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Articl_e history: Recently, multi-objective particle swarm optimization (MOPSO) has shown the effectiveness in solving multi-
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egy to update the velocity of each particle, which may cause some difficulties when tackling complex MOPs.
This paper proposes a novel MOPSO algorithm using multiple search strategies (MMOPSO), where decompo-
sition approach is exploited for transforming MOPs into a set of aggregation problems and then each particle
is assigned accordingly to optimize each aggregation problem. Two search strategies are designed to update
the velocity of each particle, which is respectively beneficial for the acceleration of convergence speed and
the keeping of population diversity. After that, all the non-dominated solutions visited by the particles are
preserved in an external archive, where evolutionary search strategy is further performed to exchange useful
information among them. These multiple search strategies enable MMOPSO to handle various kinds of MOPs
very well. When compared with some MOPSO algorithms and two state-of-the-art evolutionary algorithms,
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simulation results show that MMOPSO performs better on most of test problems.
© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the
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1. Introduction

In many real-world engineering applications, the problem that
needs to optimize multiple objectives simultaneously is often en-
countered, which is called multi-objective optimization problems
(MOPs) (Deb, Pratap, Agarwal, & Meyarivan, 2002; Ishibuchi & Mu-
rata, 1998; Samanlioglu, 2013). For example, the goals in job shop
scheduling are commonly required to minimize the makespan, to-
tal workload, and critical workload, while the targets in product de-
sign are certainly needed to minimize the cost of product and opti-
mize its quality. Since the conflicts exist among the objectives, the
improvement of one objective may deteriorate other objectives and
resultantly it generates a set of equally-optimal solutions, which is
termed Pareto-optimal set (PS). The corresponding mapping of PS in
objective space is termed Pareto-optimal front (PF). As the size of PF
may be infinite, it is impractical to find out all the Pareto-optimal so-
lutions. Thus, an important job of MOPs is to obtain a finite size of PS
that is distributed uniformly along the PF, which supports the deci-
sion maker to select the appropriate solutions for different practical
cases (Lin & Chen, 2013; Zhang & Li, 2007).

Currently, nature-inspired metaheuristic algorithms have been
recognized to be well suitable for solving MOPs since they can handle
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some complex problems that are characterized with multimodality,
nonlinearity, and discontinuity (Jones, Mirrazavi, & Tamiz, 2002).
Among them, particle swarm optimization (PSO) is an interesting
nature-inspired algorithm that mimics the social cooperative and
competitive behavior of bird flocking and fish schooling (Kennedy &
Eberhart, 1995). Due to the fast convergence speed and easy imple-
mentation, it has attracted a great interest of researchers and been
designed for solving many single-objective optimization problems
(SOPs) and various engineering applications (Dang et al., 2013; Nay-
eri, Yang, & Elsherbeni, 2013; Unler & Murat, 2010). The promising
results provided by PSO for solving SOPs validate its effectiveness
and efficiency to locate the optimal results in a large and complex
problem landscape. This motivates the researchers to extend PSO
for MOPs and plenty of multi-objective PSO (MOPSO) algorithms are
presented accordingly (Moubayed, Pertovski, & McCall, 2014; Coello
Coello, Pulido, & Lechuga, 2004; Goh, Tan, Liu, & Chiam, 2010; Zhan
et al., 2013). Generally, most of the existing MOPSO algorithms can
be classified into two categories. The first class embeds the Pareto
dominance relationship into PSO, which is used to determine the
personal best and global best particles (Nebro et al., 2009; Sierra &
Coello Coello, 2005; Wang & Yang, 2010). The second kind adopts de-
composition approach to transform MOPs into a set of SOPs, where
traditional PSO can be directly applied to solve MOPs (Moubayed,
Pertovski, & McCall, 2010; Martinez & Coello Coello, 2011; Peng &
Zhang, 2008). These MOPSO algorithms perform very well in solving
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some MOPs. However, when tackling the complex MOPs character-
ized with multimodality and the existence of many local PFs, e.g.,
WFG1 (Huband, Barone, While, & Hingston, 2005) and DTLZ3 (Deb,
Thiele, Laumanns, & Zitzler, 2005), most MOPSO algorithms fail to ef-
fectively approach the true PF. This is mainly because they only adopt
a single search strategy to update the velocity of each particle, which
may lack the capabilities to tackle some kinds of complex MOPs.

To repair this weakness, multiple search strategies may be an al-
ternative technology as it has been studied experimentally in PSO for
solving SOPs and proven to be an effective and efficient approach
to enhance the capabilities of PSO when handling various types of
SOPs (Hu, Wu, & Weir, 2013; Li, Yang, & Nguyen, 2012; Zuo, Zhang,
& Tan, 2014). Inspired by the reported multiple search strategies for
SOPs, it is reasonable to believe that multiple search strategies can
be applied in MOPSO to further improve its convergence speed and
the robustness when dealing with different kinds of MOPs. There-
fore, a novel MOPSO algorithm with multiple search strategies is pre-
sented in this paper, called MMOPSO. Decomposition approach is
adopted in MMOPSO to decompose MOPs into a set of SOPs and then
each particle is assigned to optimize each SOP. Two search strate-
gies for updating the particle’s velocity are designed to accelerate
the convergence speed and maintain the population diversity respec-
tively. Their cooperation is controlled by a pre-defined threshold. All
the non-dominated solutions visited by the particles are stored in a
finite-size external archive. Once the external archive is full, only the
non-dominated solutions with bigger crowding-distance values will
be remained, which are considered to be the elitist solutions and
good representatives of the entire PF. To let the elitist information
be shared among the external archive, an evolutionary search strat-
egy, composed by simulated binary crossover (SBX) and polynomial
mutation (PM), is performed, which enhances the exploratory capa-
bilities of MMOPOS. When compared with the existing MOPSO algo-
rithms, the novelty of MMOPSO can be described as follows.

(1) Different from the single search pattern adopted in most
MOPSO algorithms, two search strategies are designed in
MMOPSO for updating the velocity of each particle, which are
aimed at accelerating the convergence speed and maintaining
the population diversity respectively. Their executions are de-
termined by a pre-defined threshold to retain the balance of
exploitation and exploration.

(2) An evolutionary search strategy is run on the external archive
of PSO, which is beneficial for the information exchange among
the elitist individuals. The evolutionary operators can provide
another search power for PSO and remedy the weaknesses of
PSO-based search when handling some difficult MOPs.
New definitions of personal-best and global-best particles are
given in MMOPSO. Traditionally, personal-best and global-best
particles are the best ones visited by each particle and the
swarm respectively. Whereas, in MMOPSO, as decomposition
approach is adopted to transform MOPs into a set of SOPs,
personal-best and global-best particles are respectively con-
sidered to be the best values of each aggregation problem and
all SOPs. Therefore, MMOPSO can focus on optimizing each ag-
gregation problem by using PSO search.

—
w
~—

The advantages of multiple search strategies will be investi-
gated and validated by the experimental studies. Total 24 standard
benchmark problems, including Fonseca (Fonseca & Flemming, 1998),
Kursawe (1990), Schaffer (1985), ZDT (Zitzler, Deb, & Thiele, 2000),
WEFG (Huband et al., 2005) and DTLZ (Deb et al., 2005) series test
problems, are utilized to evaluate the comprehensive performance of
MMOPSO. When compared with some MOPSO algorithms and two
state-of-the-art multi-objective evolutionary algorithms (MOEAs),
e.g., DDMOPSO (Moubayed et al., 2014), CMPSO (Zhan et al., 2013),
SMPSO (Nebro et al., 2009), dMOPSO (Martinez & Coello Coello, 2011),
OMOPSO (Sierra & Coello Coello, 2005), NSGA-II (Deb et al., 2002) and

MOEA/D (Li & Zhang, 2009), MMOPSO performs better on most of test
problems when considering both of the convergence speed and pop-
ulation diversity.

The rest of this paper is organized as follows. Section 2 introduces
the related background, including some important terms of MOPs,
decomposition approach, traditional PSO and the existing MOPSO al-
gorithms. In Section 3, the details of MMOPSO are described, where
the framework of MMOPSO and multiple search approaches are il-
lustrated. The experimental studies are given in Section 4, which
compare the performance of MMOPSO with various multi-objective
optimization algorithms and analyze the advantages of multiple
search strategies in MMOPSO. At last, conclusions are summarized in
(Section’5,)

2. Related work
2.1. Multi-objective optimization problems

A continuous and unconstrained multi-objective optimization
problem can be formulated as follows.

Min F(x) = (Hi(0, L&), ..., fmnC)T (1)
where x = (x1, X2, ..., Xp) is a n-dimensional decision vector bounded

in the decision space €2, m is the number of objective functions and the
mapping function F: 2 — R™ defines m objective functions bounded
in the objective space R™. Since the objectives often contradict each
other, the improvement of one objective may deteriorate other ob-
jectives. Therefore, the output of MOPs is generally a set of equally-
optimal solutions, which can be determined by Pareto optimality
(Bosman & Thierens, 2003).

Definition 1. (Pareto-dominance): A decision vector x is said to dom-
inate another decision vector y (noted as x > y) if and only if

(Vie{1.2,...m}: fi(x) < ik A Fje{l.2.....m}: f;(0) < f;(¥))
(2)

Definition 2. (Pareto-optimal): A solution x is said to be Pareto-
optimal if and only if

-dyeQ:y>x (3)

Definition 3. (Pareto-optimal set): The set PS includes all Pareto-
optimal solutions, defined as

PS={x|-FyeQ:y>x}. (4)

Definition 4. (Pareto-optimal front): The set PF includes the values of
all the objective functions corresponding to the Pareto-optimal solu-
tions in PS.

PF = {F(x) = (i(®), (). .... fu(x))"|x € PS}. (5)
2.2. Decomposition approach

Recently, decomposition approach is widely embedded into
nature-inspired metaheuristic for solving MOPs (Gong et al., 2014;
Liu, Gu, & Zhang, 2014). It is based on the facts that a Pareto-optimal
solution for MOPs, under some mild conditions, could be an optimal
solution of a scalar optimization problem, whose optimization tar-
get is an aggregation of all the objectives. Therefore, the finding of PF
can be decomposed into a set of SOPs (Li & Zhang, 2009; Zhang & Li,
2007). Currently, the popular decomposition approaches include the
weighted sum, Tchebycheff and boundary intersection approaches.
Among them, boundary intersection method has shown certain ad-
vantages over the other two approaches as discussed in (Martinez &
Coello Coello, 2011; Zhang & Li, 2007). Thus, boundary intersection
method is adopted in MMOPSO, which uses the pre-defined weighted
vectors A and a penalty value 6 to minimize the distance d; to the
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utopia vector and the direction error to the weighted vector d, from
the solution F(x) in the objective space, as defined by

Mié] g(x|A,z*) =dy +0d, (6)
where
[(F(x) —2) A
dy = WFW =2) All 7
1 B @
dy= | (FGx) —2) —dy 2 8)
2= YT

and z* = (z;,73, ..., Zy,) is the reference point, i.e., zZ; = min{f;(x)|x €
Q} for eachi=1,2,..., m. In practical implementation, as z* is un-
available in advance, it is usually replaced by the minimal value of
each objective found by the algorithms so far. The generation ap-
proaches for uniform weighted vectors A have been introduced in (Li
& Zhang, 2009; Zhang & Li, 2007).

2.3. Particle swarm optimization

Particle swarm optimization is an interesting nature-inspired
metaheuristic originally proposed by Kennedy and Eberhart (1995)
for dealing with global optimization problems. By simulating the
movement rules of bird flocking and fish schooling, it is very ca-
pable for locating the optimal value in a large searching space. In
PSO, a swarm is composed by a certain number of particles. Each
particle represents a potential solution for the optimization prob-
lem, which is characterized by its position and moving velocity. Here,
it is assumed that there are N particles in a swarm. When search-
ing an n-dimensional hyperspace, the position of particle i (i = 1,
2,..., N) indicates the solution location in search space, as repre-
sented by x; = (X1, X2, . . . » Xip). The positional movement of particle
i is recorded using its velocity, as described by v; = (v, Vip, - - -, Vin)-
Each particle i will memorize its historically best position as noted
by pbest; = (pi1, Piz> - - - » pin) and the best one among all pbest; in a
swarm is acknowledged as the globally best position gbest. Each par-
ticle i is evolved by exploiting positional information from the se-
lected global leader and its own personal best to update its velocity
and position values, as expressed in Eqs. (9) and (10).

Vit +1) = wi(t) + 171 (Xppest; — Xi(£)) + CoT2 (Xgpest — Xi (1)) (9)

Xi(l'-f-]):X,'(t)-i-Ui(t-i—]) (10)

where t is the iteration number, w is the inertial weight, c¢; and c;
are two learning factors from the personal and global best particles
respectively, r; and r, are two random numbers generated uniformly
in the range [0, 1].

2.4 Existing MOPSO algorithms

Particle swarm optimization is originally designed for solving
SOPs. To extend PSO for tackling MOPs, Pareto ranking method or
decomposition approach is embedded into PSO. Thus, the existing
MOPSO algorithms can be generally classified into two categories.
The first class uses Pareto ranking to determine the personal best and
global best particles. The global best particles are generally the non-
dominated solutions found during the particle movement and they
can be exploited to guide the particle swarm to approach the entire
PF. The reported MOPSOs, such as OMOPSO (Sierra & Coello Coello,
2005) and SMPSO (Nebro et al., 2009), belong to this category. The
second type adopts decomposition approach for transforming MOPs
into a set of SOPs and then PSO can be directly applied to solve each
SOP. This kind of MOPSOs can exploit the reported technologies of
PSO to better solve MOPs. The representatives of these MOPSO algo-
rithms include SDMOPSO (Moubayed et al., 2010), dMOPSO (Martinez
& Coello Coello, 2011), CMPSO (Zhan et al., 2013) and DDMOPSO

(Moubayed et al., 2014). All of these representative MOPSOs are in-
troduced briefly as follows.

OMOPSO is proposed by Sierra and Coello Coello (2005), which
uses Pareto dominance and crowding-distance information to iden-
tify the list of leader solutions. To enhance the search capability, two
mutation operators, i.e., uniform and non-uniform mutations, are re-
spectively executed to balance the abilities of exploration and ex-
ploitation. Moreover, an external archive is exploited to collect all the
non-dominated solutions visited by the swarm and the concept of ¢-
dominance is utilized to limit the size of this archive.

SMPSO is an improved version of OMOPSO as designed by Nebro
et al. (2009), which embeds a velocity construction procedure in the
movement of particles to prevent the so-called “swarm explosion” ef-
fect (Clerc & Kennedy, 2002) in OMOPSO. Thus, SMPSO is able to pro-
duce new effective particles in the cases that the velocity of particle
becomes too high. Besides that, polynomial mutation is performed
after PSO search as a turbulence factor and an external archive is
used to preserve a number of the historically found non-dominated
solutions.

MOPSO/D is reported by Peng and Zhang (2008), which may be
the first attempt to embed decomposition approach into MOPSO. It
follows the framework of MOEA/D (Zhang & Li, 2007) and replaces
the genetic search method with the traditional PSO search approach.
The updates of personal and global particles are fully decided by the
aggregation values of all objectives. After that, a turbulence operator
is performed and an external archive based on ¢-dominance is used
to collect a number of non-dominated solutions that are historically
found during the PSO search.

SDMOPSO is an enhanced algorithm from MOPSO/D as designed
by Moubayed et al. (2010), which tackles the drawback of MOPSO/D
by fully exploiting the salient properties of neighborhood relations
in PSO. The particle’s global best is only picked from the neighboring
solutions and each particle is only associated with a unique weight
vector that gives the best scalar aggregated fitness value. Moreover, a
crowding archive is also adopted in SDMOPSO to maintain the diver-
sity of the swarm leaders.

dMOPSO is presented by Martinez and Coello Coello (2011), which
is fully dependent on decomposition approach to solve MOPs. The po-
sition of each particle is updated using a set of global particles, which
are determined based on the scalar aggregated values. The distinct
feature of dMOPSO is that a memory re-initialization procedure is
used when the particle exceeds a certain age, which is aimed at main-
taining the diversity of the swarm and avoiding the trap in local PFs.
However, as pointed out by Moubayed et al. (2014), the absence of
dominance relation in dMOPSO may lead to the fail to cover the en-
tire PF in some complex MOPs.

CMPSO is designed by Zhan et al. (2013), which is a novel coevo-
lutionary technique for PSO to solve MOPs. It provides a simple and
straightforward way to solve MOPs by letting each swarm correspond
with each objective. An external shared archive is used to store all the
visited non-dominated solutions and allow the information exchange
among the elitist individuals. Two novel approaches are presented
to enhance its performance. The first method embeds the elitist in-
formation from the shared archive to update the particle’s velocity,
while the second approach presents an elitist learning strategy for
archive update to improve the swarm diversity and avoid the trap in
local PFs.

The original DDMOPSO is proposed by Moubayed, Pertovski, and
McCall (2012), which integrates both of dominance and decomposi-
tion approaches for solving MOPs. Afterward, an improved version is
also presented by the same authors (Moubayed et al., 2014), which
can fast converge to the true PF without using the genetic operators.
It proposes a new mechanism for the selection of the particle lead-
ers and a novel archiving technique that collects the non-dominated
particles based on the crowding-distance values in both objective and
solution spaces.
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Inspired by the above MOPSO algorithms, the proposed MMOPSO
algorithm also decomposes MOPs into a set of aggregation prob-
lems and adopts a crowding archive to preserve a number of the
non-dominated solutions. However, when compared with the above
MOPSO algorithms, the distinct features of MMOPSO include two
search strategies that are designed to update the velocity of each par-
ticle, an evolutionary search strategy that is performed on the archive
to exchange beneficial information among the elitist individuals, a
new definition of the personal best and global best particles. All of
the new features improve MMOPSO on both of the convergence speed
and swarm diversity, which will be analyzed and discussed in the

3. The proposed MMOPSO algorithm

The proposed MMOPSO algorithm is based on decomposition ap-
proach to transform MOPs into a set of scalar aggregation prob-
lems, which adopts boundary intersection method as introduced in
Section 2.2. Each particle in MMOPSO is aimed at optimizing each ag-
gregation problem by updating its flight velocity and then all the non-
dominated solutions visited by the particles are maintained in an ex-
ternal finite-size archive. Once the archive is full, the non-dominated
solutions with bigger crowding-distance values will be remained. In
the following subsections, the main procedures of MMOPSO, such as
two search strategies for velocity update, evolutionary search on the
external archive and archive update, are respectively described. At
last the complete MMOPSO algorithm is illustrated.

3.1. Two search strategies for velocity update

In traditional PSO algorithm, the velocity and position values of
the particles are usually updated using the positional information of
the personal-best and global-best particles, as defined in Eqs. (9) and
(10). However, as pointed out above, this single search pattern may
cause some difficulties when solving some complex MOPs. There-
fore, inspired by the multiple search patterns reported for solving
SOPs (Hu et al., 2013; Li et al.,, 2012; Zuo et al., 2014), two veloc-
ity update equations are incorporated into MMOPSO, which are re-
spectively used for exploitation and exploration in search space. They
are cooperated with the decomposition approach, attempting to op-
timize each aggregation problem. Assuming that there are N particles
in a swarm, for each particle i (i = 1, 2,..., N), it associates with a
unique weight vector A; used in Egs. (6)-(8). In MMOPSO, the veloc-
ity of particlei(i=1, 2,..., N) is updated as defined in Eq. (11) or
(12).

Vit + 1) = wr(t) + 111 (Xppest, — Xi (1)) (11)
Vi(t+ 1) = wi;(t) + a1 (Xgpest — Xi(£)) (12)

where t is the iteration number, w is the inertial weight, ¢; and ¢, are
two learning factors, and r; and r, are two uniformly distributed ran-
dom numbers in [0, 1]. It is noted that x ., in Eq. (11) is picked from
the solutions among the external archive A = {Aq, Az, ..., Aja }, which
gives the best value of each aggregation problem corresponding with
the weight vector A; (Moubayed et al., 2014). The pseudo-code for the
selection of each X peq, is described in Fig. 1.

On the other hand, as the solutions in external archive A are all
non-dominated, they can be considered to be the global-best values
for MOPs. Thus, Xgpes; is randomly selected from the external archive
A. Therefore, when using Eq. (11) to update the velocity, it will quickly
guide the corresponding particle to approach the neighboring region
around the optimal aggregated value, which enhances the ability of
exploitation and resultantly accelerates the convergence speed. Oth-
erwise, the velocity is renewed by Eq. (12); it will lead the targeted
particle to search the intermediate region between Xg.s and itself.
This is beneficial for the enhancement of exploration and simultane-
ously improves the swarm diversity. In MMOPSO, the advantages of

Algorithm 1 Selection for xpses
1. fori=ltoN

2 X pbesti = Al 5

3 forj=2to |A|

4 if 9(Xppew, | 4.27)> (A4, | 4.2)
S: Xppest: = A 3
6

7

8

end if
end for
end for

Fig. 1. The pseudo-code for the selection of personal-best particles.

Algorithm 2 Evolutionary Search Strategy
I: fori=lto |A]

2 generate a random integer j in [1,| E[];
3 {Cl,cz} =SBX(A1'~EJ);

4 generate a random integer kin [1, 2];
5

6

Si =PM( Ci );
end for

Fig. 2. The pseudo-code of evolutionary search strategy.

the two search patterns are combined by using a pre-defined thresh-
old &, as follows:
Vi(t + 1) = wui(t) + 171 (Xppesr, — Xi(£)) if 13 <8 (13)
Vi(t + 1) = wi;(t) + a2 (Xgpest — Xi(£))  else
where r3 is a uniformly distributed random number in [0, 1]. The ap-
propriate setting of § can keep the balance between exploitation and
exploration. Indicated by the experimental studies, § is generally set
in [0.5, 0.9] to put more attention on the exploitation of the current
search region.

3.2. Evolutionary search on the archive

After the PSO-based optimization, the visited non-dominated
solutions with bigger crowding-distance values are preserved in
external archive A, which are considered to be good representa-
tives of the entire PF. To allow the beneficial information exchange
among the archive, MMOPSO performs evolutionary search on each
non-dominated solution in the archive. The embedded evolutionary
search power can repair the potential vulnerability of PSO search.
This is supported by the recent research studies in evolutionary al-
gorithms that the hybridized search power can enhance the search
capability and the robustness to tackle various kinds of MOPs (Chen,
Lin, & Ji, 2010; Sindhya et al., 2013; Tang & Wang, 2013). In MMOPSO,
the evolutionary operators, such as simulated binary crossover (SBX)
and polynomial mutation (PM), are performed, as they are widely
adopted in multi-objective optimization algorithms (Chen et al.,
2010; Deb et al., 2002; Gong, Jiao, Du, & Bo, 2008; Lin & Chen, 2013).
SBX operator allows the elitist solutions to exchange useful gene seg-
ments while PM operation injects a small turbulence to search the
local region. To perform SBX and PM operators on external archive A,
an elitist subset E is firstly selected from A, which contains a number
of non-dominated solutions with bigger crowding-distance values in
A. The size of E is generally smaller than A and set to be half of |A| in
this paper. For each solution A; (i=1,2,...,|A|), a random integer j
is generated in [1,|E|]. Then, A; and E; are used as parent solutions to
execute SBX operator. One of the child solutions from SBX operator
is randomly selected and then further to perform PM operator. The
implementations of SBX and PM operators can be found in (Chen et
al., 2010; Gong et al., 2008; Lin & Chen, 2013). The pseudo-code of
this evolutionary search strategy is described in Fig. 2, where SBX(A;,
E;j) means to perform SBX operator on parent solutions A; and E;, Cy
and G, are the resultant child solutions generated from SBX opera-
tor, PM(C,,) indicates the execution of PM operator on C. After that, a
new solution set S is generated, which will be added into the external
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Algorithm 3 Archive Update

1: fori=lto [S|

2 forj=1to |A|

3 State = CheckDominance(S,, 4;);

4 if State==1

S: mark A; asa dominated solution;
6 else

7 break;

8: end if

9: end for

10: delete the marked dominated solutions from A;
11: if State!=—-1

12: add S; toA;

13: if |[A|>N

14 CrowdingDistanceAssignment(A);
15: delete the most crowded one;

16: end if

17: end if

18: end for

Fig. 3. The pseudo-code of archive update.

archive by archive update operation as introduced in the following
subsection.

3.3. Archive update

After the execution of PSO search or evolutionary search, the new
generated non-dominated solutions are collected into the external
archive. As the size of archive is finite, whereas the number of non-
dominated solutions may be infinite, it is necessary to use a proper
selection mechanism for archive update, which can help to guide the
search direction toward the true PF. Here, the popular archive up-
date mechanism used in (Nebro et al., 2009; Zhan et al., 2013) is also
adopted, which is based on both of Pareto dominance and crowding
distance. Assuming that the new generated solution set is S and the
solution set in external archive is A, the pseudo-code of the archive
update procedures can be briefly described in Fig. 3, where N is the
maximum size of A. In Fig. 3, the function CheckDominance(x, y)
returns the Pareto dominance relationship between solutions x and
y. If the function returns 1, it means that x dominates y. Other-
wise, the function returns -1 when y dominates or is equal with
x. Another function CrowdingDistanceAssignment(A) will calculate
the crowding distance value (Deb et al., 2002) for each solution
in A.

3.4. The complete MMOPSO algorithm

The above subsections have described the procedures of veloc-
ity update, evolutionary search and archive update, which compose
the main components of MMOPSO. Besides that, the other parts are
presented in the pseudo-code of MMOPSO, as illustrated in Fig. 4,
where N is the size of population and external archive, ev represents
the number of function evaluations, max_ev indicates the maximum
number of function evaluations, r is a uniformly distributed random
number in [0, 1] and § is a predefined threshold to control the veloc-
ity update.

In the initialization phase, N weight vectors are firstly initialized
and then a swarm with N particles is randomly generated, where each
particle associates with a unique weight vector. The external archive
A is initialized to be empty. After evaluating the objectives of each
particle, the archive update procedures are performed to preserve the
non-dominated solutions in archive A. Then, MMOPSO turns into the
loop of evolutionary process until the function evaluation times ev
reaches the predefined maximum times max_ev.

Algorithm 4 MMOPSO

I A={};

2: ev=0;

3:  initialize the N weight vectors used in Egs. (6-8);

4 fori=1toN

S: randomly initialize the position x; of particle i;
6: set the velocity v, of particle 7 to 0;

7: evaluate the objectives of x;;

8:  end for

9: ev=ev+N;
10: archive update (Algorithm 3);
11:  while ev <max_ev

12: selection for x5 (Algorithm 1);

13 fori=1to N

14: if r<&

15: update the velocity using Eq. (11);

16: else

17: randomly select a solution from A as  Xgpes ;
18: update the velocity using Eq. (12);

19: end if

20: update the position using Eq. (10);

21: evaluate the objectives of new particles;
22: update the reference point z* in Eq. (6);
23: end for

24 ev=ev+N,

25: archive update (Algorithm 3);

26: evolutionary search strategy (Algorithm 2) on A;
27: evaluate the objectives of new solutions;

28: update the reference point z* in Eq. (6);

29: ev=ev+ |Al;

30 archive update (Algorithm 3);

31 end while

32 report the solutions in archive A;

Fig 4. The pseudo-code of complete MMOPSO algorithm.

During the evolutionary phase, the PSO search is first executed.
The velocity of each particle is updated by using Egs. (11) or (12),
which is determined by the threshold §. Once the random number
ris smaller than §, Eq. (11) is used to update the velocity, where the
selection for Xppes; as introduced in Algorithm 1 is run to find the
personal-best particle that can give the best aggregation value. Other-
wise, the velocity is updated using Eq. (12), where Xgp,, is randomly
picked from external archive A. After the positional information for
each particle is renewed, the objectives of new particles are evalu-
ated. Then, the archive update procedure as described in Algorithm 3
is executed to gather the new non-dominated solutions with bigger
crowding-distance values. After that, the evolutionary search pro-
cess is run to allow the information exchange among the archive A,
the detailed implementation of which is illustrated in Algorithm 2.
Evolutionary operators, such as SBX and PM, are operated accord-
ingly. Then, the objectives of the mutant solutions are computed
and the archive update process in Algorithm 3 is activated again.
The above evolutionary phase will repeat until the predefined maxi-
mum function evaluation times are achieved. At the end of algorithm,
the non-dominated solutions in archive A are reported as the final
approximated PF.

4. Experimental studies

In this section, several experimental studies are performed to
examine the performance of MMOPSO. Firstly, the related back-
ground about the simulations is introduced, including the standard
benchmark problems, performance metric and the corresponding pa-
rameter settings. Secondly, the performance of MMOPSO is com-
pared with some MOPSO algorithms and two state-of-the-art MOEAs,
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Table 1
The parameter settings for all the algorithms.

Algorithms  Parameter settings

DDMOPSO N=200,w €[0.1,0.5], ¢y, c; € [1.5,2.0]

CMPSO N, =20,N; =200w € 0.9 — 04,¢c; =c; =c3 =4.0/3

SMPSO N =200, w €[0.1,0.5], ¢y, ¢, € [1.5,2.5], pm = 1/n, 1)y = 20

dMOPSO N =200, w €[0.1,0.5], ¢y, c; € [1.5,2.0]

OMOPSO N =200, €[0.1,0.5], ¢y, c; € [1.5,2.0]

NSGA-II N =200, pc =0.9, pm = 1/n, nc = 20, N = 20

MOEA/D N=200,CR=1.0,F=0.5pm=1/n,1nn =20,T=20,8 =0.9,n, =2

MMOPSO N =200, €[0.1,0.5],c1,c; € [1.5,2.0], pc = 0.9, pm = 1/n, nc = 20, 9 = 20,6 =0.9

e.g., DDMOPSO (Moubayed et al., 2014), CMPSO (Zhan et al., 2013),
SMPSO (Nebro et al., 2009), dMOPSO (Martinez & Coello Coello, 2011),
OMOPSO (Sierra & Coello Coello, 2005), NSGA-II (Deb et al., 2002)
and MOEA/D (Li & Zhang, 2009). Thirdly, in order to validate the ad-
vantages of multiple search strategies in MMOPSO, the performance
of MMOPSO is further compared with the two variants of MMOPSO,
i.e., MMOPSO-I and MMOPSO-II. MMOPSO-I replaces the velocity up-
date equation in Eq. (13) with the traditional one in Eq. (9), while
MMOPSO-II removes the evolutionary search strategy, making it a
pure PSO algorithm. At last, the time complexity analysis of MMOPSO
is provided.

4.1. Standard benchmark problems

In this study, twenty four standard benchmark problems without
any inequality or equality constraints are used to evaluate the perfor-
mance of MMOPSO. They can be classified into three categories. The
first kind is low-dimensional bi-objective problems, such as Schaffer
(1985), Fonseca and Flemming (1998), and Kursawe (1990). They
are shortly written as SFK test problems. The second class is high-
dimensional bi-objective problems, including ZDT1~ZDT4 and ZDT6
(Zitzler et al., 2000). The third type is scalable objective problems,
covering WFG1~WFG9 (Huband et al., 2005) and DTLZ1~DTLZ7 (Deb
et al,, 2005). In our experimental studies, the WFG and DTLZ fam-
ily problems are respectively scaled to two and three objectives. It
is noted that for ZDT1-ZDT3, the number of decision variables is 30,
while the sizes of decision variables in ZDT4, ZDT6 and all DTLZ prob-
lems are 10. The number of decision variables in all WFG problems
is 12, which is consisted by 4 position parameters and 8 distance pa-
rameters. These test problems are characterized with convexity, con-
cavity, discontinuity, non-uniformity and the trap of many local PFs.
Therefore, they are widely applied in the experimental studies to test
the comprehensive performance of multi-objective optimization al-
gorithms (Moubayed et al., 2014; Gong et al., 2008; Lin & Chen, 2013;
Zhan et al., 2013).

4.2. Performance metric

One important job of MOPs is to find a uniformly distributed sub-
set that approximates the true PF as close as possible, which can be
provided to the decision maker as the alternative solutions for various
practical cases. Since the inverted generational distance (IGD) metric
(Li & Zhang, 2009) can examine both of the convergence and diversity,
it is adopted in our experimental studies to assess the optimization
performance.

Let S be a uniformly distributed subset selected from the true PF
and S is the approximated set that is obtained by a multi-objective
optimization algorithm. The IGD value of S to §, i.e., IGD(S,S) is de-
fined as

£ d(5;.5)
N
where |S| returns the number of solutions in set S and d(S;, S’) com-

putes the minimum Euclidean distance from S; to the solutions of §’
in objective space. When acquiring this IGD value, the true PF has to

IGD(S,S) = (14)

be available in advance. Generally, a lower value of IGD(S, S") is pre-
ferred as it indicates that S’ is distributed more uniformly and closer
to the true PF.

4.3. Experimental settings

In this study, in order to validate the optimization performance
of MMOPSO in a convincible way, MMOPSO is compared with some
MOPSO algorithms, including DDMOPSO, CMPSO, SMPSO, dMOPSO
and OMOPSO. Moreover, MMOPSO is also compared with two state-
of-the-art MOEAs, i.e., MOEA/D and NSGA-IL It is noted that the
source codes of SMPSO, dMOPSO, OMOPSO, MOEA/D and NSGA-II
can be found in jMetal (Durillo & Nebro, 2011) and the source code
of DDMOPSO is provided by the authors that is also implemented
in jMetal. Besides that, CMPSO and MMOPSO are realized by us in
the framework of jMetal. All the above algorithms have shown the
promising performance when tackling various kinds of MOPs. There-
fore, the comparisons of MMOPSO with them can make the results
more convincible.

The parameter settings of all the algorithms are summarized in
Table 1. For the compared algorithms, these parameter settings are all
recommended by their authors. As most of parameters in MMOPSO
also exist in the compared algorithms, they are set the same with the
compared algorithms for fair comparison. For MMOPSO, DDMOPSO,
dMOPSO and OMOPSO, the control parameters cy, ¢, are randomly
generated from [1.5, 2.0] and the inertial weight w is selected from
[0.1, 0.5] randomly. In SMPSO, the control parameters c;, ¢, are ran-
domly chosen from [1.5, 2.5] and the inertial weight w is also ran-
domly selected from [0.1, 0.5]. For CMPSO, the control parameters cy,
Cy, and c3 are all set to 2.0 and the inertial weight w is linearly de-
creasing from 0.9 to 0.4. N is the sizes of swarm and external archive
for all the algorithms except CMPSO. As multiple populations are re-
spectively evolved to optimize multiple objectives in CMPSO, a small
population size is recommended by the authors. Thus, the swarm size
Ny in CMPSO is set to 20 while the external archive N is also set to
200. pc and pp, are respectively the crossover and mutation probabil-
ities used in evolutionary operators. n. and n,, are the distribution
indexes of SBX and PM respectively. For MOEA/D, T defines the size
of the neighborhood in the weight coefficients, 6 controls the proba-
bility that parent solutions are chosen from T neighbors and n; is the
maximal number of parent solutions that are replaced by each child
solution.

It is noted that the setting of N listed in Table 1 is only for the bi-
objective problems. For the triple-objective test problems, the sizes of
population and external archive are all set to 595 except for CMPSO.
The swarm size N, and the external archive N, in CMPSO are respec-
tively set to 60 and 595 for triple-objective test problems. The ex-
pected maximal generation is 300. Therefore, the maximal numbers
of function evaluations (FEs) are 60,000 and 178,500 for bi-objective
and triple-objective problems, respectively. All the algorithms are
run by 30 times in jMetal using a personal computer with a 3.20
Giga Hertz CPU, 2 Giga Byte memory and windows 7 operating sys-
tem. Their mean values and standard deviations (std) for each test
problem are collected for comparison, where the best results are
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Table 2
IGD results on the FKS and ZDT problems.
Algorithms

Problems NSGA-II MOEA/D OMOPSO dMOPSO  SMPSO CMPSO DDMOPSO  MMOPSO

Fonseca Mean 2.78E-03  1.77E-03 1.85E-03 1.82E-03 1.85E-03 2.43E-03  1.88E-03 1.86E-03
Std 6.30E-05  3.65E-06  1.87E-05 1.30E-05 1.50E-05 7.17E-05 5.42E-05 1.37E-05
p-value 9.78E-36  1.84E-25 0.0054 1.76E-16 0.0015 1.22E-27 0.0747 -

Kursawe Mean 2.16E-02 2.07E-02 1.97E-02 2.49E-02  1.82E-02 1.95E-02 1.95E-02 1.63E-02
Std 8.40E-04  1.73E-04 6.65E-04 6.70E-04  4.98E-04  5.83E-04  1.29E-03 3.00E-04
p-value 3.03E-25 2.31E-33 4.49E-21 8.75E-33 4.43E-18 4.07E-21 1.97E-14 -

Schaffer Mean 4.46E-01 4.84E-01 7.97E-03 1.67E-01 8.33E-03  5.15E-02 8.33E-03 8.00E-03
Std 1.46E-01 2.03E-01 7.89E-04 3.09E-05  5.55E-04  9.06E-03  5.89E-04 6.29E-04
p-value 3.15E-16 1.77E-13 0.8756 1.63E-71 0.0353 9.19E-22 0.0601 -

ZDT1 Mean 2.33E-03  5.33E-03 1.86E-03 2.25E-03  1.82E-03  2.03E-03  3.42E-03 1.87E-03
Std 6.14E-05 1.16E-03 2.11E-05 9.58E-06  1.53E-05  3.94E-05  7.26E-04 1.38E-05
p-value 1.30E-26  3.69E-16 0.3050 5.89E-41 4.13E-13 142E-18 1.65E-12 -

ZDT2 Mean 2.39E-03  3.98E-03 1.92E-03 1.96E-03 1.89E-03  2.14E-03 2.26E-01 1.91E-03
Std 7.71E-05 8.76E-04 1.76E-05 1.75E-05 147E-05  3.67E-05  2.98E-01 2.10E-05
p-value 1.26E-24 1.42E-13 0.0283 3.10E-10 2.81E-4 491E-24  2.89E-4 -

ZDT3 Mean 2.60E-03  6.16E-03 2.24E-03 6.64E-03  2.14E-03 4,64E-03  6.06E-03 2.10E-03
Std 8.07E-05  6.64E-04  8.61E-05 9.90E-05  7.86E-05 8.46E-04  1.78E-03 4.49E-05
p-value 1.04E-22 1.40E-24 2.06E-8 3.76E-48  0.0729 2.22E-16  6.14E-13 -

ZDT4 Mean 2.48E-03  4.94E-02  4.44E+00  2.27E-03 1.87E-03 5.06E-02  1.66E+00 1.84E-03
Std 2.57E-04  6.02E-02  2.02E+00  1.41E-05 2.18E-05 3.94E-02  1.33E+00 1.87E-05
p-value 4.53E-14  1.63E-4 8.28E-13 9.38E-41 1.89E-5 1.94E-7 1.67E-7 -

ZDT6 Mean 2.57E-03  1.17E-03 1.56E-03 1.18E-03 1.46E-03 1.80E-03 3.75E-03 1.56E-03
Std 1.93E-04  3.02E-06  8.72E-05 4.64E-07  7.92E-05 1.84E-04  2.16E-03 4.72E-05
p-value 2.09E-23  1.87E-28 0.8586 3.79E-28  4.54E-6 4.60E-8 5.44E-6 -

Better/Similar/Worse ~ 8/0/0 6/0/2 4/3)1 6/0/2 3/1/4 8/0/0 6/2/0 -

identified with bold font in comparison tables. Moreover, the t-test
with significant level o = 0.05 is also performed to examine that
whether the IGD mean values obtained by MMOPSO are statistically
different from that obtained by the other algorithms. The p-value re-
turned by the t-test is also collected in the comparison table, where
the p-value bigger than 0.05 means that the compared IGD mean val-
ues are statistically similar. It is noted that the underlined IGD results
for the compared algorithms indicate that they are statistically simi-
lar with that obtained by MMOPSO under the t-test.

4.4. Comparisons of MMOPSO with other multi-objective algorithms

4.4.1. Comparisons on the FKS and ZDT test problems

Table 2 summarizes the results of all the algorithms on the FKS
and ZDT test problems. Our MMOPSO algorithm obtains the best re-
sults on Kursawe, ZDT3 and ZDT4, while SMPSO performs best on
ZDT1 and ZDT2. Moreover, MOEA/D gets the best results on Fonseca
and ZDT6, and OMOPSO performs best on Schaffer. Since the corre-
sponding test problems are not so difficult, it is observed that the
compared algorithms perform well on most of test problems. How-
ever, it is important to point out that some of the compared algo-
rithms are lack of capabilities in handling test problems with specific
characteristics. For example, NSGA-II, MOEA/D and dMOPSO can’t ef-
fectively approach the true PF of Schaffer; DDMOPSO gives the worst
result on ZDT2; OMOPSO and DDMOPSO are unable to find the true
PF of ZDT4 due to the existence of many local PFs.

The t-test results indicate that MMOPSO performs similarly with
OMOPSO on Schaffer, ZDT1 and ZDT6, with SMPSO on ZDT3, and with
DDMOPSO on Fonseca and Schaffer. Moreover, the final comparison
results of MMOPSO with the compared algorithms are clearly con-
cluded in the last row of Table 2, where Better/Similar/Worse in-
dicates that the number of test problems that the results obtained
by MMOPSO are better than, similar with or worse than that of the
compared algorithms. It is quite obvious that MMOPSO performs bet-
ter than or similarly with NSGA-II, CMPSO and DDMOPSO on all the
test problems. For MOEA/D and dMOPSO, MMOPSO obtains the bet-

ter results on 6 out of 8 test problems. Besides that, MMOPSO per-
forms better than OMOPSO, and worse than SMPSO. Actually, both of
MMOPSO and SMPSO are able to solve the corresponding test prob-
lems well. To visually show the optimization performance, the best
results of MMOPSO on these test problems are plotted in Fig. 5, where
the true PFs are identified with the red lines and the approximated PFs
are marked with black diamonds. It is evident that the found approx-
imated PF is distributed uniformly on the true PF.

4.4.2. Comparisons on the WFG test problems

Table 3 presents the simulation results obtained by all the algo-
rithms on the WFG test problems. Our proposed MMOPSO algorithm
achieves the best performance on WFG1, WFG3, WFG4, WFG7 and
WEGY, while OMOPSO performs best on WFG2 and WFG6. MOEA/D
and CMPSO get the best results on WFG8 and WFG5, respectively. It is
noted that most of the compared algorithms fail to approach the true
PF of WFG1, whereas MMOPSO performs better. Actually, observed
from Table 3, MMOPSO is able to deal with most of WFG problems
quite well.

The t-test results show that MMOPSO gets the statistically similar
results with MOEA/D on WFG2, with OMOPSO on WFG5, with SMPSO
on WFG5 and WFG6, with CMPSO on WFG8, and with DDMOPSO on
WFG2. The comparison summary in the last row of Table 3 illustrates
that MMOPSO performs better than the compared targets on most of
WEFG test problems. Fig. 6 plots the best results obtained by MMOPSO
on the WFG test problems, which can visually show the promising
performance of MMOPSO. Except for WFG8, MMOPSO is able to ef-
fectively approach the true PFs.

4.4.3. Comparisons on the DTLZ test problems

Table 4 gives all the experimental results on the DTLZ test prob-
lems. Our proposed MMOPSO algorithm performs best on DTLZ1,
DTLZ5 and DTLZ6, while dMOPSO obtains the best results on DTLZ2
and DTLZ4. MOEA/D and CMPSO get the best performance on DTLZ3
and DTLZ7, respectively. The simulations show that some MOPSO al-
gorithms, such as OMOPSO, CMPSO and DDMOPSO, can’t effectively
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Fig. 5. The plots of best performance obtained by MMOPSO on the FKS and ZDT test problems.

approach the true PF of DTLZ3 as it is easy to get trapped in local PFs,
while MMOPSO and SMPSO can handle it quite well.

The t-test results show that MMOPSO, NSGA-II, OMOPSO, SMPSO
and CMPSO obtain the similar results on DTLZ4. Moreover, MMOPSO
performs similarly with SMPSO and OMOPSO on DTLZ6. The compari-
son conclusion on the last row of Table 4 indicates that MMOPSO per-
forms better than NSGA-II, OMOPSO, SMPSO and DDMOPSO. When
compared with MOEA/D, dMOPSO and CMPSO, our proposed algo-
rithm MMOPSO still have some advantages on these DTLZ problem:s.
Fig. 7 gives the plots of best results obtained by MMOPSO on the DTLZ
problems, where the true PFs are marked with red surface and the ap-
proximated PFs are identified with black diamonds. These plots fur-
ther confirm that MMOPSO can find the approximated PF that is dis-
tributed uniformly and very close to the true PF.

At last, all the comparison summaries on the last rows of
Tables 2-4 are collected in Table 5, which gives the comprehensive
performance of MMOPSO when compared with the other algorithms

on all the test problems. It is obvious that MMOPSO performs bet-
ter than or similarly with NSGA-II, OMOPSO, dMOPSO, CMPSO and
DDMOPSO on at least 20 out of 24 test problems. When compared
with MOEA/D and SMPSO, MMOPSO also obtains the better or sim-
ilar results on 17 and 18 out of 24 test problems, respectively. These
experimental results justify the advantages of MMOPSO when han-
dling various kinds of test problems.

4.5. Advantages of multiple search strategies in MMOPSO

In order to investigate the advantages of multiple search strategies
in MMOPSO, two variants of MMOPSO are included for comparison,
i.e., MMOPSO-I and MMOPSO-II. They have the similar components
with MMOPSO, except that MMOPSO-I replaces the velocity update
equation in Eq. (13) with the traditional one in Eq. (9) and MMOPSO-
Il removes the evolutionary search component on the archive. In
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Table 3
IGD results on the WFG test problems.
Algorithms

Problems NSGA-II MOEA/D OMOPSO  dMOPSO SMPSO CMPSO DDMOPSO  MMOPSO

WFG1 Mean 6.47E-01 7.51E-01 1.15E+00 1.20E4+-00 1.19E+00 1.04E+00 5.11E-01 1.22E-02
Std 3.22E-01 1.38E-01 2.57E-02 5.57E-03 1.38E-02 8.89E-02 1.07E-01 4.06E-03
p-value 1.18E-11 3.28E-23  1.27E-49 1.19E-66 1.53E-57 1.20E-32 1.73E-21 -

WFG2 Mean 6.24E-02  2.72E-02  6.47E-03 2.00E-01 1.09E-02 1.72E-02 3.03E-02 3.31E-02
Std 447E-04  1.62E-02 5.48E-04  1.96E-02 1.55E-03 1.08E-02 4.53E-02 2.87E-02
p-value 4.96E-6 0.3095 1.96E-5 9.79E-21 2.22E-4 0.0100 0.7868 -

WEFG3 Mean 8.26E-03  7.13E-03 6.34E-03 2.20E-02 8.06E-03 1.57E-02 6.20E-03 5.47E-03
Std 432E-04  1.02E-04  6.15E-04 1.58E-03 6.62E-04  3.21E-03 5.01E-04 7.36E-04
p-value 1.04E-17 4.28E-13 2.75E-5 5.41E-31 4.75E-14 6.65E-17 5.11E-5 -

WFG4 Mean 7.15E-03 2.40E-02  4.32E-02 5.34E-02 4.78E-02 7.71E-03 1.45E-02 5.74E-03
Std 2.75E-04  4.93E-03  2.20E-03 2.14E-03 6.06E-03 6.03E-04 3.17E-03 4.53E-04
p-value 7.72E-14 1.39E-18 1.51E-37 7.32E-41 4.64E-26 4.67E-14 0.0198 -

WEFG5 Mean 6.59E-02  6.55E-02  6.53E-02 6.61E-02 6.52E-02 6.26E-02 6.56E-02 6.47E-02
Std 1.76E-04  6.11E-05 1.23E-04 2.61E-04 9.91E-05 2.88E-03 1.03E-04 2.01E-03
p-value 0.0034 0.0392 0.1142 5.48E-4 0.1581 0.0044 0.0198 -

WEFG6 Mean 7.92E-02 8.39E-03  7.15E-03 2.65E-02 1.72E-02 3.05E-02 2.19E-02 1.42E-02
Std 2.89E-02  151E-03 445E-04  7.18E-03 1.98E-02 1.57E-02 1.30E-02 1.10E-02
p-value 141E-11 0.0066 0.0015 4.48E-7 0.5087 1.23E-4 0.0256 -

WEFG7 Mean 8.02E-03  8.81E-03  6.26E-03 2.29E-02 7.16E-03 9.40E-03 6.19E-03 5.93E-03
Std 3.55E-04  8.44E-05  6.40E-05 1.75E-03 3.34E-04 5.81E-04 8.95E-05 7.35E-05
p-value 1.16E-24 4.62E-43  3.75E-18 1.92E-30 1.63E-18 2.59E-24 4.28E-13 -

WEFG8 Mean 1.95E-01 1.68E-01 2.33E-01 2.49E-01 2.00E-01 2.23E-01 2.32E-01 2.24E-01
Std 8.59E-03  4.97E-02  6.46E-03 6.07E-03 2.02E-02 2.53E-02 1.74E-02 3.47E-03
p-value 8.76E-17 1.19E-6 2.32E-7 1.19E-18 7.41E-7 0.7934 0.0134 -

WFG9 Mean 1.18E-02 3.52E-02  1.56E-02 2.42E-02 1.74E-02 1.51E-02 1.21E-02 8.86E-03
Std 1.56E-03 6.84E-02  6.17E-04 1.65E-03 2.90E-04  3.52E-03 1.51E-03 1.52E-03
p-value 5.00E-8 0.0421 4.44E-19 2.95E-25 2.22E-23 3.84E-9 2.63E-10 -

Better/Similar/Worse  8/0/1 6/1/2 6/1/2 9/0/0 5/2/2 6/1/2 8/1/0 -

Table 4
IGD results on the DTLZ test problems.
Algorithms

Problems NSGA-II MOEA/D OMOPSO dMOPSO SMPSO CMPSO DDMOPSO  MMOPSO

DTLZ1 Mean 1.07E-02 111E-02 2.47E+01 1.78E-02 1.16E-02 5.83E-02  3.22E+00 1.01E-02
Std 3.57E-04  2.50E-04  8.01E+00  3.89E-03 2.26E-04  1.99E-02 2.95E+00 2.02E-04
p-value 7.16E-8 2.65E-18 1.54E-16 8.41E-12 2.34E-22 7.55E-14 1.80E-6 -

DTLZ2 Mean 2.81E-02 2.61E-02 2.81E-02 2.24E-02 2.84E-02 2.56E-02 2.63E-02 2.74E-02
Std 5.64E-04  1.12E-04 4.88E-04 2.00E-04  722E-04 451E-04 3.91E-04 4.27E-04
p-value 1.91E-6 2.32E-16 1.03E-7 1.26E-31 2.65E-7 1.28E-15 1.54E-12 -

DTLZ3 Mean 2.85E-02  2.68E-02  8.65E+01  4.32E-02 2.83E-02  1.18E-01 1.26E+01 2.75E-02
Std 9.97E-04  3.27E-04  2.15E+01 5.59E-03  4.97E-04  3.28E-02 1.19E+01 5.08E-04
p-value 1.30E-5 2.25E-5 1.14E-19 1.12E-15 8.23E-7 2.61E-15 3.04E-6 -

DTLZ4 Mean 2.87E-02  1.98E-02 2.78E-02 1.73E-02 2.91E-02  6.78E-02  3.01E-02 2.85E-02
Std 2.05E-03  8.61E-04  4.93E-03 8.02E-04  4.32E-03  1.24E-01 2.56E-03 1.81E-03
p-value 0.7344 2.77E-20  0.5013 2.60E-23 0.5213 0.0929 0.0036 -

DTLZ5 Mean 8.81E-04  2.64E-03  6.81E-04 7.31E-03 6.76E-04  9.66E-04  1.07E-03 6.61E-04
Std 3.87E-05  9.92E-06  2.18E-05 2.45E-04  2.39E-05  3.72E-05 1.53E-04 2.27E-05
p-value 3.01E-23 5.09E-58 7.28E-4 3.11E-43 0.0098 5.14E-26 3.84E-14 -

DTLZ6 Mean 9.35E-04  2.37E-03 6.62E-04 1.25E-02 6.52E-04  7.62E-04  4.08E-03 6.44E-04
Std 5.84E-05  4.26E-06  3.47E-05 1.11E-05 3.46E-05  4.02E-05  8.75E-04 3.27E-05
p-value 6.43E-22  141E-51 0.0537 6.47E-75 0.3950 2.24E-14  2.96E-19 -

DTLZ7 Mean 2.77E-02  3.64E-02  2.93E-02 5.21E-02 3.02E-02  2.72E-02  3.64E-02 2.86E-02
Std 6.16E-04 2.08E-03  8.02E-04 1.65E-04 1.21E-03 743E-04  2.08E-03 9.63E-04

p-value 1.66E-4 4.39E-18 0.0128

Better/Similar/Worse ~ 5/1/1 4/0/3 5/2/0

6.00E-42 3.45E-6 3.77E-8 4.39E-18 -

5/0/2 5/2/0 412 6/0/1 -

Table 6, the comparison results of MMOPSO, MMOPSO-I and
MMOPSO-II on all the test problems are listed.

Observed from Table 6, MMOPSO performs best on 18 out of 24
test problems, which validates the advantages of MMOPSO when
compared with MMOPSO-I and MMOPSO-IIL. The t-test results also

reveal that MMOPSO obtains better results than MMOPSO-I and
MMOPSO-II on 12 and 10 test problems, respectively. Moreover, it
has the similar performance with MMOPSO-I on 11 test problems
and with MMOPSO-II on 13 test problems. In other words, MMOPSO
performs better than or similarly with MMOPSO-1 and MMOPSO-II on
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Fig. 6. The plots of best performance obtained by MMOPSO on the WFG test problems.
Table 5
Comparison summary on all the test problems.
Algorithms
Problems NSGA-II  MOEA/D OMOPSO  dMOPSO  SMPSO CMPSO  DDMOPSO
FKS and ZDT 8/0/0 6/0/2 4/3/1 6/0/2 3/1/4 8/0/0 6/2/0
WFG 8/0/1 6/1/2 6/1/2 9/0/0 522 6/1/2 8/1/0
DTLZ 5/1/1 4/0/3 5/2/0 5/0/2 5/2/0 4/1/2 6/0/1
Total (Better/Similar/Worse)  21/1/2 16/1/7 15/6/3 20/0/4 13/5/6 18/2/4 20/3/1

23 out of 24 test problems. This justifies the effectiveness of multiple

search strategies in MMOPSO.

To investigate the effect of evolutionary search on the external
archive, it can be observed from the performance of MMOPSO-II that
it is unable to approach the true PFs of some test problems, such as
ZDT4, WFG1, DTZL1 and DTZL3. These test problems are mostly char-

acterized with the trap of many local PFs. Thus, it indicates that the

PSO search pattern in MMOPSO is easy to get trapped in local PFs,

while the embedding of evolutionary search power on archive can
remedy this shortcoming, which provides the capability to jump out
of the local PFs. On the other hand, although MMOPSO-I performs
much better than MMOPSO-II on ZDT4, WFG1, DTZL1 and DTLZ3, it
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Fig. 7. The plots of best performance obtained by MMOPSO on the DTLZ test problems.

still cannot gain the satisfactory results as obtained by MMOPSO. In
most cases, MMOPSO-I performs worse than MMOPSO. This justifies
that the two search strategies for velocity update are beneficial for
enhancing the PSO search capability to handle different MOPs.

4.6. Time complexity analysis

In this subsection, the time complexity analysis of MMOPSO is
provided and compared with the other algorithms. Based on the
pseudo-code of MMOPSO in Fig. 4, the time complexity of MMOPSO
is determined by the evolutionary loop in lines 12-30. It is noted
that when computing the following time complexity, the impact of
decision variables and objectives are generally ignored as they are
much smaller than the sizes of population and external archive N.
In line 12, the time complexity of Algorithm 1 in Fig. 1 is O(N2); in
lines 13-23, two search strategies are executed to update the veloc-

ity of each particle and the corresponding time complexity is O(N).
Algorithm 3 and Algorithm 2 are serially operated in lines 25-
26, and their time complexity are respectively O(N?) and O(N) as
observed in Figs. 2 and 3. In lines 27-28, the time complexity is
obviously O(N) as it only evaluates the objectives of N new solutions
and then update the reference point z*. At last, Algorithm 3 is acti-
vated again with the time complexity O(N?). Thus, based on the above
analysis, the time complexity of MMOPSO is O(3N243N)~ O(N2). As
discussed in Moubayed et al. (2014), the computational complexities
of MOEA/D, dMOPSO, OMOPSO and DDMOPSO are all O(N?) when the
size of external archive is set the same with the population size N.
Besides that, SMPSO shares the similar structure with OMOPSO and
thus its computational complexity is also O(N?), while the time com-
plexity of NSGA-II is O(N2) (Deb et al., 2002). For CMPSO, its time
complexity is dependent on the size of sub-swarm. By simply assum-
ing the sub-swarm size is also N, the time complexity of CMPSO is also
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Table 6
IGD results of MMOPSO, MMOPSO-I and MMOPSO-II on all the test problems.
Algorithms Algorithms
Problems MMOPSO-I  MMOPSO-Il  MMOPSO  Problems MMOPSO-I ~ MMOPSO -l MMOPSO
Fonseca Mean 1.86E-03 1.86E-03 1.86E-03  WEFG5 Mean 6.43E-02 6.54E-02 6.47E-02
std 1.10E-05 1.77E-05 1.37E-05 std 2.47E-03 3.93E-04 2.01E-03
p-value 0.9941 0.7686 - p-value  0.5248 0.0867 -
Kursawe ~ Mean 1.64E-02 1.64E-02 1.63E-02  WFG6 Mean 3.38E-02 9.59E-03 1.42E-02
Std 2.82E-04 3.52E-04 3.00E-04 Std 2.33E-02 7.50E-03 1.10E-02
p-value 0.3543 0.4621 - p-value  6.66E-4 0.0748 -
Schaffer ~ Mean 8.52E-03 8.07E-03 8.00E-03  WFG7 Mean 5.99E-03 5.92E-03 5.93E-03
std 5.19E-04 8.48E-04 6.29E-04 std 8.14E-05 7.51E-05 7.35E-05
p-value 2.65E-4 0.7467 - p-value  0.0054 0.9570 -
ZDT1 Mean 1.89E-03 2.32E-03 1.87E-03  WFGS8 Mean 2.26E-01 2.25E-01 2.24E-01
std 1.63E-05 8.35E-05 1.38E-05 std 7.20E-03 118E-02 3.47E-03
p-value 5.75E-5 1.76E-23 - p-value  0.2218 0.5533 -
ZDT2 Mean 1.94E-03 5.47E-01 1.91E-03  WFG9 Mean 1.10E-02 1.84E-02 8.86E-03
Std 3.43E-05 2.20E-01 2.10E-05 Std 1.76E-03 5.07E-02 1.52E-03
p-value 0.0011 4.15E-14 - p-value  131E-5 0.3138 -
ZDT3 Mean 2.10E-03 2.23E-03 210E-03  DTLZ1 Mean 3.32E-02 1.45E+01 1.01E-02
std 6.05E-05 5.89E-05 4.49E-05 std 4.74E-02 5.70E+00 2.02E-04
p-value 0.9769 7.67E-10 - p-value  0.0124 247E-14 -
ZDT4 Mean 2.65E-02 1.24E+01 1.84E-03  DTLZ2 Mean 2.74E-02 2.71E-02 2.74E-02
Std 7.79E-02 6.07E+00 1.87E-05 Std 5.33E-04 4.63E-04 4.27E-04
p-value 0.0934 4.85E-12 - p-value  0.8975 0.0057 -
ZDT6 Mean 1.64E-03 3.50E-02 1.56E-03  DTLZ3 Mean 1.44E-01 4.86E4-01 2.75E-02
std 1.37E-04 1.79E-01 4.72E-05 std 2.84E-01 1.63E+01 5.08E-04
p-value 0.0037 0.3142 - p-value  0.0320 3.44E-16 -
WFG1 Mean 1.03E-01 1.89E-01 1.22E-02  DTLZ4 Mean 2.85E-02 2.80E-02 2.85E-02
Std 5.89E-02 1.33E-01 4.06E-03 Std 1.47E-03 1.83E-03 1.81E-03
p-value 1.73E-9 4.65E-8 - p-value  0.9939 0.3951 -
WFG2 Mean 1.65E-02 3.82E-02 331E-02  DTLZ5 Mean 6.67E-04 6.66E-04 6.61E-04
std 2.29E-02 4.35E-02 2.87E-02 std 2.20E-05 1.71E-05 2.27E-05
p-value 0.0189 0.6098 - p-value  0.1477 0.3663 -
WFG3 Mean 5.76E-03 5.61E-03 5.47E-03  DTLZ6 Mean 6.54E-04 1.98E-03 6.44E-04
Std 6.18E-04 5.81E-04 7.36E-04 Std 4.03E-05 4.03E-04 3.27E-05
p-value 0.1725 0.3653 - p-value  0.2725 5.25E-17 -
WFG4 Mean 6.09E-03 1.48E-02 5.74E-03  DTLZ7 Mean 2.94E-02 2.95E-02 2.86E-02
std 414E-04 4.62E-03 4.53E-04 std 8.11E-04 1.40E-03 9.63E-04
p-value 0.0053 1.13E-11 - p-value  0.0027 0.0178 -
Better/Similar/Worse ~ 12/11/1 10/13/1 -
Table 7 S solve one WFG test problem, which performs slower than MMOPSO-I
The average computational time (in seconds) for the WFG test problems. and faster than MMOPSO-II. This indicates that the proposed multiple
Algorithms search strategies won'’t bring much computational burden. Even com-
Problems ~ dMOPSO  DDMOPSO  MMOPSO-I  MMOPSO-II  MMOPSO pared with MMQPSO-I, it is stlll.worthy of spendlng 17 percent ex-
tra average time in order to obtain the superior performance as pro-
WFG1 2.29 4.08 0.85 110 115 vided by MMOPSO in Table 6. Moreover, MMOPSO performs slightly
WFG2 213 45.54 139 230 L71 faster than dMOPSO and much faster than DDMOPSO, which jus-
WEFG3 213 91.58 2.50 3.51 2.82 . . . -
WEGCA4 219 21.09 1.38 1.85 181 tify the comput:{t{onal efficiency of MMOPSO when compared VYlth
WFG5 214 63.92 2.41 338 2.79 other decomposition-based MOPSOs. However, the execution time
WFG6 215 43.89 1.73 3.00 2.39 of dMOPSO is more stable than that of MMOPSO and DDMOPSO.
wig; ;-;3 223‘5‘ fgi ?Zg ii’;‘ This is because dMOPSO only adopts the aggregated values to up-
WFGS 337 2857 157 236 296 date the glpbally best partlcl(?s, while MMOPSO and ]Z?DMOPSO uFlllze
Average 2.20 48.96 176 251 211 the crowding-distance metric to store the non-dominated solutions.

O(N?). Therefore, based on the theoretical analysis, MMOPSO has the
similar time complexity with the compared algorithms.

To further study the extra computational burden induced by the
designed multiple search strategies, Table 7 gives the average compu-
tational time of MMOPSO-I, MMOPSO-II and MMOPSO in solving all
the WFG test problems. Besides that, two decomposition-based MOP-
S0s, i.e., AMOPSO and DDMOPSO, are also included for comparison. It
is noted that the average time for each WFG problem is obtained by
30 independent runs and the lowest one is highlighted with boldface.
As observed from Table 7, MMOPSO needs 2.11 seconds in average to

Thus, the execution times of MMOPSO and DDMOPSO are greatly af-
fected by the number of non-dominated solutions found during the
search phase. Especially for DDMOPSO, it is worth noting that its ex-
ecution time is much longer than that of dMOPSO and MMOPSO.
This is mainly due to the fact that the new archiving approach in
DDMOPSO needs to compute the crowding-distance values in both
objective and decision spaces, and its source code has not been fully
optimized by the authors.

5. Conclusions

In this paper, a novel MOPSO algorithm with multiple search
strategies is presented, which is based on decomposition approach
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to transform MOPs into a set of aggregation problems. Each particle
in the swarm is accordingly assigned to optimize each aggregation
problem. A novel velocity update approach is designed to renew the
particle velocity by using two search strategies, which can concur-
rently promote the convergence speed and remain the population
diversity. Additionally, evolutionary search strategy is further per-
formed on the non-dominated solutions in the external archive,
which is able to exchange their beneficial information. This em-
bedded evolutionary search power can repair the weakness of PSO
search pattern and resultantly enhance the comprehensive perfor-
mance of MMOPSO in solving various kinds of MOPs. The effective-
ness and efficiency of multiple search strategies are also justified by
the experimental studies. When compared with some MOPSO algo-
rithms and two state-of-the-art MOEAs, such as DDMOPSO, CMPSO,
SMPSO, dMOPSO, OMOPSO, MOEA/D and NSGA-II, the experimen-
tal results illustrate that MMOPSO performs best on most of test
problems.

Our future study will further enhance the performance of
MMOPSO, and extend it for tackling MOPs with more than three ob-
jectives. Furthermore, the applications of MMOPSO for some practical
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