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Abstract—Improving efficiency of healthcare systems is
a top national interest worldwide. However, the need of
delivering scalable healthcare services to the patients while
reducing costs is a challenging issue. Among the most
promising approaches for enabling smart healthcare (s-
health) are edge-computing capabilities and next-generation
wireless networking technologies that can provide real-time
and cost-effective patient remote monitoring. In this paper, we
present our vision of exploiting multi-access edge computing
(MEC) for s-health applications. We envision a MEC-based
architecture and discuss the benefits that it can bring to
realize in-network and context-aware processing so that the
s-health requirements are met. We then present two main
functionalities that can be implemented leveraging such an
architecture to provide efficient data delivery, namely, mul-
timodal data compression and edge-based feature extraction
for event detection. The former allows efficient and low dis-
tortion compression, while the latter ensures high-reliability
and fast response in case of emergency applications. Finally,
we discuss the main challenges and opportunities that edge
computing could provide and possible directions for future
research.

Index Terms—Edge computing, smart health, Internet
of Medical Things (IoMT), context-aware processing, deep
learning.

I. INTRODUCTION

The evolution of computational intelligence and Internet
of Medical Things (IoMT), along with the advances of
next-generation wireless technologies, has boosted the
development of traditional healthcare processes into smart-
healthcare services. Smart-health (s-health) can be consid-
ered as the context-aware evolution of mobile-health, lever-
aging wireless communication technologies to provide
healthcare stakeholders with innovative tools and solutions
that can revolutionize service provisioning. In particular, s-
health enables remote monitoring, where patients and care-
givers leverage mobile technologies to provide information
about their health remotely – a service that is expected to
reduce hospitalization considerably and allow for timely
delivery of healthcare services to remote communities at
low costs.

S-health systems will also leverage various wireless
sensors, cameras, and controllers, which permit patients’
automatic identification and tracking, correct drug–patient
associations, and intensive real-time vital signs monitoring
for early detection of clinical deterioration (e.g., seizure

detection, heart failure, etc.). All these things will report
an impressive amount of data that need to be transported,
swiftly processed, and stored, while ensuring privacy pro-
tection. Given these requirements, the conventional cloud
computing paradigm becomes unsuitable for s-health, since
a centralized approach cannot provide a sufficiently high
level of scalability and responsiveness, and it will impose
while an exceedingly heavy traffic load to communication
networks. A new approach has therefore emerged, known
as Multi-access Edge Computing (MEC), defined as the
ability to process and store data at the edge of the network,
i.e., in the proximity of the data sources. The advantage
of MEC in a smart heath environment is multifold as it
can provide short response time, decreased energy con-
sumption for battery operated devices, network bandwidth
saving, as well as secure transmission and data privacy [1].
Furthermore, it can be applied to various network scenar-
ios, including cellular, WiFi and fixed access technologies.
This paper paves the way for MEC usage in smart heath
environment through answering the following questions:

• What are the motivations and main expected benefits
of leveraging the MEC architecture in s-health sys-
tems?

• What are the s-health requirements, solutions of
MEC, and open challenges?

In what follows, Section II introduces a MEC-based
system architecture that meets the s-health requirements,
highlighting the benefits of pushing data processing and
storage toward the data sources. Section III presents
context-aware solutions for implementing multimodal data
compression, in-network processing, and event-detection at
the edge. Section IV then discusses some challenges that
MEC poses and further opportunities that such a paradigm
offers. Finally, Section V concludes the paper.

II. MEC-BASED ARCHITECTURE FOR SMART HEALTH

We now give a brief description of the proposed MEC-
based architecture for e-health applications, and discuss
the benefits that it offers to s-health systems.

A. MEC-based S-Health Architecture

The proposed system architecture, shown in Figure 1,
stretches from the data sources located on or around
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Fig. 1. Proposed smart health system architecture.

patients to the service providers. It contains the following
major components:

Hybrid sensing sources: A combination of sensing de-
vices attached/near to the patients represent the set of data
sources. Examples include: body area sensor networks (in-
cluding implantable or wearable medical and non-medical
sensors), IP cameras, smartphones, and external medical
devices. All such devices are leveraged for monitoring pa-
tients’ state within the smart assisted environment, which
facilitates continuous-remote monitoring and automatic
detection of emergency conditions. These hybrid sources
of information are attached to a mobile/infrastructure edge
node to be locally processed and analyzed before sending
it to the cloud (see Figure 1).

Patient Data Aggregator (PDA): Typically, the wire-
less Body Area Network (BAN) consists of several sensor
nodes that measure different vital signs, and a PDA which
aggregates the data collected by a BAN and transmits it to
the network infrastructure. Thus, the PDA is working as a
communication hub that is deployed near to the patient to
transfer the gathered medical data to the infrastructure.

Mobile/Infrastructure Edge Node (MEN): Herein,
a MEN implements intermediate processing and storage
functions between the data sources and the cloud. The
MEN fuses the medical and non-medical data from dif-
ferent sources, performs in-network processing on the
gathered data, classification and emergency notification,
extracts information of interest, and forwards the processed
data or extracted information to the cloud. Importantly,
various healthcare-related applications (apps) can be im-
plemented in the MEN, e.g., for long-term chronic disease
management. Such apps can help patients to actively
participate in their treatment and to ubiquitously interact
with their doctors anytime and anywhere. Furthermore,
with a MEN running specialized context-aware processing,
various data sources can be connected and managed easily
near the patient, while optimizing data delivery based on
the context (i.e., data type, supported application, and

patient’s state) and wireless network conditions.
Edge Cloud: It is a local edge cloud where data storage,

sophisticated data analysis methods for pattern detection,
trend discovery, and population health management can be
enabled. An example of the edge cloud can be a hospital,
which monitors and records patients’ state while providing
required help if needed.

Monitoring and services provider: A health service
provider can be a doctor, an intelligence ambulance, or
even a patient’s relative, who provides preventive, curative,
emergency, or rehabilitative healthcare services to the
patients.

B. Benefits for s-health

Given the characteristics and requirements of e-health
applications, Table I summarizes some of the e-health
systems that can benefit from the above architecture. It
is not the objective of this paper to provide an in depth
technical comparison on the different proposed e-health
systems. However, we investigate the practical benefits of
leveraging MEC in such systems. In what follows, we will
discuss the advantages of the proposed MEC architecture
in the light of these systems.

1) Monitoring systems using wearable devices: Heart
monitoring applications are the most common type of
remote monitoring applications. Monitoring vital signs
related to the heart reveals many types of diseases, e.g.,
Cardiac arrhythmia, chronic heart failure, Ischemia and
Myocardial Infarction [2][3][4]. In [2], authors present
a real-time heart monitoring system, where the extract
medical data of the patients are transmitted to an Android
based listening port via Bluetooth. Then, this listening
port forwards these data to a web server for processing.
Also, [3] exploits Android smartphone to gather patient’s
information from wearable sensors and forward it to a web
portal in order to facilitate the remote cardiac monitoring.
However, in these systems, the smartphone is used only
as a communication hub to forward collected data to the



TABLE I
SUMMARY OF THE E-HEALTH RELEVANT SYSTEMS.

Application Collected Data Description Limitations MEC Benefits
Cardiac disorder Electrocardiography Heart monitoring system is developed All data processing Data reduction

detection [2] (ECG) for detecting status of the patient tasks are performed and BW saving
and sending an alert message at a web server

in case of abnormalities
Requirements: long lifetime for

the battery-operated devices
Remote Cardiac Heart rate A location based real-time Cardiac Fewer number of Location
monitoring [3] blood pressure monitoring system is developed subjects participated Awareness and

body temperature Requirements: long lifetime for in the experiments energy saving
the battery-operated devices

Detection of Ischemia ECG and Electronic Presenting different methods leveraged Majority of the reviewed Data reduction
and Myocardial Health Records (EHR) ECG signal with EHR information literature did not exploit and BW saving
Infarction [4] to detect Ischemia and MI contextual information

Requirements: low computational
complexity

Parkinson’s disease (PD) Voice signal A PD monitoring system over the cloud All data processing Data reduction
detection [5] is proposed using feature selection and tasks are performed and BW saving

classification of a voice signal at the cloud
Requirements: Reliability and high

classification accuracy
Contactless heart rate Heart rate Heart rate measurement from facial Illumination variance, Data reduction

measurement [6] videos using digital camera sensor motion variance, and and BW saving
Requirements: Reliability and high motion artifacts

measurement accuracy
Prediction of ECG Leveraging point process analysis of Using single-channel Low latency

Bradycardia in preterm the heartbeat time series to predict ECG data to predict
infants [7] infant Bradycardia prior to onset Bradycardia

Requirements: Fast prediction of
emergency situations

Real-time epileptic Electroencephalography Automatic epileptic seizure detection Requiring large amount Low latency
seizure detection [8] (EEG) system using wavelet decomposition of data for training

is proposed to improve specificity
Requirements: Fast seizure detection of the detector

ECG change ECG A centralized approach for the detection Using one type of data Low latency
detection [9] of abnormalities and intrusions in for detecting abnormality

the ECG data is developed and emergency situations
Requirements: Fast detection of

abnormalities
Remote monitoring of Pulmonary Function Real-time tracking system of chronic Relying on one type Low latency

chronic obstructive Test (PFT) pulmonary patients comfortable in of data
pulmonary [10] their home environment is developed

Requirements: Fast detection of
abnormalities

cloud. Hence, continuous data transmission is not viable
due to the high energy toll it implies. The advantages of
implementing the proposed MEC architecture in such sys-
tems are twofold. First, energy saving can be significantly
increased by carefully managing the devices operational
state and their data transfer at the MEN. In addition, data
compression as well as the proximity between sensors
and MEN further reduce the energy consumption due to
data transmission [11][12]. Second, the network edge can
be fruitfully exploited to extract context information and
apply localization techniques, which allows matching the
patient’s geographical position with the nearest appropriate
caregivers (e.g., hospital or ambulance).

2) Contactless monitoring systems: Along with the
evaluation of remote sensing, contactless monitoring has
attained much focus recently. The main motivation of
using contactless sensors is enabling ordinary life as much
comfortable as possible to all patients, since the patients
are required only to be present within a few meters from
the sensors [5]. Heart rate measurement from facial videos
using digital camera sensors is one of the rapidly growing
directions to extract physiological signals without affecting

patient’s activities [6]. However, transmitting large vol-
umes of data generated from these camera sensors using
conventional cloud-based architecture is not advisable and
may deem some of these applications impractical given the
limited bandwidth availability. For instance, the amount
of digital data generated from a single-standard camera
can reach to 40 GB per day. Accordingly, processing,
compressing, and extracting most important information
from the gathered data at the MEN greatly reduce the
amount of data to be transferred toward the cloud, hence
the bandwidth consumption, and even makes it possible to
store the data locally.

3) Disorder prediction/detection systems: One of the
promising applications of s-health, is the predictive mon-
itoring of high-risk patients. The aim of these techniques
is improving prediction/detection of the emergency to
implement preventative strategies for reducing morbid-
ity and mortality associated with high-risk patients. For
instance, [7] presented a simplistic framework for near-
term prediction of Bradycardia in preterm infants using
statistical features extracted from ECG signal. Also, [8]
proposed a quick seizure detection algorithm using fast



wavelet decomposition method. In such real-time predic-
tion/detection systems, the swift delivery of data to the
server is a necessity. In many cases, this requires that data
are analyzed and even a diagnosis is made as close as
possible to the patient. However, detecting the changes of
the physiological signals (e.g., changing in ECG values) in
continuous health monitoring systems is not an easy task.
It can be an indication for an emergency situation (e.g.,
occurrence of a heart attack) [9][10]. This abnormality
detection task becomes even more challenging during
wireless communication transfer of patient’s data to the
cloud due to the erroneous communication and security
attacks that could introduce errors or makes changes in the
patient’s data. Hence, quick detection of the changes in the
gathered medical data at the MEN is essential for real-time
abnormal event detection. In a nutshell, the implementation
of MEC architecture addresses all these issues, and the
ability of the MEN to perform event detection/prediction
fulfills these requirements even in the case of emergency
applications.

III. IMPLEMENTING THE EDGE NODE FUNCTIONS

The ultimate goal of our MEC architecture is to fulfill
the different requirements of e-health applications men-
tioned above and enable s-health services through imple-
menting the following main functionality at the network
edge:

• data compression, in order to reduce energy and band-
width consumption in the case of health monitoring
systems;

• feature extraction and classification, in order to ensure
high-reliability and fast response time in disorder
prediction and detection.

Below, we present how the above functionality can be
implemented at the MEN and highlight the benefits that
the MEC architecture can bring.

A. Multimodal data compression using deep learning

The conventional approach used for health monitoring,
i.e., transmitting the entire medical data wirelessly to
the cloud, implies the transfer of a massive amount of
data. For instance, in brain disorder monitoring systems,
EEG, Electromyography (EMG), and Electrooculography
(EOG) data need to be stored and accessed remotely,
along with video recording patient’s activities, in order to
correlate the patient’s activities with her EEG pattern. This
would result in generating 8-10 GB per patient per day. A
promising methodology to deal with this issue in s-health
systems is to perform local in-network and data-specific
compression on the gathered data before transmission,
while taking into account the applications’ requirements
and the characteristics of the data.

Here, we consider the EEG-EOG monitoring system as
a case study and present an efficient technique that deals
with multimodal data, as required by s-health applications.
In particular, we use the multimodal dataset in [13],
which contains EEG and EOG signals of 32 people, who
volunteered for this experiment, watching to 40 music
videos.

Our solution leverages deep learning, which is a good
candidate for multimodal data compression due to its abil-
ity to efficiently exploit, not only the intra-modality cor-
relation, but also inter-correlation among different modal-
ities. Specifically, we use Stacked Auto-Encoders (SAE),
i.e., a special type of neural networks allowing for the
hierarchical extraction of data representation [13]. SAE
consists of two main layers: (i) the encoding layers where
the data features are extracted, and (ii) the decoding layers
where the signal is reconstructed from the data coming
from the encoding layers. In our case, we implement the
encoding layers at the MEN, while the decoding layers
are placed at a server in the cloud. Our key idea is to
progressively reduce the number of neurons in each of the
encoding layers at the MEN, and make the neural network
learn from compressed version of the data. As a result,
through the last encoding layer at the MEN (i.e., the one
with the least number of neurons), we obtain a set of
features that are a compressed representation of the initial
data. In summary, at the MEN, our SAE encoder converts
the input data x into the compressed data z, provided by
the last encoding layer. At the server side (in the cloud),
the SAE decoding layers will obtain the reconstructed data
x̃, using the compressed representation z. The compressed
and reconstructed signals can be written as:

z =Wx+ b (1)

x̃ = W̃z + b̃. (2)

where W and W̃ are the encoder and decoder weights
matrices, respectively, while b and b̃ are the bias vectors.

The objective of SAE is to find the optimal configuration
of the weight matrices and bias vectors that minimize
the reconstruction error. In our case, instead, we first set
the number of neurons in the last layer at the encoder,
according to the desired compression ratio. Then we
optimize the number of neurons to be placed in each of
the other encoding layers. Finally, by training the neural
network, we determine the optimal weight matrices and
bias vectors. We remark that, although the network training
is a computational expensive task, it can be conducted
offline at the server side. Then such a configuration can be
sent and used at the MEN for on-line data compression,
thus leading to low-complexity, on-line data compression
and transfer.

The advantages of multimodal data over single modality
compression are twofold. First, we can account for inter-
modality correlation during compression, which results in
a lower distortion while reconstructing the signal. Sec-
ond, by concatenating the different modalities (i.e., EEG
and EOG signals), it enables encoding the modalities in
a single-joint representation (i.e., the single stream z).
Figure 2 compares the proposed multimodal SAE (M-
SAE) with the Single Modality (SM) compression scheme,
which compresses each signal separately using SAE. As
the compression ratio varies, we observe that multimodal
SAE allows for up to 50% reduction in EEG distortion
with respect to SM, while EOG distortion increases by
just 2%.
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Fig. 2. Signal distortion as a function of the compression ratio for EEG
and EOG signals, using M-SAE and SM compression schemes.

B. Edge-based feature extraction and classification

Many neurodegenerative diseases detection methods,
such as Parkinson’s, Epilepsy, Alzheimer’s, and Hunt-
ington’s, have been reported in the literature based on
extracting some features from the patients’ vital signs,
voice, or captured videos. Such features are used to dif-
ferentiate a potential patient from a healthy person, or to
identify emergency situations. For instance, [5] proposes
a method to detect Parkinson’s disease (PD) leveraging
certain features of the voice signal using cloud computing.
Specifically, at the cloud server, the voice signal features
are extracted and used for classification; the results are
then sent to registered doctors for proper action.

In our study, we focus on epileptic seizure detection and
show the advantages of implementing feature extraction
and classification at the MEN for efficient transmission and
fast detection of abnormalities. We assume that the MEN
gathers EEG data from the patient using an EEG Headset,
processes the data, and forwards them to the cloud. We
now use the EEG dataset in [14], which comprises three
classes of data, in the following denoted by A, B, and
E, respectively. Each class contains 100 EEG records
corresponding to different patients. Each record includes
samples collected for 23.6 seconds at a 173.61 Hz rate. Sets
A and B represent seizure-free subjects with eyes opened
(A) and closed (B), respectively, while set E contains data
related to epileptic patients.

Using such data, we first perform feature extraction and
classification at the MEN. Then, depending on whether
a seizure event was detected through classification, the
system sends to the cloud server the all data, or only
the computed features. Figure 3 summarizes the proposed
key concept. Below, we describe an efficient technique for
feature extraction in Sec. III-B1, then we address event
detection and classification in Sec. III-B2.

1) Feature extraction : In order to carry out the first
step of our procedure, two approaches can be imple-
mented: time-domain and frequency-domain feature ex-
traction. Herein, we consider the frequency-domain ap-
proach due to its insensitivity to signal variations resultant
from electrode placement. By transforming the gathered
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Fig. 3. Efficient class-based data transmission for s-health systems.

EEG data into the frequency domain, the normal/abnormal
EEG classes under study exhibit different mean, median,
and amplitude variations. Also, Root Mean Square (RMS)
and Signal Energy (SE) are good signal strength estimators
in different frequency bands. Hence, to distinguish between
seizure and non-seizure events we select the following
five Frequency Features (FF): mean (µ), median (M), peak
amplitude (P), RMS, and SE.

2) Event-detection at the edge : The second step in
our procedure consists in developing a reliable, edge-based
classification technique for seizure detection leveraging the
extracted features [15]. A number of machine learning
techniques, including supervised, unsupervised and rein-
forcement learning, have been investigated for the purpose
of classification, for a variety of applications. In a nutshell,
supervised learning algorithms leverage a labeled training
data set to learn the relation between inputs and outputs.
In contrast, unsupervised learning algorithms classify the
provided data sets into different clusters by discovering
the correlation between input samples. The third category
includes reinforcement learning algorithms and exploits
online learning, which involves the exploration of the
environment and the exploitation of current knowledge,
in order to classify the data [16]. However, some im-
portant issues arise when machine learning techniques
are applied to s-health: (i) an optimal trade-off between
algorithms computational complexity and classification ac-
curacy should be established, (ii) sufficiently large datasets
have to be considered, in order to ensure high accuracy,
(iii) a mathematical formulation of the learned model, as
well as full control over the knowledge discovery process,
is hard to obtain.

In the considered case study, we define an IF-THEN
classification rule using generated FF to detect abnormal
variations in sensed EEG data due to seizure. Thus, the
status of the patient, S, is given by:

S=

{
Normal ifµ+M+P+RMS+SE ≤ γ
Seizure ifµ+M+P+RMS+SE > γ

where γ is the classification threshold obtained during
the offline training phase. Thus, leveraging the proposed
low-complexity classifier, a quick emergency notification
system can be implemented at the edge to notify patient’s
caregivers in case of emergency, as well as doctors at the
remote site.

In Figure 4, we compare the accuracy of the proposed
Frequency Features Classifier (FFC) against that of differ-



ent machine learning approaches, including random deci-
sion forests (RandomForest), Naive Bayes (NaiveBayes),
k-Nearest Neighbors (IBk), and classification/regression
trees (REPTree). Each of these classifiers is run using the
default algorithm configuration in WEKA explorer with
5-fold cross-validation [17]. In FFC, when γ is small,
most of the obtained statuses will be Seizure, while at
high values of γ, most of the obtained statuses will be
Normal. In both cases, our classifier cannot accurately
differentiate between the patients’ classes. In the middle
region, when γ ranges between 0.5 and 0.8, our classifier
can discriminate between different classes yielding a high
accuracy. Notably, for γ ranging between 0.5 and 0.8,
our classifier outperforms other solutions, achieving 98.3%
accuracy for seizure detection for γ = 0.7.

Figure 5 assesses the performance of the proposed
class-based data transmission (CDT) scheme, in terms
of MEN’s battery lifetime, comparing with cloud-based
system (CBS). CDT refers to the proposed scheme where
the MEN locally classifies the acquired data to decide
whether the all data, or only the computed features, should
be sent to the cloud, while CBS refers to a traditional
system where the MEN is used only as a communication
hub to forward all acquired data to the cloud. Herein, we
used a Samsung Galaxy S4 smartphone as a MEN, which
is connected to both a data emulator and server via WiFi.
Interestingly, Figure 5 shows that CDT can improve the
MEN’s battery lifetime by 50% with respect to CBS.

Fig. 4. Comparison of the proposed FFC technique with respect to
RandomForest, NaiveBayes, IBk, and REPTree algorithms, in terms of
classification accuracy, with varying γ.

IV. CHALLENGES AND OPPORTUNITIES

In this section, we discuss three main challenges and op-
portunities that characterize MEC-based s-health systems
and represent interesting lines for future research.

A. privacy and security

Great potential of s-health system can only be achieved
if individuals are confident about the privacy of their
health-related information and providers are confident
about the security of gathered data. However, ensuring
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Fig. 5. Comparison of the proposed FFC technique with respect to CBS
scheme, in terms of battery lifetime.

privacy and security is not straightforward. Wireless med-
ical devices are typically susceptible to various types of
threats, such as patient tracking and relaying, as well as
denial of service attacks, which violate confidentiality and
integrity of the devices. Data processing algorithms and
data storage may also be subject to attacks. Below, we
discuss some challenges and opportunities that MEC poses
in this respect.

First is the ownership of the collected data from the
patients. Storing the data at the patients’ proximity, where
it is collected, and enabling the patients to fully own the
data is a better solution for privacy protection. Also, the
patient will be able to control if the data should be stored
at the edge or transmitted to the cloud after removing or
hiding some of the private information from the data.

Second is the trade-off between increasing security level
and QoS. Increased security through strong cryptographic
algorithms or effective key management schemes [18],
adds more processing and additional overhead at the edge,
which may have a significantly adverse impact on QoS,
especially for real-time applications with strict delay and
throughput requirements. This imposes an essential need
to design joint QoS and security mechanisms for s-health
applications that maximize QoS while meeting the appli-
cation security requirements.

B. Collaborative edge

Healthcare requires data sharing and collaboration
among different stakeholders in multiple domains. How-
ever, sharing of data owned by a stakeholder rarely hap-
pens due to privacy concerns and the high cost of data
transfer. In this context, collaborative edge, which con-
nects the edges of multiple stakeholders that are geographi-
cally distributed (such as hospitals, centers for disease con-
trol and prevention, pharmacies, and insurance companies),
is beneficial in threefold. First, it provides distributed
data sharing among different stakeholders at low cost,
thanks to computation and processing at the participant
edges. Second, in the case of remote monitoring, it enables
patients to forward their medical data to the cloud through
other users/edge nodes. This also improves spectrum and



energy efficiency and allows data transferring even in ge-
ographically remote areas by exploiting D2D data transfer
[19]. Third, it enables a patient’s edge node to directly
connect to the nearest hospital’s edge in the proximity for
continuous monitoring, without the need of going through
the cloud. This helps to increase monitoring efficiency,
reduce energy consumption and operational cost, as well
as improve high-quality services.

C. Combining heterogeneous sources of information

Various sources of information are used in S-health
systems for efficient monitoring, hence, leveraging ad-
vanced multimodal data processing techniques for com-
bining these sources of information at the edge is a
promising trend toward automating supervision and remote
monitoring tasks. However, several challenges remain open
when it comes to the s-health systems with hybrid sensing
sources. First, in terms of multiple modalities, it is not
straightforward to incorporate and transmit multiple data
streams in s-health systems, where power consumption is a
limiting factor; indeed, transmission of highly informative
biosignals (e.g., EEG, EMG, and electrocardiogram) is
an energy hungry process for battery-operated devices.
Second, signals artifacts arise from internal sources, e.g.,
muscle activities and movements, as well as from external
sources related to noise, interference, and signals offset,
which have critical implications on data quality [20].

In this context, adopting a MEC-based s-health system
architecture would be beneficial in two ways. First, it
permits to address system complexity associated with such
heterogeneous and variable data-stream inputs. This is
done through implementing multimodal in-network pro-
cessing techniques that yield the correlation between dif-
ferent modalities, in addition to the temporal correlation
within each modality. Moreover, a MEC-based architecture
enables extracting high level application-based features at
the edge rather than the cloud. By doing so, a MEN
can send a limited number of the extracted features, or
the obtained correlations, instead of transmitting either
the original or the compressed data. Second, advanced
signal processing for artifact removal can be incorporated
at the edge, in order to improve signals quality before
transmission.

V. CONCLUSION

In this paper, we presented our vision of an s-health sys-
tem leveraging the multi-access edge computing paradigm.
Such an approach can indeed boost the system perfor-
mance by efficiently handling the enormous amount of data
generated by sensors and personal as well as medical de-
vices at the edge of the network, and addressing the limited
energy capabilities of such devices. In particular, edge-
based processing like compression and event detection
can greatly reduce the amount of data transferred toward
the cloud, thus removing one of the major bottlenecks
in s-health systems. Furthermore, processing data at the
edge will ensure better user privacy than when raw data
is uploaded to the cloud. Accordingly, we recommend
that wireless network components, characteristics of the

acquired data, and high level requirements of the consid-
ered application should be integrated in order to provide
sustainable and high-quality services for s-health systems.
In this context, we identified some computing tasks that
can be implemented at the edge and presented effective
approaches to implement them, so as to ensure short
response time, efficient processing and minimal energy
and bandwidth consumption. Finally, we highlighted some
challenges and opportunities of edge computing in the s-
health field that are worth further research.
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