 

comparison of ADE-MOIA with the above-mentioned algorithms can make the results more 

convincible. 

As the parameter settings usually have great impact on the optimization performance, the 

parameter settings of all the six algorithms are set as suggested by their corresponding authors, which 

are summarized in TABLE 2. N represents the population size and the maximal generation is set to 250. 

Thus, the maximal numbers of function evaluations (FEs) are 25000 for all the benchmark MOPs. c
p  

and m
p  are respectively the crossover and mutation probabilities. c

η  and m
η  are respectively the 

distribution indexes of SBX and PM. For AbYSS, 1RefSet
N  and 

RefSet2
N  are the sizes of reference set 1 

and 2, respectively. In MOEA/D-DE, T defines the size of neighborhood in the weight vector and δ  

controls the probability that chooses parent from the T neighbors. r
n  is the maximal number that the 
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individuals are replaced by their neighbors. As introduced in MOEA/D-DE, the population size is 
1

1
m

H mN C −
− −= . When the number of objectives is 3 ( 3m = ), there is no exact H  value giving 100N = . 

Thus, H is set to 13, which gives the population size 105. 1C  and 2C  are two control parameters in 

D2MOPSO, which are randomly selected from [1.5, 2.5]. For MIMO, NA is the size of antibody 

population that is selected for cloning proliferation. A and B are two pre-defined parameters used to 

control the adaptive mutation operator in MIMO. The size of EXA is usually set as the population size 

N.  
All the compared algorithms are implemented in the framework of jMetal [57], which facilitates 

the development of meta-heuristic algorithms for solving MOPs. All the experiments are run by 30 

times. The median ( x� ) and interquartile-range (IQR) of the 30 results are collected for comparison. The 

best results in the comparison table are marked with bold font. The Wilcoxon rank sum test with 

significant level 0.05α =  is used to test whether the results of ADE-MOIA are statistically different 

from that of other algorithms. 

TABLE 2 
THE PARAMETER SETTINGS FOR ALL THE ALGORITHMS 

Algorithms Parameter settings 

NSGA-II 100, 0.9, 1/ , 20, 20
c m c m

N p p n η η= = = = =  

SPEA2 100, 0.9, 1/ , 20, 20
c m c m

N p p n η η= = = = =  

AbYSS 2100, 10, 10, 0.9, 1 / , 20, 20
RefSet1 RefSet c m c m

N N N p p n η η= = = = = = =  

MOEA/D-DE 100, 1.0, 0.5, 1/ , 20, 20, 0.9, 2
m m r

N CR F p n T nη δ= = = = = = = =  

D2MOPSO 1 2100, [0.1,0.5], , [1.5, 2.5]N w C C= ∈ =  

MIMO 100, 20, 1.0, 1/ , 20, 1.0, 3.0
c m c

N NA p p n A Bη= = = = = = =  

ADE-MOIA m100, 20, 0.5, 0.5, 1/ , 20, % 10%
m

N NA F CR p n pη= = = = = = =  

 

4.4 Experimental Results 

4.4.1 The Comparison of ADE-MOIA with Various Multi-objective Algorithms 

(1) The comparison using the IGD metric 

TABLE 3 shows the experimental results of all the algorithms in ZDT test suite, where the median 

( x� ), interquartile-range (IQR) and rank are respectively shown in the corresponding rows for one 

specific problem. It is clearly observed that ADE-MOIA performs better than the compared algorithms 

in ZDT1, ZDT2, ZDT3 and ZDT4 test problems. Although MOEA/D-DE performs best in ZDT6, it is 

not so good at solving ZDT1-ZDT4 problems. After summing all the ranks in ZDT problems, 

ADE-MOIA obtains the first rank, whereas D2MOPSO gets the last rank. Moreover, the Wilcoxon rank 

sum test shows that ADE-MOIA has similar results with AbYSS and MIMO in ZDT6.  

In TABLE 4, it has shown the comparison results of all the algorithms in WFG suite problems. It 

is observed from TABLE 4 that ADE-MOIA performs best in WFG1, WFG2, WFG4, WFG5, WFG6, 

WFG7 and WFG9, while AbYSS and MOEA/D-DE have the best performance in WFG3 and WFG8, 

respectively. The Wilcoxon rank sum test also shows that ADE-MOIA gets similar results with AbYSS 

in WFG4 and with D2MOPSO in WFG4 and WFG9. By adding all the ranks of WFG problems, 
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ADE-MOIA is found to have obvious advantages as the total rank of ADE-MOIA is much smaller than 

that of the others. MIMO, D2MOPSO, MOEA/D-DE, SPEA2, NSGA-II and AbYSS respectively get 

the 2th, 3th, 4th, 5th, 6th and 7th ranks according to the total rank. As WFG test suite is more complicated 

than ZDT test suite, the excellent performance of ADE-MOIA in WFG problems further confirms its 

superiority.  

From the above experiments, it is found that ADE-MOIA has a very promising performance in 

ZDT and WFG serial problems. However, these problems only have bi-objective functions. For 

investigating the performance in solving MOPs with more than two objectives, DTLZ problems are 

further tested. In TABLE 5, the comparison results of all the algorithms are demonstrated for DTLZ 

test suite. It is observed that ADE-MOIA performs best in DTLZ1, DTLZ3 and DTLZ6, SPEA2 gets 

the best results in DTLZ2, DTLZ4 and DTLZ7, and AbYSS is best in DTLZ5. The Wilcoxon rank sum 

test shows that ADE-MOIA and MOEA/D-DE have similar results in DTLZ1, DTLZ3 and DTLZ4. 

Moreover, ADE-MOIA is similar with NSGA-II in DTLZ4 and DTLZ7, with ABYSS in DTLZ4 and 

DTLZ5, and with MIMO in DTLZ3 and DTLZ5. Based on the total rank in the last row of TABLE 5, 

ADE-MOIA has the best comprehensive performance on DTLZ problems. SPEA2 and MIMO receive 

the second and third ranks respectively. AbYSS and MOEA/D-DE perform fairly and both get the 

fourth rank. At last, NSGA-II and D2MOPSO respectively receive the 6th and 7th ranks.  

In TABLE 6, the total ranks of the compared algorithms for ZDT, WFG and DTLZ test suits are 

summarized for evaluating their comprehensive performance. When considering all the test problems, 

the final rank confirms that ADE-MOIA performs better than the compared multi-objective algorithms, 

i.e., NSGA-II, SPEA2, AbYSS, MOEA/D-DE, D2MOPSO and MIMO. 
 

TABLE 3 
MEDIAN AND INTERQUARTILE RANGE OF THE IGD METRIC FOR ALL THE ALGORITHMS 

ON ZDT TEST SUITE  

 NSGA-II SPEA2 AbYSS MOEA/D-DE D2MOPSO MIMO ADE-MOIA 

ZDT1 
x�  2.666e-04 2.145e-04 2.006e-04 6.008e-04 5.375e-04 1.982e-04 1.941e-04 

IQR  2.05e-05 7.50e-06 6.70e-06 1.80e-04 1.26e-04 3.29e-06 1.93e-06 

rank 5 4 3 7 6 2 1 

ZDT2 
x�  2.718e-04 2.211e-04 2.049e-04 4.518e-04 3.266e-02 2.051e-04 2.003e-04 

IQR  2.04e-05 1.03e-05 6.49e-06 2.32e-04 3.23e-02 3.16e-06 2.48e-06 

rank 5 4 2 6 7 3 1 

ZDT3 
x�  4.102e-04 3.560e-04 3.331e-04 4.327e-03 1.150e-03 3.237e-04 3.187e-04 

IQR  2.10e-05 1.08e-05 5.61e-03 1.66e-03 5.02e-04 4.63e-06 8.37e-06 

rank 5 4 3 7 6 2 1 

ZDT4 
x�  3.501e-04 4.118e-04 3.336e-04 8.751e-03 1.280e-01 1.975e-04 1.948e-04 

IQR  9.92e-05 1.32e-03 1.67e-04 1.46e-02 1.33e-01 3.60e-06 2.85e-06 

rank 4 5 3 6 7 2 1 

ZDT6 
x�  2.948e-04 5.468e-04 1.288e-04 1.072e-04 4.738e-04 1.272e-04 1.274e-04 

IQR  4.72e-05 1.24e-04 7.72e-06 3.71e-07 1.67e-04 6.06e-06 7.05e-06 
rank 5 7 4≈ 1 6 2≈ 3 

Total rank 24 24 15 27 32 11 7 

“≈” indicates the results obtained by the algorithm are similar to the ones obtained by ADE-MOIA 
using the Wilcoxon rank sum test with significant level 0.05α = . 
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TABLE 4 

MEDIAN AND INTERQUARTILE RANGE OF THE IGD METRIC FOR ALL THE ALGORITHMS 
ON WFG TEST SUITE 

  NSGA-II SPEA2 AbYSS MOEA/D-DE D2MOPSO MIMO ADE-MOIA 

WFG1 
x�  7.144e-02 7.947e-02 8.092e-02 4.950e-03 5.561e-03 8.570e-04 6.113e-04 

IQR  8.62e-03 3.29e-03 3.63e-03 4.49e-03 3.18e-03 4.06e-03 1.73e-05 

rank 5 6 7 3 4 2 1 

WFG2 
x�  3.569e-02 1.968e-02 5.172e-02 2.022e-02 2.115e-02 5.171e-02 1.959e-02 

IQR  3.21e-02 3.21e-02 1.89e-05 6.19e-04 7.91e-03 7.79e-06 4.20e-06 

rank 5 2 7 3 4 6 1 

WFG3 
x�  4.381e-02 4.582e-02 1.285e-03 4.322e-02 4.356e-02 4.328e-02 4.322e-02 

IQR  5.54e-04 2.76e-03 1.45e-03 2.47e-06 3.51e-04 9.84e-05 3.68e-06 
rank 6 7 1 2 5 4 3 

WFG4 
x�  5.158e-04 4.559e-04 3.797e-04 6.655e-04 3.764e-04 3.780e-04 3.743e-04 

IQR  7.57e-05 5.04e-05 8.34e-05 1.39e-04 4.76e-05 8.33e-06 8.45e-06 

rank 6 5 4≈ 7 2≈ 3 1 

WFG5 
x�  1.418e-03 1.391e-03 2.522e-03 1.408e-03 1.307e-03 1.387e-03 1.385e-03 

IQR  1.44e-05 5.86e-06 4.66e-06 1.72e-06 2.34e-06 3.49e-06 3.24e-06 

rank 6 4 7 5 1 3 2 

WFG6 
x�  4.824e-04 4.301e-04 1.984e-03 8.083e-04 5.273e-04 3.850e-04 3.342e-04 

IQR  1.05e-04 1.75e-04 2.18e-03 4.62e-04 2.21e-04 1.38e-04 2.30e-05 

rank 4 3 7 6 5 2 1 

WFG7 
x�  8.812e-04 1.486e-03 2.118e-03 5.621e-04 4.303e-04 5.277e-04 2.874e-04 

IQR  3.35e-04 9.30e-04 2.38e-03 4.82e-04 1.49e-05 2.51e-04 1.17e-05 

rank 5 6 7 4 2 3 1 

WFG8 
x�  8.417e-04 9.780e-04 1.129e-02 4.925e-04 1.238e-03 8.330e-04 6.021e-04 

IQR  1.44e-04 1.71e-04 4.02e-02 8.49e-05 4.53e-04 1.36e-04 8.61e-05 
rank 4 5 7 1 6 3 2 

WFG9 
x�  4.114e-04 3.380e-04 3.781e-04 4.010e-04 3.081e-04 3.290e-04 3.069e-04 

IQR  5.39e-05 3.48e-05 1.50e-04 1.66e-05 3.29e-05 5.67e-05 1.41e-05 

rank 7 4 5 6 2≈ 3 1 

Total rank 48 42 52 37 31 29 13 

“≈” indicates the results obtained by the algorithm are similar to the ones obtained by ADE-MOIA 
using the Wilcoxon rank sum test with significant level 0.05α = . 
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TABLE 5 
MEDIAN AND INTERQUARTILE RANGE OF THE IGD METRIC FOR ALL THE ALGORITHMS 

ON DTLZ TEST SUITE 

 NSGA-II SPEA2 AbYSS MOEA/D-DE D2MOPSO MIMO ADE-MOIA 

DTLZ1 
x�  5.495e-03 4.850e-03 1.165e-02 5.365e-04 1.153e-01 3.700e-03 4.773e-04 

IQR  4.78e-03 4.72e-03 1.23e-02 3.01e-03 1.12e-01 8.77e-03 3.21e-03 

rank 5 4 6 2≈ 7 3 1 

DTLZ2 
x�  7.836e-04 5.881e-04 7.911e-04 8.097e-04 6.939e-04 7.505e-04 7.231e-04 

IQR  5.22e-05 2.19e-05 5.41e-05 7.19e-06 2.16e-05 5.39e-05 4.72e-05 
rank 5 1 6 7 2 4 3 

DTLZ3 
x�  2.811e-02 3.226e-02 3.636e-02 1.429e-03 6.336e-01 1.396e-03 1.390e-03 

IQR  2.13e-02 2.53e-02 7.56e-02 7.25e-03 4.67e-01 1.76e-03 1.16e-02 

rank 4 5 6 3≈ 7 2≈ 1 

DTLZ4 
x�  1.167e-03 7.750e-04 1.119e-03 1.168e-03 1.229e-03 1.197e-03 1.136e-03 

IQR  1.39e-04 4.56e-03 1.40e-04 5.78e-04 1.22e-04 1.57e-04 1.38e-04 
rank 4≈ 1 2≈ 5≈ 7 6 3 

DTLZ5 
x�  3.803e-04 2.770e-04 2.668e-04 1.044e-03 4.930e-04 2.730e-04 2.698e-04 

IQR  4.28e-05 1.45e-05 9.91e-06 1.25e-05 1.66e-04 9.59e-06 8.75e-06 
rank 5 4 1≈ 7 6 3≈ 2 

DTLZ6 
x�  4.373e-02 4.336e-02 2.207e-02 1.571e-03 2.969e-03 4.139e-04 4.008e-04 

IQR  8.62e-03 4.03e-03 1.45e-02 6.35e-06 8.16e-04 1.79e-05 1.41e-05 

rank 7 6 5 3 4 2 1 

DTLZ7 
x�  3.409e-03 2.558e-03 1.936e-02 9.520e-03 4.022e-03 3.890e-03 3.470e-03 

IQR  3.93e-04 9.02e-05 2.09e-02 7.31e-04 6.52e-04 6.67e-04 3.04e-04 
rank 2≈ 1 7 6 5 4 3 

Total rank 32 22 33 33 38 24 14 
 
“≈” indicates the results obtained by the algorithm are similar to the ones obtained by ADE-MOIA 
using the Wilcoxon rank sum test with significant level 0.05α =  . 

 
TABLE 6 

FINAL RANK OF ALL THE ALGORITHMS ON ZDT, WFG AND DTLZ TEST SUITES 

         Algorithms 
Problems 

NSGA-II SPEA2 AbYSS 
MOEA/D-D

E 
D2MOPSO MIMO ADE-MOIA 

Total Rank on ZDTs 24 24 15 27 32 11 7 

Total Rank on WFGs 48 42 52 37 31 29 13 

Total Rank on DTLZs 32 22 33 33 38 24 14 

Final Rank 104 88 100 97 101 64 34 

 

(2) The comparison using the coverage of two sets metric 

The approximated sets obtained by all the algorithms in 30 independent runs are further compared 

using the coverage of two sets metric. Figures 8-13 respectively show the box plots of ADE-MOIA 

against NSGA-II, SPEA2, AbYSS, MOEA/D-DE, D2MOPSO and MIMO based on the coverage of 

two sets metric. In order to check their statistical difference, TABLE 7 presents the p-values of 

wilcoxon rank test that are performed on their 30 independent values of the coverage of two sets, where 

the p-values larger than the significant level 5% indicate no statistical difference. It is noted that in Figs. 
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8-13, I, N, S, A, D, P and O respectively denote the solution sets obtained by ADE-MOIA, NSGA-II, 

SPEA2, AbYSS, MOEA/D-DE, D2MOPSO and MIMO. 

In Fig. 8, it is clearly observed that all the values of IC(I, N) for ZDT4, ZDT6, DTLZ1, DTLZ3, 

DTLZ6, WFG1 are greater than 0.5 and some of them are near to 1.0, while the results of IC(N, I) on 

the corresponding test problems are very small, which indicate that most of the solutions obtained by 

NSGA-II are dominated by that achieved by ADE-MOIA on these test problems. Thus, ADE-MOIA 

performs much better than NSGA-II on these test problems. For the other 15 test problems, it shows 

that only minority solutions are weakly dominated by each other. However, when only considering the 

results of the coverage of two sets, the median values of IC(I, N) are higher than that of IC(N, I) on all 

the test problems except WFG8, which means that the ratios of dominated solutions in NSGA-II are 

larger than that in ADE-MOIA. In this sense, ADE-MOIA is better than NSGA-II on all the test 

problems except WFG8. 

From Fig. 9, it is also found that ADE-MOIA performs much better than SPEA2 in ZDT4, ZDT6, 

DTLZ1, DTLZ3, DTLZ6, WFG1, as the values of IC(I, S) are greater than 0.5 while the corresponding 

results of IC(S, I) are very small. The second column in TABLE 7 shows that ADE-MOIA obtains the 

similar result with SPEA2 in WFG9. Besides that, for the other 14 test problems, the box plots and the 

Wilcoxon rank test indicate that ADE-MOIA performs better than SPEA2 in ZDT1-ZDT3, DTLZ2, 

DTLZ4, DTLZ5, DTLZ7, WFG2-WFG7, and worse than SPEA2 in WFG8. Therefore, ADE-MOIA 

can obtain the better results than SPEA2 on all the test problems except WFG8 and WFG9. 

The comparison of ADE-MOIA and AbYSS is illustrated in Fig. 10, where the values of IC(I, A) 

for ZDT4, DTLZ1, DTLZ3, DTLZ6, WFG1, WFG2 are greater than 0.5 while the corresponding 

results of IC(A, I) are near to 0. Thus, the majority of the solutions obtained by AbYSS are dominated 

by that found by ADE-MOIA. For the rest 15 test problems, as it is observed from the box plots and the 

third column in TABLE 7, ADE-MOIA performs better than AbYSS in ZDT1-ZDT3, ZDT6, DTLZ2, 

WFG3-WFG7, WFG9, similarly with AbYSS in DTLZ4, and worse than AbYSS in DTLZ5, DTLZ7, 

WFG8. In other words, ADE-MOIA is better than AbYSS on 17 out of 21 test problems. 

In Fig. 11, it is observed that the values of IC(I, D) for ZDT1-ZDT4 are greater than 0.5 while the 

corresponding values of IC(D, I) are very close to 0. Thus, ADE-MOIA performs much better than 

MOEA/D-DE in ZDT1-ZDT4, as most of the corresponding solutions obtained by MOEA/D-DE are 

dominated by that achieved by ADE-MOIA. For the remaining test problems, the box plots and the 

forth column in TABLE 7 show that ADE-MOIA performs better than MOEA/D-DE in 

DTLZ2-DTLZ5, WFG2, WFG4, WFG5, WFG7, WFG9, similarly with MOEA/D-DE in ZDT6, 

DTLZ1, DTLZ6, DTLZ7, WFG1, WFG3, WFG6, and worse than MOEA/D-DE in WFG8. In other 

words, when compared with MOEA/D-DE, ADE-MOIA respectively performs better, similarly and 

worse on 13, 7 and 1 out of 21 test problems. 

Observed from Fig. 12, the values of IC(I, P) for ZDT1-ZDT4, ZDT6, DTLZ1, DTLZ3, DTLZ6 

are greater than 0.5 while the corresponding results of IC(P, I) are close to 0. Thus, ADE-MOIA 

performs much better than D2MOPSO on these test problems. For the rest test problems, it can be 

observed from the box plots and the fifth column in TABLE 7 that ADE-MOIA performs better than 

D2MOPSO in DTLZ2, DTLZ4, DTLZ5, DTLZ7, WFG2, WFG4-WFG7, WFG9, similarly with 
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D2MOPSO in WFG1, WFG3, and worse than D2MOPSO in WFG8. Therefore, ADE-MOIA is better 

than or similar with D2MOPSO on 20 out of 21 test problems. 

The comparison of ADE-MOIA and MIMO is illustrated in Fig. 13. For DTLZ1 and WFG2, 

ADE-MOIA is much better than MIMO, as the corresponding values of IC(I, O) are much larger than 

that of IC(O ,I). Regarding to the other test problems, by observing from the box plots and the sixth 

column in TABLE 7, it is very clear that ADE-MOIA performs better than MIMO in ZDT1, ZDT2, 

ZDT4, DTLZ2, DTLZ4, DTLZ5, DTLZ7, WFG3-WFG7, WFG9, similarly with MIMO in ZDT6, 

DTLZ3, DTLZ6, WFG1, and worse than MIMO in ZDT3 and WFG8. Thus, ADE-MOIA performs 

better than or similarly with MIMO on 19 out of 21 test problems. 

At last, based on the final comparison results of the IGD metric and the coverage of two sets 

metric, it is reasonable to conclude that ADE-MOIA performs better than NSGA-II, SPEA2, AbYSS, 

MOEA/D-DE, D2MOPSO and MIMO on most of the test problems. 

 

TABLE 7 
THE p-VALUES OF WILCOXON RANK SUM TEST BETWEEN IC(I,~) AND IC(~,I) ON THE 30 

INDEPENDENT RUNS 

 
ADE-MOIA / 

NSGA-II 
ADE-MOIA / 

SPEA2 
ADE-MOIA / 

AbYSS 
ADE-MOIA / 
MOEA/D-DE 

ADE-MOIA / 
D2MOPSO 

ADE-MOIA / 
MIMO 

ZDT1 8.87e-12(-) 7.47e-12(-) 5.81e-11(-) 3.23e-13(-) 1.19e-12(-) 8.46e-11(-) 

ZDT2 5.02e-12(-) 4.05e-12(-) 2.06e-11(-) 1.74e-11(-) 3.23e-13(-) 1.27e-10(-) 

ZDT3 2.45e-12(-) 2.36e-11(-) 6.84e-04(-) 1.69e-14(-) 1.18e-12(-) 1.89e-04(+) 

ZDT4 5.66e-12(-) 3.15e-12(-) 3.42e-12(-) 1.69e-14(-) 1.68e-14(-) 1.92e-08(-) 

ZDT6 1.10e-12(-) 2.71e-14(-) 1.15e-12(-)   1.00  (≈) 8.30e-13(-)   1.00  (≈) 

DTLZ1 9.17e-09(-) 2.71e-08(-) 5.42e-12(-)  0.0667 (≈) 4.88e-14(-) 4.13e-05(-) 

DTLZ2 1.17e-11(-) 1.34e-11(-) 1.24e-09(-) 1.30e-11(-) 1.21e-11(-) 7.84e-09(-) 

DTLZ3 7.25e-13(-) 6.00e-13(-) 4.11e-12(-)  0.0484 (-) 1.68e-14(-)  0.8023 (≈) 

DTLZ4 4.99e-11(-) 2.46e-08(-)  0.2311 (≈) 1.42e-11(-) 6.10e-12(-) 1.19e-04(-) 

DTLZ5 1.93e-11(-) 2.02e-11(-) 6.55e-10(+) 1.17e-11(-) 1.64e-11(-) 7.39e-04(-) 

DTLZ6 1.69e-14(-) 1.69e-14(-) 1.69e-14(-)  0.1097 (≈) 2.24e-12(-)   1.00  (≈) 

DTLZ7 2.53e-11(-) 4.83e-10(-) 1.44e-05(+)  0.9350 (≈) 2.88e-11(-) 5.02e-05(-) 

WFG1 1.83e-08(-) 5.36e-09(-) 1.69e-14(-)  0.8510 (≈)   1.00  (≈)  0.2949 (≈) 

WFG2 1.71e-12(-) 1.21e-12(-) 1.20e-12(-) 1.67e-11(-) 2.45e-11(-) 4.62e-12(-) 

WFG3 3.67e-07(-) 8.93e-08(-) 7.76e-11(-)  0.7378 (≈) 0.2887(≈) 4.23e-09(-) 

WFG4 1.24e-09(-) 2.57e-07(-) 1.13e-08(-) 4.79e-11(-) 1.87e-11(-) 2.31e-10(-) 

WFG5 3.28e-10(-) 1.08e-05(-) 1.98e-05(-) 1.63e-05(-) 1.22e-08(-)  0.0036 (-) 

WFG6 3.11e-09(-) 4.34e-09(-) 1.21e-11(-)  0.2757 (≈) 3.94e-08(-) 4.33e-10(-) 

WFG7 2.49e-11(-) 3.19e-10(-) 8.76e-10(-) 7.06e-09(-) 1.05e-08(-) 7.00e-11(-) 

WFG8 2.92e-11(+) 2.90e-11(+)  0.0068 (+) 4.62e-11(+) 2.89e-11(+) 6.21e-09(+) 

WFG9 1.85e-04(-)  0.8523 (≈) 2.11e-09(-)  0.0013 (-) 5.59e-05(-)  0.0184 (-) 

“-”, “+” and “≈” denote that the performance of the corresponding algorithm is worse than, better than, 
and similar to that of ADE-MOIA, respectively. 
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Fig. 8 Box plots of the coverage of two sets obtained by ADE-MOIA and NSGA-II in solving all the test problems. In 

each plot, the left box represents the distribution of IC(I, N) and the right box indicates the distribution of IC(N, I) 

 
Fig. 9 Box plots of the coverage of two sets obtained by ADE-MOIA and SPEA2 in solving all the test problems. In 

each plot, the left box represents the distribution of IC(I, S) and the right box indicates the distribution of IC(S, I) 
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Fig. 10 Box plots of the coverage of two sets obtained by ADE-MOIA and AbYSS in solving all the test problems. In 

each plot, the left box represents the distribution of IC(I, A) and the right box indicates the distribution of IC(A, I) 

 
Fig. 11 Box plots of the coverage of two sets obtained by ADE-MOIA and MOEA/D-DE in solving all the test 

problems. In each plot, the left box represents the distribution of IC(I, D) and the right box indicates the distribution of 

IC(D, I) 
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Fig. 12 Box plots of the coverage of two sets obtained by ADE-MOIA and D2MOPSO in solving all the test problems. 

In each plot, the left box represents the distribution of IC(I, P) and the right box indicates the distribution of IC(P, I) 

 
Fig. 13 Box plots of the coverage of two sets obtained by ADE-MOIA and MIMO in solving all the test problems. In 

each plot, the left box represents the distribution of IC(I, O) and the right box indicates the distribution of IC(O, I) 
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4.4.2 The Effectiveness of ADE Operator  

(1) The Comparative Studies of Basic DE, SBX and ADE Operators 

To demonstrate the advantages of ADE operator, the performance of ADE-MOIA is further 

compared with the two variants of ADE-MOIA, such as DE-MOIA and SBX-MOIA. DE-MOIA adopts 

the basic DE operator introduced in MOEA/D-DE [32] instead of ADE operator, while SBX-MOIA 

replaces the ADE operator with SBX operator, which is mostly exploited in various multi-objective 

algorithms [27, 29-33, 37]. Their comparison results in all ZDT, WFG and DTLZ problems are shown 

in TABLE 8, where the best results are identified with boldface. 

 

TABLE 8 
MEDIAN AND INTERQUARTILE RANGE OF THE IGD METRIC FOR DIFFERENT 

EVOLUTION OPERATOR  

          Algorithm 
Problems 

SBX-MOIA DE-MOIA ADE-MOIA 

IQR
x�  

IQR
x�  

IQR
x�  

ZDT1 2.041e-04 4.70e-06 - 1.987e-04 3.24e-06 - 1.941e-04 1.93e-06 

ZDT2 2.080e-04 3.03e-06 - 2.040e-04 3.70e-06 - 2.003e-04 2.48e-06 

ZDT3 3.259e-04 7.93e-06 - 3.202e-04 6.75e-06 ≈ 3.187e-04 8.36e-06 

ZDT4 2.750e-04 1.11e-04 - 1.973e-04 5.28e-06 - 1.948e-04 2.85e-06 

ZDT6 1.313e-04 8.64e-06 - 1.280e-04 7.65e-06 ≈ 1.274e-04 7.05e-06 

WFG1 6.105e-02 1.35e-02 - 6.191e-04 1.73e-02 - 6.113e-04 1.73e-05 

WFG2 5.171e-02 3.21e-02 - 1.959e-02 3.21e-02 ≈ 1.959e-02 4.20e-06 

WFG3 4.338e-02 1.60e-04 - 4.322e-02 1.22e-05 - 4.322e-02 3.68e-06 

WFG4 3.808e-04 1.92e-05 - 3.719e-04 1.12e-05 ≈ 3.743e-04 8.45e-06 

WFG5 1.389e-03 4.06e-06 - 1.391e-03 1.22e-05 - 1.385e-03 3.24e-06 

WFG6 4.019e-04 1.48e-04 - 5.184e-04 1.86e-04 - 3.342e-04 2.30e-05 

WFG7 5.928e-04 4.32e-04 - 2.958e-04 2.26e-05 - 2.874e-04 1.17e-05 

WFG8 7.419e-04 1.98e-04 - 4.099e-04 6.56e-05 + 6.021e-04 8.61e-05 

WFG9 3.272e-04 2.20e-05 - 3.344e-04 4.94e-05 - 3.069e-04 1.41e-05 

DTLZ1 1.310e-02 1.13e-02 - 1.243e-02 1.44e-02 - 4.773e-04 3.21e-03 

DTLZ2 7.721e-04 6.61e-05 - 6.820e-04 2.69e-05 + 7.231e-04 4.72e-05 

DTLZ3 3.362e-02 3.59e-02 - 1.459e-02 2.89e-02 - 1.390e-03 1.16e-02 

DTLZ4 1.193e-03 1.11e-04 - 1.212e-03 1.16e-04 - 1.136e-03 1.38e-04 

DTLZ5 2.707e-04 7.88e-06 ≈ 2.729e-04 9.91e-06 - 2.700e-04 8.75e-06 

DTLZ6 3.784e-02 1.11e-02 - 4.039e-04 1.51e-05 ≈ 4.008e-04 1.41e-05 

DTLZ7 3.829e-03 4.93e-04 - 3.662e-03 6.62e-04 - 3.470e-03 3.04e-04 

-/+/≈ 20/0/1 14/2/5  

The symbols of “-”, “+” and “≈” denote that the performance of the corresponding algorithm is worse 
than, better than, and similar to that of ADE-MOIA, respectively. 

 

Considering the ZDT test functions, the experimental results show that ADE-MOIA is better than 

SBX-MOIA in all ZDT problems, and better than DE-MOIA in ZDT1, ZDT2 and ZDT4. The Wilcoxon 
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rank sum test indicates that ADE-MOIA and DE-MOIA have similar performance in ZDT3 and ZDT6. 

Especially in ZDT4 that has many local Pareto fronts, ADE-MOIA performs much better. This is 

probably because the proposed ADE operator can adaptively adjust its scaling factor, which makes 

ADE-MOIA jump out from the local optimum.  

Concerning the WFG problems in TABLE 8, ADE-MOIA performs better than SBX-MOIA in all 

WFG serial problems. ADE-MOIA gives pretty well results in the problems of WFG1, WFG2 and 

WFG6-WFG9. This is probably because the proposed ADE operator is especially suitable for the 

complex problems with variable linkages. When compared with DE-MOIA, ADE-MOIA performs 

better in WFG1, WFG3, WFG5-WFG7 and WFG9, and worse in WFG8. The Wilcoxon rank sum test 

demonstrates that they have comparable results in WFG2 and WFG4.  

Regarding the DTLZ problems in TABLE 8, ADE-MOIA performs better than SBX-MOIA in all 

DTLZ problems except DTLZ5, and better than DE-MOIA in DTLZ1 and DTLZ3-7. The Wilcoxon 

rank sum test shows that ADE-MOIA performs similarly with SBX-MOIA in DTLZ5, and with 

DE-MOIA in DTLZ6. These simulations also validate that ADE-MOIA is especially suitable for the 

MOPs characterized with many local Pareto fronts as it performs very well in DTLZ1 and DTLZ3.  

In the last row of TABLE 8, the symbols of “-”, “+” and “≈” respectively denote that the 

performance of the corresponding algorithm is worse than, better than, and similar with that of 

ADE-MOIA. It is obviously observed that the statistical results of ADE-MOIA are better than or 

similar with SBX-MOIA in all test problems, and better than or similar with DE-MOIA in 19 out of 21 

test problems. Therefore, it is convincible to conclude that our proposed ADE operator is more 

effective when compared with the commonly used SBX operator and the basic DE operator.  

 
(2) The Advantages of Adaptive Control Parameter   

In ADE-MOIA, CR is gradually decreased with the running of evolutionary process and the F 

value is dynamically updated by the feedback of successfully produced offspring. When solving SOPs, 

there are lots of adaptive control mechanisms reported for DE [27, 28]. However, the adaptive control 

parameter for DE is rare in solving MOPs as most of the DE operators in MOEAs usually use a fixed 

parameter. As the two parameters of DE operator have great impact on the performance, an adaptive 

approach to control these parameters is extremely important. To illustrate the effectiveness of adaptive 

control method, ADE-MOIA is compared with its two variants, i.e., DE1-MOIA and DE2-MOIA, both 

of which use the popular parameter settings. In our experiments, DE1-MOIA fixedly set F as 0.5 and 

CR as 0.5, while DE2-MOIA has the parameter settings with F=0.5 and CR=1.0. 

TABLE 9 illustrates the results of ADE-MOIA and its variants (DE1-MOIA, DE2-MOIA) in all 

ZDT, WFG and DTLZ problems. ADE-MOIA is better than DE2-MOIA in all ZDT test functions. This 

is probably because the offspring has not inherited the parent’s information as the crossover rate (CR) is 

set as 1.0. When compared with DE1-MOIA, ADE-MOIA is better in ZDT1 and ZDT2, and similar in 

ZDT3, ZDT4 and ZDT6. Looking at the WFG problems, ADE-MOIA is better than both DE1-MOIA 

and DE2-MOIA in WFG1, WFG5, WFG6, WFG7 and WFG8. Besides that, ADE-MOIA gets the 

similar results with DE1-MOIA and DE2-MOIA in WFG2. For WFG3, ADE-MOIA performs similarly 

with DE1-MOIA and slightly worse than DE2-MOIA. Moreover, ADE-MOIA is worse than 
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DE1-MOIA but better than DE2-MOIA on WFG4. Considering the DTLZ problems, ADE-MOIA 

performs better in DTLZ5 and DTLZ6, similarly in DTLZ1, DTLZ3, DTLZ4 and DTLZ7, and slightly 

worse in DTLZ2, when compared with DE1-MOIA. To sum up, ADE-MOIA is better than DE1-MOIA 

in DTLZ serials. For DE2-MOIA, it is obvious that ADE-MOIA is better in all DTLZ functions except 

a slightly worse in DTLZ2. 

In the last row of TABLE 9, the symbols of “-”, “+” and “≈” denote that the performance of the 

corresponding algorithm is worse than, better than, and similar with that of ADE-MOIA, respectively. 

From these statistical results, it is shown that ADE-MOIA has 9 problems better than, 3 problems worse 

than and 9 problems similar with DE1-MOIA. Besides that, ADE-MOIA has 17 problems better than, 3 

problems worse than and one problem similar with DE2-MOIA. Based on the above analysis, it is 

reasonably concluded that the proposed adaptive parameter control is able to get better results than the 

popular fixed parameter settings in most cases. 
 

TABLE 9 
MEDIAN AND INTERQUARTILE RANGE OF THE IGD METRIC FOR DE1-MOIA, DE2-MOIA 

AND ADE-MOIA  
 Algorithm DE1-MOIA DE2-MOIA ADE-MOIA 

Problem  IQR
x�  

IQR
x�  

IQR
x�  

ZDT1 1.980e-04 3.00e-06 - 2.828e-04 1.43e-04 - 1.941e-04 1.93e-06 

ZDT2 2.044e-04 4.61e-06 - 3.177e-04 1.09e-04 - 2.003e-04 2.48e-06 

ZDT3 3.202e-04 8.18e-06 ≈ 1.338e-03 1.10e-03 - 3.187e-04 8.37e-06 

ZDT4 1.954e-04 4.35e-06 ≈ 4.586e-04 3.85e-04 - 1.948e-04 2.85e-06 

ZDT6 1.293e-04 9.77e-06 ≈ 1.497e-04 2.40e-05 - 1.274e-04 7.05e-06 

WFG1 2.081e-02 2.29e-02 - 6.170e-04 4.40e-03 - 6.113e-04 1.73e-05 

WFG2 1.959e-02 3.21e-02 ≈ 1.959e-02 1.47e-05 ≈ 1.959e-02 4.20e-06 

WFG3 4.322e-02 1.96e-06 ≈ 4.322e-02 3.36e-07 + 4.322e-02 3.68e-06 

WFG4 3.679e-04 1.17e-05 + 3.810e-04 1.78e-05 - 3.743e-04 8.45e-06 

WFG5 1.388e-03 4.50e-06 - 1.402e-03 1.27e-05 - 1.385e-03 3.24e-06 

WFG6 3.437e-04 4.23e-04 - 6.407e-04 2.76e-04 - 3.342e-04 2.30e-05 

WFG7 2.920e-04 9.62e-06 - 4.370e-04 5.95e-04 - 2.874e-04 1.17e-05 

WFG8 5.576e-04 7.11e-05 + 3.183e-04 3.24e-05 + 6.021e-04 8.61e-05 

WFG9 3.308e-04 4.91e-05 - 3.446e-04 5.74e-05 - 3.069e-04 1.41e-05 

DTLZ1 2.964e-03 2.88e-03 ≈ 3.326e-02 5.07e-02 - 4.773e-04 3.21e-03 

DTLZ2 6.814e-04 2.25e-05 + 7.003e-04 2.81e-05 + 7.231e-04 4.72e-05 

DTLZ3 1.181e-03 1.49e-02 ≈ 1.076e-01 1.68e-01 - 1.390e-03 1.16e-02 

DTLZ4 1.132e-03 1.71e-04 ≈ 1.222e-03 2.09e-04 - 1.136e-03 1.38e-04 

 DTLZ5 2.747e-04 8.89e-06 - 2.877e-04 1.32e-05 - 2.698e-04 8.75e-06 

DTLZ6 4.084e-04 1.57e-05 - 4.058e-04 2.07e-05 - 4.008e-04 1.41e-05 

DTLZ7 3.458e-03 3.96e-04 ≈ 4.141e-03 4.46e-04 - 3.470e-03 3.04e-04 

-/+/≈ 9/3/9 17/3/1  

The symbols of “-”, “+” and “≈” denote that the performance of the corresponding algorithm is worse 
than, better than, and similar to that of ADE-MOIA, respectively. 

 

 

 

ajhang lian
Highlight



27 

 

5. Conclusions 

In this paper, we propose a novel hybrid multi-objective immune algorithm with adaptive DE. Its 

evolutionary strategy employs a novel adaptive DE operation with a suitable parent selecting strategy 

and a novel adaptive parameter control method. The appropriate parent selection for DE operator is 

able to provide a correct evolutionary direction. Besides that, the crossover rate (CR) is gradually 

decreasing with the process of evolution and the scaling factor (F) is dynamically updated based on the 

success rate of offspring. The proposed adaptive adjustment of F and CR provides a good balance 

between exploration and exploitation. The effectiveness of the proposed adaptive DE operations, 

including the parent selecting strategy and adaptive parameter control, is validated by the experimental 

studies. When compared with NSGA-II, SPEA2, AbYSS, MOEA/D-DE, D2MOPSO and MIMO on 21 

benchmark test problems, the proposed algorithm shows better performance on most cases. In our 

future work, the performance of our algorithm will be further studied by using different DE strategies. 

The hybridization of various DE strategies in our algorithm may further enhance the exploration 

capability and thus improve the optimization performance. Besides that, the application of our 

algorithm for some practical engineering problems will also be investigated. 
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Highlights: 

� Differential evolution is embedded into the multi-objective immune algorithm. 

� A suitable parent selection strategy provides a correct evolutionary direction. 

� A novel adaptive control approach enhances the algorithmic robustness.  

 

 

 

 




