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a b s t r a c t

Recently, multi-objective particle swarm optimization (MOPSO) has shown the effectiveness in solving multi-

objective optimization problems (MOPs). However, most MOPSO algorithms only adopt a single search strat-

egy to update the velocity of each particle, which may cause some difficulties when tackling complex MOPs.

This paper proposes a novel MOPSO algorithm using multiple search strategies (MMOPSO), where decompo-

sition approach is exploited for transforming MOPs into a set of aggregation problems and then each particle

is assigned accordingly to optimize each aggregation problem. Two search strategies are designed to update

the velocity of each particle, which is respectively beneficial for the acceleration of convergence speed and

the keeping of population diversity. After that, all the non-dominated solutions visited by the particles are

preserved in an external archive, where evolutionary search strategy is further performed to exchange useful

information among them. These multiple search strategies enable MMOPSO to handle various kinds of MOPs

very well. When compared with some MOPSO algorithms and two state-of-the-art evolutionary algorithms,

simulation results show that MMOPSO performs better on most of test problems.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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1. Introduction

In many real-world engineering applications, the problem that

needs to optimize multiple objectives simultaneously is often en-

countered, which is called multi-objective optimization problems

(MOPs) (Deb, Pratap, Agarwal, & Meyarivan, 2002; Ishibuchi & Mu-

rata, 1998; Samanlioglu, 2013). For example, the goals in job shop

scheduling are commonly required to minimize the makespan, to-

tal workload, and critical workload, while the targets in product de-

sign are certainly needed to minimize the cost of product and opti-

mize its quality. Since the conflicts exist among the objectives, the

improvement of one objective may deteriorate other objectives and

resultantly it generates a set of equally-optimal solutions, which is

termed Pareto-optimal set (PS). The corresponding mapping of PS in

objective space is termed Pareto-optimal front (PF). As the size of PF

may be infinite, it is impractical to find out all the Pareto-optimal so-

lutions. Thus, an important job of MOPs is to obtain a finite size of PS

that is distributed uniformly along the PF, which supports the deci-

sion maker to select the appropriate solutions for different practical

cases (Lin & Chen, 2013; Zhang & Li, 2007).

Currently, nature-inspired metaheuristic algorithms have been

recognized to be well suitable for solving MOPs since they can handle
∗ Corresponding author. Tel.: +86 75526534407; fax: +86-75526534078.

E-mail address: lijq@szu.edu.cn (J. Li).
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ome complex problems that are characterized with multimodality,

onlinearity, and discontinuity (Jones, Mirrazavi, & Tamiz, 2002).

mong them, particle swarm optimization (PSO) is an interesting

ature-inspired algorithm that mimics the social cooperative and

ompetitive behavior of bird flocking and fish schooling (Kennedy &

berhart, 1995). Due to the fast convergence speed and easy imple-

entation, it has attracted a great interest of researchers and been

esigned for solving many single-objective optimization problems

SOPs) and various engineering applications (Dang et al., 2013; Nay-

ri, Yang, & Elsherbeni, 2013; Unler & Murat, 2010). The promising

esults provided by PSO for solving SOPs validate its effectiveness

nd efficiency to locate the optimal results in a large and complex

roblem landscape. This motivates the researchers to extend PSO

or MOPs and plenty of multi-objective PSO (MOPSO) algorithms are

resented accordingly (Moubayed, Pertovski, & McCall, 2014; Coello

oello, Pulido, & Lechuga, 2004; Goh, Tan, Liu, & Chiam, 2010; Zhan

t al., 2013). Generally, most of the existing MOPSO algorithms can

e classified into two categories. The first class embeds the Pareto

ominance relationship into PSO, which is used to determine the

ersonal best and global best particles (Nebro et al., 2009; Sierra &

oello Coello, 2005; Wang & Yang, 2010). The second kind adopts de-

omposition approach to transform MOPs into a set of SOPs, where

raditional PSO can be directly applied to solve MOPs (Moubayed,

ertovski, & McCall, 2010; Martinez & Coello Coello, 2011; Peng &

hang, 2008). These MOPSO algorithms perform very well in solving
EURO) within the International Federation of Operational Research Societies (IFORS).
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ome MOPs. However, when tackling the complex MOPs character-

zed with multimodality and the existence of many local PFs, e.g.,

FG1 (Huband, Barone, While, & Hingston, 2005) and DTLZ3 (Deb,

hiele, Laumanns, & Zitzler, 2005), most MOPSO algorithms fail to ef-

ectively approach the true PF. This is mainly because they only adopt

single search strategy to update the velocity of each particle, which

ay lack the capabilities to tackle some kinds of complex MOPs.

To repair this weakness, multiple search strategies may be an al-

ernative technology as it has been studied experimentally in PSO for

olving SOPs and proven to be an effective and efficient approach

o enhance the capabilities of PSO when handling various types of

OPs (Hu, Wu, & Weir, 2013; Li, Yang, & Nguyen, 2012; Zuo, Zhang,

Tan, 2014). Inspired by the reported multiple search strategies for

OPs, it is reasonable to believe that multiple search strategies can

e applied in MOPSO to further improve its convergence speed and

he robustness when dealing with different kinds of MOPs. There-

ore, a novel MOPSO algorithm with multiple search strategies is pre-

ented in this paper, called MMOPSO. Decomposition approach is

dopted in MMOPSO to decompose MOPs into a set of SOPs and then

ach particle is assigned to optimize each SOP. Two search strate-

ies for updating the particle’s velocity are designed to accelerate

he convergence speed and maintain the population diversity respec-

ively. Their cooperation is controlled by a pre-defined threshold. All

he non-dominated solutions visited by the particles are stored in a

nite-size external archive. Once the external archive is full, only the

on-dominated solutions with bigger crowding-distance values will

e remained, which are considered to be the elitist solutions and

ood representatives of the entire PF. To let the elitist information

e shared among the external archive, an evolutionary search strat-

gy, composed by simulated binary crossover (SBX) and polynomial

utation (PM), is performed, which enhances the exploratory capa-

ilities of MMOPOS. When compared with the existing MOPSO algo-

ithms, the novelty of MMOPSO can be described as follows.

(1) Different from the single search pattern adopted in most

MOPSO algorithms, two search strategies are designed in

MMOPSO for updating the velocity of each particle, which are

aimed at accelerating the convergence speed and maintaining

the population diversity respectively. Their executions are de-

termined by a pre-defined threshold to retain the balance of

exploitation and exploration.

(2) An evolutionary search strategy is run on the external archive

of PSO, which is beneficial for the information exchange among

the elitist individuals. The evolutionary operators can provide

another search power for PSO and remedy the weaknesses of

PSO-based search when handling some difficult MOPs.

(3) New definitions of personal-best and global-best particles are

given in MMOPSO. Traditionally, personal-best and global-best

particles are the best ones visited by each particle and the

swarm respectively. Whereas, in MMOPSO, as decomposition

approach is adopted to transform MOPs into a set of SOPs,

personal-best and global-best particles are respectively con-

sidered to be the best values of each aggregation problem and

all SOPs. Therefore, MMOPSO can focus on optimizing each ag-

gregation problem by using PSO search.

The advantages of multiple search strategies will be investi-

ated and validated by the experimental studies. Total 24 standard

enchmark problems, including Fonseca (Fonseca & Flemming, 1998),

ursawe (1990), Schaffer (1985), ZDT (Zitzler, Deb, & Thiele, 2000),

FG (Huband et al., 2005) and DTLZ (Deb et al., 2005) series test

roblems, are utilized to evaluate the comprehensive performance of

MOPSO. When compared with some MOPSO algorithms and two

tate-of-the-art multi-objective evolutionary algorithms (MOEAs),

.g., DDMOPSO (Moubayed et al., 2014), CMPSO (Zhan et al., 2013),

MPSO (Nebro et al., 2009), dMOPSO (Martinez & Coello Coello, 2011),

MOPSO (Sierra & Coello Coello, 2005), NSGA-II (Deb et al., 2002) and
OEA/D (Li & Zhang, 2009), MMOPSO performs better on most of test

roblems when considering both of the convergence speed and pop-

lation diversity.

The rest of this paper is organized as follows. Section 2 introduces

he related background, including some important terms of MOPs,

ecomposition approach, traditional PSO and the existing MOPSO al-

orithms. In Section 3, the details of MMOPSO are described, where

he framework of MMOPSO and multiple search approaches are il-

ustrated. The experimental studies are given in Section 4, which

ompare the performance of MMOPSO with various multi-objective

ptimization algorithms and analyze the advantages of multiple

earch strategies in MMOPSO. At last, conclusions are summarized in

ection 5.

. Related work

.1. Multi-objective optimization problems

A continuous and unconstrained multi-objective optimization

roblem can be formulated as follows.

in
x∈�

F(x) = ( f1(x), f2(x), . . . , fm(x))T (1)

here x = (x1, x2, . . . , xn) is a n-dimensional decision vector bounded

n the decision space �, m is the number of objective functions and the

apping function F: � → Rm defines m objective functions bounded

n the objective space Rm. Since the objectives often contradict each

ther, the improvement of one objective may deteriorate other ob-

ectives. Therefore, the output of MOPs is generally a set of equally-

ptimal solutions, which can be determined by Pareto optimality

Bosman & Thierens, 2003).

efinition 1. (Pareto-dominance): A decision vector x is said to dom-

nate another decision vector y (noted as x � y) if and only if

∀i ∈ {1, 2, . . . , m} : fi(x) ≤ fi(y)) ∧ (∃ j ∈ {1, 2, . . . , m} : f j(x) < f j(y))

(2)

efinition 2. (Pareto-optimal): A solution x is said to be Pareto-

ptimal if and only if

∃y ∈ � : y � x. (3)

efinition 3. (Pareto-optimal set): The set PS includes all Pareto-

ptimal solutions, defined as

S = {x|¬∃y ∈ � : y � x}. (4)

efinition 4. (Pareto-optimal front): The set PF includes the values of

ll the objective functions corresponding to the Pareto-optimal solu-

ions in PS.

F = {F(x) = ( f1(x), f2(x), . . . , fm(x))T |x ∈ PS}. (5)

.2. Decomposition approach

Recently, decomposition approach is widely embedded into

ature-inspired metaheuristic for solving MOPs (Gong et al., 2014;

iu, Gu, & Zhang, 2014). It is based on the facts that a Pareto-optimal

olution for MOPs, under some mild conditions, could be an optimal

olution of a scalar optimization problem, whose optimization tar-

et is an aggregation of all the objectives. Therefore, the finding of PF

an be decomposed into a set of SOPs (Li & Zhang, 2009; Zhang & Li,

007). Currently, the popular decomposition approaches include the

eighted sum, Tchebycheff and boundary intersection approaches.

mong them, boundary intersection method has shown certain ad-

antages over the other two approaches as discussed in (Martinez &

oello Coello, 2011; Zhang & Li, 2007). Thus, boundary intersection

ethod is adopted in MMOPSO, which uses the pre-defined weighted

ectors λ and a penalty value θ to minimize the distance d to the 
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utopia vector and the direction error to the weighted vector d2 from

the solution F(x) in the objective space, as defined by

Min
x∈�

g(x|λ, z∗) = d1 + θd2 (6)

where

d1 = ‖(F(x) − z∗)T
λ‖

‖λ‖ (7)

d2 =
∥∥∥∥(F(x) − z∗) − d1

λ

||λ||
∥∥∥∥ (8)

and z∗ = (z∗
1
, z∗

2
, . . . , z∗

m) is the reference point, i.e., z∗
i

= min{ fi(x)|x ∈
�} for each i = 1, 2, . . . , m. In practical implementation, as z∗ is un-

available in advance, it is usually replaced by the minimal value of

each objective found by the algorithms so far. The generation ap-

proaches for uniform weighted vectors λ have been introduced in (Li

& Zhang, 2009; Zhang & Li, 2007).

2.3. Particle swarm optimization

Particle swarm optimization is an interesting nature-inspired

metaheuristic originally proposed by Kennedy and Eberhart (1995)

for dealing with global optimization problems. By simulating the

movement rules of bird flocking and fish schooling, it is very ca-

pable for locating the optimal value in a large searching space. In

PSO, a swarm is composed by a certain number of particles. Each

particle represents a potential solution for the optimization prob-

lem, which is characterized by its position and moving velocity. Here,

it is assumed that there are N particles in a swarm. When search-

ing an n-dimensional hyperspace, the position of particle i (i = 1,

2, . . . , N) indicates the solution location in search space, as repre-

sented by xi = (xi1, xi2, . . . , xin). The positional movement of particle

i is recorded using its velocity, as described by vi = (vi1, vi2, . . . , vin).

Each particle i will memorize its historically best position as noted

by pbest i = (pi1, pi2, . . . , pin) and the best one among all pbesti in a

swarm is acknowledged as the globally best position gbest . Each par-

ticle i is evolved by exploiting positional information from the se-

lected global leader and its own personal best to update its velocity

and position values, as expressed in Eqs. (9) and (10).

vi(t + 1) = wvi(t) + c1r1(xpbesti
− xi(t)) + c2r2(xgbest − xi(t)) (9)

xi(t + 1) = xi(t) + vi(t + 1) (10)

where t is the iteration number, w is the inertial weight, c1 and c2

are two learning factors from the personal and global best particles

respectively, r1 and r2 are two random numbers generated uniformly

in the range [0, 1].

2.4. Existing MOPSO algorithms

Particle swarm optimization is originally designed for solving

SOPs. To extend PSO for tackling MOPs, Pareto ranking method or

decomposition approach is embedded into PSO. Thus, the existing

MOPSO algorithms can be generally classified into two categories.

The first class uses Pareto ranking to determine the personal best and

global best particles. The global best particles are generally the non-

dominated solutions found during the particle movement and they

can be exploited to guide the particle swarm to approach the entire

PF. The reported MOPSOs, such as OMOPSO (Sierra & Coello Coello,

2005) and SMPSO (Nebro et al., 2009), belong to this category. The

second type adopts decomposition approach for transforming MOPs

into a set of SOPs and then PSO can be directly applied to solve each

SOP. This kind of MOPSOs can exploit the reported technologies of

PSO to better solve MOPs. The representatives of these MOPSO algo-

rithms include SDMOPSO (Moubayed et al., 2010), dMOPSO (Martinez

& Coello Coello, 2011), CMPSO (Zhan et al., 2013) and DDMOPSO
Moubayed et al., 2014). All of these representative MOPSOs are in-

roduced briefly as follows.

OMOPSO is proposed by Sierra and Coello Coello (2005), which

ses Pareto dominance and crowding-distance information to iden-

ify the list of leader solutions. To enhance the search capability, two

utation operators, i.e., uniform and non-uniform mutations, are re-

pectively executed to balance the abilities of exploration and ex-

loitation. Moreover, an external archive is exploited to collect all the

on-dominated solutions visited by the swarm and the concept of ε-

ominance is utilized to limit the size of this archive.

SMPSO is an improved version of OMOPSO as designed by Nebro

t al. (2009), which embeds a velocity construction procedure in the

ovement of particles to prevent the so-called “swarm explosion” ef-

ect (Clerc & Kennedy, 2002) in OMOPSO. Thus, SMPSO is able to pro-

uce new effective particles in the cases that the velocity of particle

ecomes too high. Besides that, polynomial mutation is performed

fter PSO search as a turbulence factor and an external archive is

sed to preserve a number of the historically found non-dominated

olutions.

MOPSO/D is reported by Peng and Zhang (2008), which may be

he first attempt to embed decomposition approach into MOPSO. It

ollows the framework of MOEA/D (Zhang & Li, 2007) and replaces

he genetic search method with the traditional PSO search approach.

he updates of personal and global particles are fully decided by the

ggregation values of all objectives. After that, a turbulence operator

s performed and an external archive based on ε-dominance is used

o collect a number of non-dominated solutions that are historically

ound during the PSO search.

SDMOPSO is an enhanced algorithm from MOPSO/D as designed

y Moubayed et al. (2010), which tackles the drawback of MOPSO/D

y fully exploiting the salient properties of neighborhood relations

n PSO. The particle’s global best is only picked from the neighboring

olutions and each particle is only associated with a unique weight

ector that gives the best scalar aggregated fitness value. Moreover, a

rowding archive is also adopted in SDMOPSO to maintain the diver-

ity of the swarm leaders.

dMOPSO is presented by Martinez and Coello Coello (2011), which

s fully dependent on decomposition approach to solve MOPs. The po-

ition of each particle is updated using a set of global particles, which

re determined based on the scalar aggregated values. The distinct

eature of dMOPSO is that a memory re-initialization procedure is

sed when the particle exceeds a certain age, which is aimed at main-

aining the diversity of the swarm and avoiding the trap in local PFs.

owever, as pointed out by Moubayed et al. (2014), the absence of

ominance relation in dMOPSO may lead to the fail to cover the en-

ire PF in some complex MOPs.

CMPSO is designed by Zhan et al. (2013), which is a novel coevo-

utionary technique for PSO to solve MOPs. It provides a simple and

traightforward way to solve MOPs by letting each swarm correspond

ith each objective. An external shared archive is used to store all the

isited non-dominated solutions and allow the information exchange

mong the elitist individuals. Two novel approaches are presented

o enhance its performance. The first method embeds the elitist in-

ormation from the shared archive to update the particle’s velocity,

hile the second approach presents an elitist learning strategy for

rchive update to improve the swarm diversity and avoid the trap in

ocal PFs.

The original DDMOPSO is proposed by Moubayed, Pertovski, and

cCall (2012), which integrates both of dominance and decomposi-

ion approaches for solving MOPs. Afterward, an improved version is

lso presented by the same authors (Moubayed et al., 2014), which

an fast converge to the true PF without using the genetic operators.

t proposes a new mechanism for the selection of the particle lead-

rs and a novel archiving technique that collects the non-dominated

articles based on the crowding-distance values in both objective and

olution spaces.  
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Algorithm 1 Selection for pbestx
1: for i =1 to N
2: ipbestx = 1A ;
3: for j = 2 to | |A
4: if * *( | , ) ( | , )i j iz A z

ipbestx
5: ipbestx = jA ;
6: end if
7: end for
8: end for

Fig. 1. The pseudo-code for the selection of personal-best particles.

Algorithm 2 Evolutionary Search Strategy
1: for i =1 to | |A
2: generate a random integer j in [1, | |E ];
3: { 1C , 2C } =SBX( iA , jE );
4 generate a random integer k in [1, 2];
5: iS =PM( kC );
6: end for

Fig. 2. The pseudo-code of evolutionary search strategy.
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Inspired by the above MOPSO algorithms, the proposed MMOPSO

lgorithm also decomposes MOPs into a set of aggregation prob-

ems and adopts a crowding archive to preserve a number of the

on-dominated solutions. However, when compared with the above

OPSO algorithms, the distinct features of MMOPSO include two

earch strategies that are designed to update the velocity of each par-

icle, an evolutionary search strategy that is performed on the archive

o exchange beneficial information among the elitist individuals, a

ew definition of the personal best and global best particles. All of

he new features improve MMOPSO on both of the convergence speed

nd swarm diversity, which will be analyzed and discussed in the

xperimental studies.

. The proposed MMOPSO algorithm

The proposed MMOPSO algorithm is based on decomposition ap-

roach to transform MOPs into a set of scalar aggregation prob-

ems, which adopts boundary intersection method as introduced in

ection 2.2. Each particle in MMOPSO is aimed at optimizing each ag-

regation problem by updating its flight velocity and then all the non-

ominated solutions visited by the particles are maintained in an ex-

ernal finite-size archive. Once the archive is full, the non-dominated

olutions with bigger crowding-distance values will be remained. In

he following subsections, the main procedures of MMOPSO, such as

wo search strategies for velocity update, evolutionary search on the

xternal archive and archive update, are respectively described. At

ast the complete MMOPSO algorithm is illustrated.

.1. Two search strategies for velocity update

In traditional PSO algorithm, the velocity and position values of

he particles are usually updated using the positional information of

he personal-best and global-best particles, as defined in Eqs. (9) and

10). However, as pointed out above, this single search pattern may

ause some difficulties when solving some complex MOPs. There-

ore, inspired by the multiple search patterns reported for solving

OPs (Hu et al., 2013; Li et al., 2012; Zuo et al., 2014), two veloc-

ty update equations are incorporated into MMOPSO, which are re-

pectively used for exploitation and exploration in search space. They

re cooperated with the decomposition approach, attempting to op-

imize each aggregation problem. Assuming that there are N particles

n a swarm, for each particle i (i = 1, 2, . . . , N), it associates with a

nique weight vector λi used in Eqs. (6)–(8). In MMOPSO, the veloc-

ty of particle i (i = 1, 2, . . . , N) is updated as defined in Eq. (11) or

12).

i(t + 1) = wvi(t) + c1r1(xpbesti
− xi(t)) (11)

i(t + 1) = wvi(t) + c2r2(xgbest − xi(t)) (12)

here t is the iteration number, w is the inertial weight, c1 and c2 are

wo learning factors, and r1 and r2 are two uniformly distributed ran-

om numbers in [0, 1]. It is noted that xpbesti
in Eq. (11) is picked from

he solutions among the external archive A = {A1, A2, . . . , A|A|}, which

ives the best value of each aggregation problem corresponding with

he weight vector λi (Moubayed et al., 2014). The pseudo-code for the

election of each xpbesti
is described in Fig. 1.

On the other hand, as the solutions in external archive A are all

on-dominated, they can be considered to be the global-best values

or MOPs. Thus, xgbest is randomly selected from the external archive

. Therefore, when using Eq. (11) to update the velocity, it will quickly

uide the corresponding particle to approach the neighboring region

round the optimal aggregated value, which enhances the ability of

xploitation and resultantly accelerates the convergence speed. Oth-

rwise, the velocity is renewed by Eq. (12); it will lead the targeted

article to search the intermediate region between xgbest and itself.

his is beneficial for the enhancement of exploration and simultane-

usly improves the swarm diversity. In MMOPSO, the advantages of
he two search patterns are combined by using a pre-defined thresh-

ld δ, as follows:

vi(t + 1) = wvi(t) + c1r1(xpbesti
− xi(t)) if r3 < δ

vi(t + 1) = wvi(t) + c2r2(xgbest − xi(t)) else
(13)

here r3 is a uniformly distributed random number in [0, 1]. The ap-

ropriate setting of δ can keep the balance between exploitation and

xploration. Indicated by the experimental studies, δ is generally set

n [0.5, 0.9] to put more attention on the exploitation of the current

earch region.

.2. Evolutionary search on the archive

After the PSO-based optimization, the visited non-dominated

olutions with bigger crowding-distance values are preserved in

xternal archive A, which are considered to be good representa-

ives of the entire PF. To allow the beneficial information exchange

mong the archive, MMOPSO performs evolutionary search on each

on-dominated solution in the archive. The embedded evolutionary

earch power can repair the potential vulnerability of PSO search.

his is supported by the recent research studies in evolutionary al-

orithms that the hybridized search power can enhance the search

apability and the robustness to tackle various kinds of MOPs (Chen,

in, & Ji, 2010; Sindhya et al., 2013; Tang & Wang, 2013). In MMOPSO,

he evolutionary operators, such as simulated binary crossover (SBX)

nd polynomial mutation (PM), are performed, as they are widely

dopted in multi-objective optimization algorithms (Chen et al.,

010; Deb et al., 2002; Gong, Jiao, Du, & Bo, 2008; Lin & Chen, 2013).

BX operator allows the elitist solutions to exchange useful gene seg-

ents while PM operation injects a small turbulence to search the

ocal region. To perform SBX and PM operators on external archive A,

n elitist subset E is firstly selected from A, which contains a number

f non-dominated solutions with bigger crowding-distance values in

. The size of E is generally smaller than A and set to be half of |A| in

his paper. For each solution Ai (i = 1, 2, . . . , |A|), a random integer j

s generated in [1,|E|]. Then, Ai and E j are used as parent solutions to

xecute SBX operator. One of the child solutions from SBX operator

s randomly selected and then further to perform PM operator. The

mplementations of SBX and PM operators can be found in (Chen et

l., 2010; Gong et al., 2008; Lin & Chen, 2013). The pseudo-code of

his evolutionary search strategy is described in Fig. 2, where SBX(Ai,

j) means to perform SBX operator on parent solutions Ai and E j , C1

nd C2 are the resultant child solutions generated from SBX opera-

or, PM(Ck) indicates the execution of PM operator on Ck. After that, a

ew solution set S is generated, which will be added into the external 
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Algorithm 3 Archive Update
1: for i =1 to | |S
2: for j =1 to | |A
3: State = CheckDominance( iS , jA );
4 if State 1
5:
6

mark jA as a dominated solution;
else

7: break;
8: end if
9: end for
10: delete the marked dominated solutions from A;
11: if State! 1
12: add iS to A;
13: if | |A > N
14 CrowdingDistanceAssignment(A);
15: delete the most crowded one;
16: end if
17: end if
18: end for

Fig. 3. The pseudo-code of archive update.

Algorithm 4 MMOPSO
1: A={};
2: ev=0;
3: initialize the N weight vectors used in Eqs. (6-8);
4 for i = 1 to N
5: randomly initialize the position ix of particle i;
6: set the velocity iv of particle i to 0;
7: evaluate the objectives of ix ;
8: end for
9: ev = ev + N;
10: archive update (Algorithm 3);
11: while ev < max_ev
12: selection for pbestx (Algorithm 1);
13 for i = 1 to N
14: if r
15: update the velocity using Eq. (11);
16: else
17: randomly select a solution from A as gbestx ;
18: update the velocity using Eq. (12);
19: end if
20: update the position using Eq. (10);
21: evaluate the objectives of new particles;
22: update the reference point *z in Eq. (6);
23: end for
24: ev = ev + N;
25: archive update (Algorithm 3);
26: evolutionary search strategy (Algorithm 2) on A;
27: evaluate the objectives of new solutions;
28: update the reference point *z in Eq. (6);
29: ev = ev + | A | ;
30 archive update (Algorithm 3);
31 end while
32 report the solutions in archive A;

Fig 4. The pseudo-code of complete MMOPSO algorithm.
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archive by archive update operation as introduced in the following

subsection.

3.3. Archive update

After the execution of PSO search or evolutionary search, the new

generated non-dominated solutions are collected into the external

archive. As the size of archive is finite, whereas the number of non-

dominated solutions may be infinite, it is necessary to use a proper

selection mechanism for archive update, which can help to guide the

search direction toward the true PF. Here, the popular archive up-

date mechanism used in (Nebro et al., 2009; Zhan et al., 2013) is also

adopted, which is based on both of Pareto dominance and crowding

distance. Assuming that the new generated solution set is S and the

solution set in external archive is A, the pseudo-code of the archive

update procedures can be briefly described in Fig. 3, where N is the

maximum size of A. In Fig. 3, the function CheckDominance(x, y)

returns the Pareto dominance relationship between solutions x and

y. If the function returns 1, it means that x dominates y. Other-

wise, the function returns -1 when y dominates or is equal with

x. Another function CrowdingDistanceAssignment(A) will calculate

the crowding distance value (Deb et al., 2002) for each solution

in A.

3.4. The complete MMOPSO algorithm

The above subsections have described the procedures of veloc-

ity update, evolutionary search and archive update, which compose

the main components of MMOPSO. Besides that, the other parts are

presented in the pseudo-code of MMOPSO, as illustrated in Fig. 4,

where N is the size of population and external archive, ev represents

the number of function evaluations, max_ev indicates the maximum

number of function evaluations, r is a uniformly distributed random

number in [0, 1] and δ is a predefined threshold to control the veloc-

ity update.

In the initialization phase, N weight vectors are firstly initialized

and then a swarm with N particles is randomly generated, where each

particle associates with a unique weight vector. The external archive

A is initialized to be empty. After evaluating the objectives of each

particle, the archive update procedures are performed to preserve the

non-dominated solutions in archive A. Then, MMOPSO turns into the

loop of evolutionary process until the function evaluation times ev

reaches the predefined maximum times max_ev.
During the evolutionary phase, the PSO search is first executed.

he velocity of each particle is updated by using Eqs. (11) or (12),

hich is determined by the threshold δ. Once the random number

is smaller than δ, Eq. (11) is used to update the velocity, where the

election for xpbest as introduced in Algorithm 1 is run to find the

ersonal-best particle that can give the best aggregation value. Other-

ise, the velocity is updated using Eq. (12), where xgbest is randomly

icked from external archive A. After the positional information for

ach particle is renewed, the objectives of new particles are evalu-

ted. Then, the archive update procedure as described in Algorithm 3

s executed to gather the new non-dominated solutions with bigger

rowding-distance values. After that, the evolutionary search pro-

ess is run to allow the information exchange among the archive A,

he detailed implementation of which is illustrated in Algorithm 2.

volutionary operators, such as SBX and PM, are operated accord-

ngly. Then, the objectives of the mutant solutions are computed

nd the archive update process in Algorithm 3 is activated again.

he above evolutionary phase will repeat until the predefined maxi-

um function evaluation times are achieved. At the end of algorithm,

he non-dominated solutions in archive A are reported as the final

pproximated PF.

. Experimental studies

In this section, several experimental studies are performed to

xamine the performance of MMOPSO. Firstly, the related back-

round about the simulations is introduced, including the standard

enchmark problems, performance metric and the corresponding pa-

ameter settings. Secondly, the performance of MMOPSO is com-

ared with some MOPSO algorithms and two state-of-the-art MOEAs, 
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Table 1

The parameter settings for all the algorithms.

Algorithms Parameter settings

DDMOPSO N = 200, ω ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.0]

CMPSO Np = 20, Na = 200 ω ∈ 0.9 → 0.4, c1 = c2 = c3 = 4.0/3

SMPSO N = 200, ω ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.5], pm = 1/n, ηm = 20

dMOPSO N = 200, ω ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.0]

OMOPSO N = 200, ω ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.0]

NSGA-II N = 200, pc = 0.9, pm = 1/n, ηc = 20, ηm = 20

MOEA/D N = 200, CR = 1.0, F = 0.5, pm = 1/n, ηm = 20, T = 20, δ = 0.9, nr = 2

MMOPSO N = 200, ω ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.0], pc = 0.9, pm = 1/n, ηc = 20, ηm = 20, δ = 0.9
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.g., DDMOPSO (Moubayed et al., 2014), CMPSO (Zhan et al., 2013),

MPSO (Nebro et al., 2009), dMOPSO (Martinez & Coello Coello, 2011),

MOPSO (Sierra & Coello Coello, 2005), NSGA-II (Deb et al., 2002)

nd MOEA/D (Li & Zhang, 2009). Thirdly, in order to validate the ad-

antages of multiple search strategies in MMOPSO, the performance

f MMOPSO is further compared with the two variants of MMOPSO,

.e., MMOPSO-I and MMOPSO-II. MMOPSO-I replaces the velocity up-

ate equation in Eq. (13) with the traditional one in Eq. (9), while

MOPSO-II removes the evolutionary search strategy, making it a

ure PSO algorithm. At last, the time complexity analysis of MMOPSO

s provided.

.1. Standard benchmark problems

In this study, twenty four standard benchmark problems without

ny inequality or equality constraints are used to evaluate the perfor-

ance of MMOPSO. They can be classified into three categories. The

rst kind is low-dimensional bi-objective problems, such as Schaffer

1985), Fonseca and Flemming (1998), and Kursawe (1990). They

re shortly written as SFK test problems. The second class is high-

imensional bi-objective problems, including ZDT1∼ZDT4 and ZDT6

Zitzler et al., 2000). The third type is scalable objective problems,

overing WFG1∼WFG9 (Huband et al., 2005) and DTLZ1∼DTLZ7 (Deb

t al., 2005). In our experimental studies, the WFG and DTLZ fam-

ly problems are respectively scaled to two and three objectives. It

s noted that for ZDT1-ZDT3, the number of decision variables is 30,

hile the sizes of decision variables in ZDT4, ZDT6 and all DTLZ prob-

ems are 10. The number of decision variables in all WFG problems

s 12, which is consisted by 4 position parameters and 8 distance pa-

ameters. These test problems are characterized with convexity, con-

avity, discontinuity, non-uniformity and the trap of many local PFs.

herefore, they are widely applied in the experimental studies to test

he comprehensive performance of multi-objective optimization al-

orithms (Moubayed et al., 2014; Gong et al., 2008; Lin & Chen, 2013;

han et al., 2013).

.2. Performance metric

One important job of MOPs is to find a uniformly distributed sub-

et that approximates the true PF as close as possible, which can be

rovided to the decision maker as the alternative solutions for various

ractical cases. Since the inverted generational distance (IGD) metric

Li & Zhang, 2009) can examine both of the convergence and diversity,

t is adopted in our experimental studies to assess the optimization

erformance.

Let S be a uniformly distributed subset selected from the true PF

nd S′ is the approximated set that is obtained by a multi-objective

ptimization algorithm. The IGD value of S to S′, i.e., IGD(S, S′) is de-

ned as

GD(S, S′) =
∑|S|

i=1
d(Si, S′)
|S| (14)

here |S| returns the number of solutions in set S and d(Si, S′) com-

utes the minimum Euclidean distance from Si to the solutions of S′
n objective space. When acquiring this IGD value, the true PF has to
e available in advance. Generally, a lower value of IGD(S, S′) is pre-

erred as it indicates that S′ is distributed more uniformly and closer

o the true PF.

.3. Experimental settings

In this study, in order to validate the optimization performance

f MMOPSO in a convincible way, MMOPSO is compared with some

OPSO algorithms, including DDMOPSO, CMPSO, SMPSO, dMOPSO

nd OMOPSO. Moreover, MMOPSO is also compared with two state-

f-the-art MOEAs, i.e., MOEA/D and NSGA-II. It is noted that the

ource codes of SMPSO, dMOPSO, OMOPSO, MOEA/D and NSGA-II

an be found in jMetal (Durillo & Nebro, 2011) and the source code

f DDMOPSO is provided by the authors that is also implemented

n jMetal. Besides that, CMPSO and MMOPSO are realized by us in

he framework of jMetal. All the above algorithms have shown the

romising performance when tackling various kinds of MOPs. There-

ore, the comparisons of MMOPSO with them can make the results

ore convincible.

The parameter settings of all the algorithms are summarized in

able 1. For the compared algorithms, these parameter settings are all

ecommended by their authors. As most of parameters in MMOPSO

lso exist in the compared algorithms, they are set the same with the

ompared algorithms for fair comparison. For MMOPSO, DDMOPSO,

MOPSO and OMOPSO, the control parameters c1, c2 are randomly

enerated from [1.5, 2.0] and the inertial weight ω is selected from

0.1, 0.5] randomly. In SMPSO, the control parameters c1, c2 are ran-

omly chosen from [1.5, 2.5] and the inertial weight ω is also ran-

omly selected from [0.1, 0.5]. For CMPSO, the control parameters c1,

2, and c3 are all set to 2.0 and the inertial weight ω is linearly de-

reasing from 0.9 to 0.4. N is the sizes of swarm and external archive

or all the algorithms except CMPSO. As multiple populations are re-

pectively evolved to optimize multiple objectives in CMPSO, a small

opulation size is recommended by the authors. Thus, the swarm size

p in CMPSO is set to 20 while the external archive Na is also set to

00. pc and pm are respectively the crossover and mutation probabil-

ties used in evolutionary operators. ηc and ηm are the distribution

ndexes of SBX and PM respectively. For MOEA/D, T defines the size

f the neighborhood in the weight coefficients, δ controls the proba-

ility that parent solutions are chosen from T neighbors and nr is the

aximal number of parent solutions that are replaced by each child

olution.

It is noted that the setting of N listed in Table 1 is only for the bi-

bjective problems. For the triple-objective test problems, the sizes of

opulation and external archive are all set to 595 except for CMPSO.

he swarm size Np and the external archive Na in CMPSO are respec-

ively set to 60 and 595 for triple-objective test problems. The ex-

ected maximal generation is 300. Therefore, the maximal numbers

f function evaluations (FEs) are 60,000 and 178,500 for bi-objective

nd triple-objective problems, respectively. All the algorithms are

un by 30 times in jMetal using a personal computer with a 3.20

iga Hertz CPU, 2 Giga Byte memory and windows 7 operating sys-

em. Their mean values and standard deviations (std) for each test

roblem are collected for comparison, where the best results are 
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Table 2

IGD results on the FKS and ZDT problems.

Algorithms

Problems NSGA-II MOEA/D OMOPSO dMOPSO SMPSO CMPSO DDMOPSO MMOPSO

Fonseca Mean 2.78E-03 1.77E-03 1.85E-03 1.82E-03 1.85E-03 2.43E-03 1.88E-03 1.86E-03

Std 6.30E-05 3.65E-06 1.87E-05 1.30E-05 1.50E-05 7.17E-05 5.42E-05 1.37E-05

p-value 9.78E-36 1.84E-25 0.0054 1.76E-16 0.0015 1.22E-27 0.0747 –

Kursawe Mean 2.16E-02 2.07E-02 1.97E-02 2.49E-02 1.82E-02 1.95E-02 1.95E-02 1.63E-02

Std 8.40E-04 1.73E-04 6.65E-04 6.70E-04 4.98E-04 5.83E-04 1.29E-03 3.00E-04

p-value 3.03E-25 2.31E-33 4.49E-21 8.75E-33 4.43E-18 4.07E-21 1.97E-14 –

Schaffer Mean 4.46E-01 4.84E-01 7.97E-03 1.67E-01 8.33E-03 5.15E-02 8.33E-03 8.00E-03

Std 1.46E-01 2.03E-01 7.89E-04 3.09E-05 5.55E-04 9.06E-03 5.89E-04 6.29E-04

p-value 3.15E-16 1.77E-13 0.8756 1.63E-71 0.0353 9.19E-22 0.0601 –

ZDT1 Mean 2.33E-03 5.33E-03 1.86E-03 2.25E-03 1.82E-03 2.03E-03 3.42E-03 1.87E-03

Std 6.14E-05 1.16E-03 2.11E-05 9.58E-06 1.53E-05 3.94E-05 7.26E-04 1.38E-05

p-value 1.30E-26 3.69E-16 0.3050 5.89E-41 4.13E-13 1.42E-18 1.65E-12 –

ZDT2 Mean 2.39E-03 3.98E-03 1.92E-03 1.96E-03 1.89E-03 2.14E-03 2.26E-01 1.91E-03

Std 7.71E-05 8.76E-04 1.76E-05 1.75E-05 1.47E-05 3.67E-05 2.98E-01 2.10E-05

p-value 1.26E-24 1.42E-13 0.0283 3.10E-10 2.81E-4 4.91E-24 2.89E-4 –

ZDT3 Mean 2.60E-03 6.16E-03 2.24E-03 6.64E-03 2.14E-03 4.64E-03 6.06E-03 2.10E-03

Std 8.07E-05 6.64E-04 8.61E-05 9.90E-05 7.86E-05 8.46E-04 1.78E-03 4.49E-05

p-value 1.04E-22 1.40E-24 2.06E-8 3.76E-48 0.0729 2.22E-16 6.14E-13 –

ZDT4 Mean 2.48E-03 4.94E-02 4.44E+00 2.27E-03 1.87E-03 5.06E-02 1.66E+00 1.84E-03

Std 2.57E-04 6.02E-02 2.02E+00 1.41E-05 2.18E-05 3.94E-02 1.33E+00 1.87E-05

p-value 4.53E-14 1.63E-4 8.28E-13 9.38E-41 1.89E-5 1.94E-7 1.67E-7 –

ZDT6 Mean 2.57E-03 1.17E-03 1.56E-03 1.18E-03 1.46E-03 1.80E-03 3.75E-03 1.56E-03

Std 1.93E-04 3.02E-06 8.72E-05 4.64E-07 7.92E-05 1.84E-04 2.16E-03 4.72E-05

p-value 2.09E-23 1.87E-28 0.8586 3.79E-28 4.54E-6 4.60E-8 5.44E-6 –

Better/Similar/Worse 8/0/0 6/0/2 4/3/1 6/0/2 3/1/4 8/0/0 6/2/0 –
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identified with bold font in comparison tables. Moreover, the t-test

with significant level α = 0.05 is also performed to examine that

whether the IGD mean values obtained by MMOPSO are statistically

different from that obtained by the other algorithms. The p-value re-

turned by the t-test is also collected in the comparison table, where

the p-value bigger than 0.05 means that the compared IGD mean val-

ues are statistically similar. It is noted that the underlined IGD results

for the compared algorithms indicate that they are statistically simi-

lar with that obtained by MMOPSO under the t-test.

4.4. Comparisons of MMOPSO with other multi-objective algorithms

4.4.1. Comparisons on the FKS and ZDT test problems

Table 2 summarizes the results of all the algorithms on the FKS

and ZDT test problems. Our MMOPSO algorithm obtains the best re-

sults on Kursawe, ZDT3 and ZDT4, while SMPSO performs best on

ZDT1 and ZDT2. Moreover, MOEA/D gets the best results on Fonseca

and ZDT6, and OMOPSO performs best on Schaffer. Since the corre-

sponding test problems are not so difficult, it is observed that the

compared algorithms perform well on most of test problems. How-

ever, it is important to point out that some of the compared algo-

rithms are lack of capabilities in handling test problems with specific

characteristics. For example, NSGA-II, MOEA/D and dMOPSO can’t ef-

fectively approach the true PF of Schaffer; DDMOPSO gives the worst

result on ZDT2; OMOPSO and DDMOPSO are unable to find the true

PF of ZDT4 due to the existence of many local PFs.

The t-test results indicate that MMOPSO performs similarly with

OMOPSO on Schaffer, ZDT1 and ZDT6, with SMPSO on ZDT3, and with

DDMOPSO on Fonseca and Schaffer. Moreover, the final comparison

results of MMOPSO with the compared algorithms are clearly con-

cluded in the last row of Table 2, where Better/Similar/Worse in-

dicates that the number of test problems that the results obtained

by MMOPSO are better than, similar with or worse than that of the

compared algorithms. It is quite obvious that MMOPSO performs bet-

ter than or similarly with NSGA-II, CMPSO and DDMOPSO on all the

test problems. For MOEA/D and dMOPSO, MMOPSO obtains the bet-
er results on 6 out of 8 test problems. Besides that, MMOPSO per-

orms better than OMOPSO, and worse than SMPSO. Actually, both of

MOPSO and SMPSO are able to solve the corresponding test prob-

ems well. To visually show the optimization performance, the best

esults of MMOPSO on these test problems are plotted in Fig. 5, where

he true PFs are identified with the red lines and the approximated PFs

re marked with black diamonds. It is evident that the found approx-

mated PF is distributed uniformly on the true PF.

.4.2. Comparisons on the WFG test problems

Table 3 presents the simulation results obtained by all the algo-

ithms on the WFG test problems. Our proposed MMOPSO algorithm

chieves the best performance on WFG1, WFG3, WFG4, WFG7 and

FG9, while OMOPSO performs best on WFG2 and WFG6. MOEA/D

nd CMPSO get the best results on WFG8 and WFG5, respectively. It is

oted that most of the compared algorithms fail to approach the true

F of WFG1, whereas MMOPSO performs better. Actually, observed

rom Table 3, MMOPSO is able to deal with most of WFG problems

uite well.

The t-test results show that MMOPSO gets the statistically similar

esults with MOEA/D on WFG2, with OMOPSO on WFG5, with SMPSO

n WFG5 and WFG6, with CMPSO on WFG8, and with DDMOPSO on

FG2. The comparison summary in the last row of Table 3 illustrates

hat MMOPSO performs better than the compared targets on most of

FG test problems. Fig. 6 plots the best results obtained by MMOPSO

n the WFG test problems, which can visually show the promising

erformance of MMOPSO. Except for WFG8, MMOPSO is able to ef-

ectively approach the true PFs.

.4.3. Comparisons on the DTLZ test problems

Table 4 gives all the experimental results on the DTLZ test prob-

ems. Our proposed MMOPSO algorithm performs best on DTLZ1,

TLZ5 and DTLZ6, while dMOPSO obtains the best results on DTLZ2

nd DTLZ4. MOEA/D and CMPSO get the best performance on DTLZ3

nd DTLZ7, respectively. The simulations show that some MOPSO al-

orithms, such as OMOPSO, CMPSO and DDMOPSO, can’t effectively 
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Fig. 5. The plots of best performance obtained by MMOPSO on the FKS and ZDT test problems.
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pproach the true PF of DTLZ3 as it is easy to get trapped in local PFs,

hile MMOPSO and SMPSO can handle it quite well.

The t-test results show that MMOPSO, NSGA-II, OMOPSO, SMPSO

nd CMPSO obtain the similar results on DTLZ4. Moreover, MMOPSO

erforms similarly with SMPSO and OMOPSO on DTLZ6. The compari-

on conclusion on the last row of Table 4 indicates that MMOPSO per-

orms better than NSGA-II, OMOPSO, SMPSO and DDMOPSO. When

ompared with MOEA/D, dMOPSO and CMPSO, our proposed algo-

ithm MMOPSO still have some advantages on these DTLZ problems.

ig. 7 gives the plots of best results obtained by MMOPSO on the DTLZ

roblems, where the true PFs are marked with red surface and the ap-

roximated PFs are identified with black diamonds. These plots fur-

her confirm that MMOPSO can find the approximated PF that is dis-

ributed uniformly and very close to the true PF.

At last, all the comparison summaries on the last rows of

ables 2–4 are collected in Table 5, which gives the comprehensive

erformance of MMOPSO when compared with the other algorithms
n all the test problems. It is obvious that MMOPSO performs bet-

er than or similarly with NSGA-II, OMOPSO, dMOPSO, CMPSO and

DMOPSO on at least 20 out of 24 test problems. When compared

ith MOEA/D and SMPSO, MMOPSO also obtains the better or sim-

lar results on 17 and 18 out of 24 test problems, respectively. These

xperimental results justify the advantages of MMOPSO when han-

ling various kinds of test problems.

.5. Advantages of multiple search strategies in MMOPSO

In order to investigate the advantages of multiple search strategies

n MMOPSO, two variants of MMOPSO are included for comparison,

.e., MMOPSO-I and MMOPSO-II. They have the similar components

ith MMOPSO, except that MMOPSO-I replaces the velocity update

quation in Eq. (13) with the traditional one in Eq. (9) and MMOPSO-

I removes the evolutionary search component on the archive. In 
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Table 3

IGD results on the WFG test problems.

Algorithms

Problems NSGA-II MOEA/D OMOPSO dMOPSO SMPSO CMPSO DDMOPSO MMOPSO

WFG1 Mean 6.47E-01 7.51E-01 1.15E+00 1.20E+00 1.19E+00 1.04E+00 5.11E-01 1.22E-02

Std 3.22E-01 1.38E-01 2.57E-02 5.57E-03 1.38E-02 8.89E-02 1.07E-01 4.06E-03

p-value 1.18E-11 3.28E-23 1.27E-49 1.19E-66 1.53E-57 1.20E-32 1.73E-21 –

WFG2 Mean 6.24E-02 2.72E-02 6.47E-03 2.00E-01 1.09E-02 1.72E-02 3.03E-02 3.31E-02

Std 4.47E-04 1.62E-02 5.48E-04 1.96E-02 1.55E-03 1.08E-02 4.53E-02 2.87E-02

p-value 4.96E-6 0.3095 1.96E-5 9.79E-21 2.22E-4 0.0100 0.7868 –

WFG3 Mean 8.26E-03 7.13E-03 6.34E-03 2.20E-02 8.06E-03 1.57E-02 6.20E-03 5.47E-03

Std 4.32E-04 1.02E-04 6.15E-04 1.58E-03 6.62E-04 3.21E-03 5.01E-04 7.36E-04

p-value 1.04E-17 4.28E-13 2.75E-5 5.41E-31 4.75E-14 6.65E-17 5.11E-5 –

WFG4 Mean 7.15E-03 2.40E-02 4.32E-02 5.34E-02 4.78E-02 7.71E-03 1.45E-02 5.74E-03

Std 2.75E-04 4.93E-03 2.20E-03 2.14E-03 6.06E-03 6.03E-04 3.17E-03 4.53E-04

p-value 7.72E-14 1.39E-18 1.51E-37 7.32E-41 4.64E-26 4.67E-14 0.0198 –

WFG5 Mean 6.59E-02 6.55E-02 6.53E-02 6.61E-02 6.52E-02 6.26E-02 6.56E-02 6.47E-02

Std 1.76E-04 6.11E-05 1.23E-04 2.61E-04 9.91E-05 2.88E-03 1.03E-04 2.01E-03

p-value 0.0034 0.0392 0.1142 5.48E-4 0.1581 0.0044 0.0198 –

WFG6 Mean 7.92E-02 8.39E-03 7.15E-03 2.65E-02 1.72E-02 3.05E-02 2.19E-02 1.42E-02

Std 2.89E-02 1.51E-03 4.45E-04 7.18E-03 1.98E-02 1.57E-02 1.30E-02 1.10E-02

p-value 1.41E-11 0.0066 0.0015 4.48E-7 0.5087 1.23E-4 0.0256 –

WFG7 Mean 8.02E-03 8.81E-03 6.26E-03 2.29E-02 7.16E-03 9.40E-03 6.19E-03 5.93E-03

Std 3.55E-04 8.44E-05 6.40E-05 1.75E-03 3.34E-04 5.81E-04 8.95E-05 7.35E-05

p-value 1.16E-24 4.62E-43 3.75E-18 1.92E-30 1.63E-18 2.59E-24 4.28E-13 –

WFG8 Mean 1.95E-01 1.68E-01 2.33E-01 2.49E-01 2.00E-01 2.23E-01 2.32E-01 2.24E-01

Std 8.59E-03 4.97E-02 6.46E-03 6.07E-03 2.02E-02 2.53E-02 1.74E-02 3.47E-03

p-value 8.76E-17 1.19E-6 2.32E-7 1.19E-18 7.41E-7 0.7934 0.0134 –

WFG9 Mean 1.18E-02 3.52E-02 1.56E-02 2.42E-02 1.74E-02 1.51E-02 1.21E-02 8.86E-03

Std 1.56E-03 6.84E-02 6.17E-04 1.65E-03 2.90E-04 3.52E-03 1.51E-03 1.52E-03

p-value 5.00E-8 0.0421 4.44E-19 2.95E-25 2.22E-23 3.84E-9 2.63E-10 –

Better/Similar/Worse 8/0/1 6/1/2 6/1/2 9/0/0 5/2/2 6/1/2 8/1/0 –

Table 4

IGD results on the DTLZ test problems.

Algorithms

Problems NSGA-II MOEA/D OMOPSO dMOPSO SMPSO CMPSO DDMOPSO MMOPSO

DTLZ1 Mean 1.07E-02 1.11E-02 2.47E+01 1.78E-02 1.16E-02 5.83E-02 3.22E+00 1.01E-02

Std 3.57E-04 2.50E-04 8.01E+00 3.89E-03 2.26E-04 1.99E-02 2.95E+00 2.02E-04

p-value 7.16E-8 2.65E-18 1.54E-16 8.41E-12 2.34E-22 7.55E-14 1.80E-6 –

DTLZ2 Mean 2.81E-02 2.61E-02 2.81E-02 2.24E-02 2.84E-02 2.56E-02 2.63E-02 2.74E-02

Std 5.64E-04 1.12E-04 4.88E-04 2.00E-04 7.22E-04 4.51E-04 3.91E-04 4.27E-04

p-value 1.91E-6 2.32E-16 1.03E-7 1.26E-31 2.65E-7 1.28E-15 1.54E-12 –

DTLZ3 Mean 2.85E-02 2.68E-02 8.65E+01 4.32E-02 2.83E-02 1.18E-01 1.26E+01 2.75E-02

Std 9.97E-04 3.27E-04 2.15E+01 5.59E-03 4.97E-04 3.28E-02 1.19E+01 5.08E-04

p-value 1.30E-5 2.25E-5 1.14E-19 1.12E-15 8.23E-7 2.61E-15 3.04E-6 –

DTLZ4 Mean 2.87E-02 1.98E-02 2.78E-02 1.73E-02 2.91E-02 6.78E-02 3.01E-02 2.85E-02

Std 2.05E-03 8.61E-04 4.93E-03 8.02E-04 4.32E-03 1.24E-01 2.56E-03 1.81E-03

p-value 0.7344 2.77E-20 0.5013 2.60E-23 0.5213 0.0929 0.0036 –

DTLZ5 Mean 8.81E-04 2.64E-03 6.81E-04 7.31E-03 6.76E-04 9.66E-04 1.07E-03 6.61E-04

Std 3.87E-05 9.92E-06 2.18E-05 2.45E-04 2.39E-05 3.72E-05 1.53E-04 2.27E-05

p-value 3.01E-23 5.09E-58 7.28E-4 3.11E-43 0.0098 5.14E-26 3.84E-14 –

DTLZ6 Mean 9.35E-04 2.37E-03 6.62E-04 1.25E-02 6.52E-04 7.62E-04 4.08E-03 6.44E-04

Std 5.84E-05 4.26E-06 3.47E-05 1.11E-05 3.46E-05 4.02E-05 8.75E-04 3.27E-05

p-value 6.43E-22 1.41E-51 0.0537 6.47E-75 0.3950 2.24E-14 2.96E-19 –

DTLZ7 Mean 2.77E-02 3.64E-02 2.93E-02 5.21E-02 3.02E-02 2.72E-02 3.64E-02 2.86E-02

Std 6.16E-04 2.08E-03 8.02E-04 1.65E-04 1.21E-03 7.43E-04 2.08E-03 9.63E-04

p-value 1.66E-4 4.39E-18 0.0128 6.00E-42 3.45E-6 3.77E-8 4.39E-18 –

Better/Similar/Worse 5/1/1 4/0/3 5/2/0 5/0/2 5/2/0 4/1/2 6/0/1 –
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Table 6, the comparison results of MMOPSO, MMOPSO-I and

MMOPSO-II on all the test problems are listed.

Observed from Table 6, MMOPSO performs best on 18 out of 24

test problems, which validates the advantages of MMOPSO when

compared with MMOPSO-I and MMOPSO-II. The t-test results also
eveal that MMOPSO obtains better results than MMOPSO-I and

MOPSO-II on 12 and 10 test problems, respectively. Moreover, it

as the similar performance with MMOPSO-I on 11 test problems

nd with MMOPSO-II on 13 test problems. In other words, MMOPSO

erforms better than or similarly with MMOPSO-I and MMOPSO-II on
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Fig. 6. The plots of best performance obtained by MMOPSO on the WFG test problems.

Table 5

Comparison summary on all the test problems.

Algorithms

Problems NSGA-II MOEA/D OMOPSO dMOPSO SMPSO CMPSO DDMOPSO

FKS and ZDT 8/0/0 6/0/2 4/3/1 6/0/2 3/1/4 8/0/0 6/2/0

WFG 8/0/1 6/1/2 6/1/2 9/0/0 5/2/2 6/1/2 8/1/0

DTLZ 5/1/1 4/0/3 5/2/0 5/0/2 5/2/0 4/1/2 6/0/1

Total (Better/Similar/Worse) 21/1/2 16/1/7 15/6/3 20/0/4 13/5/6 18/2/4 20/3/1
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3 out of 24 test problems. This justifies the effectiveness of multiple

earch strategies in MMOPSO.

To investigate the effect of evolutionary search on the external

rchive, it can be observed from the performance of MMOPSO-II that

t is unable to approach the true PFs of some test problems, such as

DT4, WFG1, DTZL1 and DTZL3. These test problems are mostly char-
cterized with the trap of many local PFs. Thus, it indicates that the

SO search pattern in MMOPSO is easy to get trapped in local PFs,

hile the embedding of evolutionary search power on archive can

emedy this shortcoming, which provides the capability to jump out

f the local PFs. On the other hand, although MMOPSO-I performs

uch better than MMOPSO-II on ZDT4, WFG1, DTZL1 and DTLZ3, it 
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Fig. 7. The plots of best performance obtained by MMOPSO on the DTLZ test problems.
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still cannot gain the satisfactory results as obtained by MMOPSO. In

most cases, MMOPSO-I performs worse than MMOPSO. This justifies

that the two search strategies for velocity update are beneficial for

enhancing the PSO search capability to handle different MOPs.

4.6. Time complexity analysis

In this subsection, the time complexity analysis of MMOPSO is

provided and compared with the other algorithms. Based on the

pseudo-code of MMOPSO in Fig. 4, the time complexity of MMOPSO

is determined by the evolutionary loop in lines 12–30. It is noted

that when computing the following time complexity, the impact of

decision variables and objectives are generally ignored as they are

much smaller than the sizes of population and external archive N.

In line 12, the time complexity of Algorithm 1 in Fig. 1 is O(N2); in

lines 13–23, two search strategies are executed to update the veloc-
ty of each particle and the corresponding time complexity is O(N).

lgorithm 3 and Algorithm 2 are serially operated in lines 25–

6, and their time complexity are respectively O(N2) and O(N) as

bserved in Figs. 2 and 3. In lines 27–28, the time complexity is

bviously O(N) as it only evaluates the objectives of N new solutions

nd then update the reference point z∗. At last, Algorithm 3 is acti-

ated again with the time complexity O(N2). Thus, based on the above

nalysis, the time complexity of MMOPSO is O(3N2+3N)∼ O(N2). As

iscussed in Moubayed et al. (2014), the computational complexities

f MOEA/D, dMOPSO, OMOPSO and DDMOPSO are all O(N2) when the

ize of external archive is set the same with the population size N.

esides that, SMPSO shares the similar structure with OMOPSO and

hus its computational complexity is also O(N2), while the time com-

lexity of NSGA-II is O(N2) (Deb et al., 2002). For CMPSO, its time

omplexity is dependent on the size of sub-swarm. By simply assum-

ng the sub-swarm size is also N, the time complexity of CMPSO is also 
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Table 6

IGD results of MMOPSO, MMOPSO-I and MMOPSO-II on all the test problems.

Algorithms Algorithms

Problems MMOPSO -I MMOPSO -II MMOPSO Problems MMOPSO-I MMOPSO -II MMOPSO

Fonseca Mean 1.86E-03 1.86E-03 1.86E-03 WFG5 Mean 6.43E-02 6.54E-02 6.47E-02

Std 1.10E-05 1.77E-05 1.37E-05 Std 2.47E-03 3.93E-04 2.01E-03

p-value 0.9941 0.7686 – p-value 0.5248 0.0867 –

Kursawe Mean 1.64E-02 1.64E-02 1.63E-02 WFG6 Mean 3.38E-02 9.59E-03 1.42E-02

Std 2.82E-04 3.52E-04 3.00E-04 Std 2.33E-02 7.50E-03 1.10E-02

p-value 0.3543 0.4621 – p-value 6.66E-4 0.0748 –

Schaffer Mean 8.52E-03 8.07E-03 8.00E-03 WFG7 Mean 5.99E-03 5.92E-03 5.93E-03

Std 5.19E-04 8.48E-04 6.29E-04 Std 8.14E-05 7.51E-05 7.35E-05

p-value 2.65E-4 0.7467 – p-value 0.0054 0.9570 –

ZDT1 Mean 1.89E-03 2.32E-03 1.87E-03 WFG8 Mean 2.26E-01 2.25E-01 2.24E-01

Std 1.63E-05 8.35E-05 1.38E-05 Std 7.20E-03 1.18E-02 3.47E-03

p-value 5.75E-5 1.76E-23 – p-value 0.2218 0.5533 –

ZDT2 Mean 1.94E-03 5.47E-01 1.91E-03 WFG9 Mean 1.10E-02 1.84E-02 8.86E-03

Std 3.43E-05 2.20E-01 2.10E-05 Std 1.76E-03 5.07E-02 1.52E-03

p-value 0.0011 4.15E-14 – p-value 1.31E-5 0.3138 –

ZDT3 Mean 2.10E-03 2.23E-03 2.10E-03 DTLZ1 Mean 3.32E-02 1.45E+01 1.01E-02

Std 6.05E-05 5.89E-05 4.49E-05 Std 4.74E-02 5.70E+00 2.02E-04

p-value 0.9769 7.67E-10 – p-value 0.0124 2.47E-14 –

ZDT4 Mean 2.65E-02 1.24E+01 1.84E-03 DTLZ2 Mean 2.74E-02 2.71E-02 2.74E-02

Std 7.79E-02 6.07E+00 1.87E-05 Std 5.33E-04 4.63E-04 4.27E-04

p-value 0.0934 4.85E-12 – p-value 0.8975 0.0057 –

ZDT6 Mean 1.64E-03 3.50E-02 1.56E-03 DTLZ3 Mean 1.44E-01 4.86E+01 2.75E-02

Std 1.37E-04 1.79E-01 4.72E-05 Std 2.84E-01 1.63E+01 5.08E-04

p-value 0.0037 0.3142 – p-value 0.0320 3.44E-16 –

WFG1 Mean 1.03E-01 1.89E-01 1.22E-02 DTLZ4 Mean 2.85E-02 2.80E-02 2.85E-02

Std 5.89E-02 1.33E-01 4.06E-03 Std 1.47E-03 1.83E-03 1.81E-03

p-value 1.73E-9 4.65E-8 – p-value 0.9939 0.3951 –

WFG2 Mean 1.65E-02 3.82E-02 3.31E-02 DTLZ5 Mean 6.67E-04 6.66E-04 6.61E-04

Std 2.29E-02 4.35E-02 2.87E-02 Std 2.20E-05 1.71E-05 2.27E-05

p-value 0.0189 0.6098 – p-value 0.1477 0.3663 –

WFG3 Mean 5.76E-03 5.61E-03 5.47E-03 DTLZ6 Mean 6.54E-04 1.98E-03 6.44E-04

Std 6.18E-04 5.81E-04 7.36E-04 Std 4.03E-05 4.03E-04 3.27E-05

p-value 0.1725 0.3653 – p-value 0.2725 5.25E-17 –

WFG4 Mean 6.09E-03 1.48E-02 5.74E-03 DTLZ7 Mean 2.94E-02 2.95E-02 2.86E-02

Std 4.14E-04 4.62E-03 4.53E-04 Std 8.11E-04 1.40E-03 9.63E-04

p-value 0.0053 1.13E-11 – p-value 0.0027 0.0178 –

Better/Similar/Worse 12/11/1 10/13/1 –

Table 7

The average computational time (in seconds) for the WFG test problems.

Algorithms

Problems dMOPSO DDMOPSO MMOPSO-I MMOPSO-II MMOPSO

WFG1 2.29 4.08 0.85 1.10 1.15

WFG2 2.13 45.54 1.39 2.30 1.71

WFG3 2.13 91.58 2.50 3.51 2.82

WFG4 2.19 21.09 1.38 1.85 1.81

WFG5 2.14 63.92 2.41 3.38 2.79

WFG6 2.15 43.89 1.73 3.00 2.39

WFG7 2.18 96.24 2.62 3.58 2.95

WFG8 2.24 45.75 1.34 1.49 1.12

WFG9 2.37 28.57 1.57 2.36 2.26

Average 2.20 48.96 1.76 2.51 2.11
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(N2). Therefore, based on the theoretical analysis, MMOPSO has the

imilar time complexity with the compared algorithms.

To further study the extra computational burden induced by the

esigned multiple search strategies, Table 7 gives the average compu-

ational time of MMOPSO-I, MMOPSO-II and MMOPSO in solving all

he WFG test problems. Besides that, two decomposition-based MOP-

Os, i.e., dMOPSO and DDMOPSO, are also included for comparison. It

s noted that the average time for each WFG problem is obtained by

0 independent runs and the lowest one is highlighted with boldface.

s observed from Table 7, MMOPSO needs 2.11 seconds in average to
olve one WFG test problem, which performs slower than MMOPSO-I

nd faster than MMOPSO-II. This indicates that the proposed multiple

earch strategies won’t bring much computational burden. Even com-

ared with MMOPSO-I, it is still worthy of spending 17 percent ex-

ra average time in order to obtain the superior performance as pro-

ided by MMOPSO in Table 6. Moreover, MMOPSO performs slightly

aster than dMOPSO and much faster than DDMOPSO, which jus-

ify the computational efficiency of MMOPSO when compared with

ther decomposition-based MOPSOs. However, the execution time

f dMOPSO is more stable than that of MMOPSO and DDMOPSO.

his is because dMOPSO only adopts the aggregated values to up-

ate the globally best particles, while MMOPSO and DDMOPSO utilize

he crowding-distance metric to store the non-dominated solutions.

hus, the execution times of MMOPSO and DDMOPSO are greatly af-

ected by the number of non-dominated solutions found during the

earch phase. Especially for DDMOPSO, it is worth noting that its ex-

cution time is much longer than that of dMOPSO and MMOPSO.

his is mainly due to the fact that the new archiving approach in

DMOPSO needs to compute the crowding-distance values in both

bjective and decision spaces, and its source code has not been fully

ptimized by the authors.

. Conclusions

In this paper, a novel MOPSO algorithm with multiple search

trategies is presented, which is based on decomposition approach 
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to transform MOPs into a set of aggregation problems. Each particle

in the swarm is accordingly assigned to optimize each aggregation

problem. A novel velocity update approach is designed to renew the

particle velocity by using two search strategies, which can concur-

rently promote the convergence speed and remain the population

diversity. Additionally, evolutionary search strategy is further per-

formed on the non-dominated solutions in the external archive,

which is able to exchange their beneficial information. This em-

bedded evolutionary search power can repair the weakness of PSO

search pattern and resultantly enhance the comprehensive perfor-

mance of MMOPSO in solving various kinds of MOPs. The effective-

ness and efficiency of multiple search strategies are also justified by

the experimental studies. When compared with some MOPSO algo-

rithms and two state-of-the-art MOEAs, such as DDMOPSO, CMPSO,

SMPSO, dMOPSO, OMOPSO, MOEA/D and NSGA-II, the experimen-

tal results illustrate that MMOPSO performs best on most of test

problems.

Our future study will further enhance the performance of

MMOPSO, and extend it for tackling MOPs with more than three ob-

jectives. Furthermore, the applications of MMOPSO for some practical

engineering problems will also be investigated in our future work.
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