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A B S T R A C T   

In the context of blockchain technology, “off-chain” refers to computation or data that is struc
turally external to the blockchain network. Off-Chain Blockchain Systems (OCBS) enable this 
information processing and management through distributed software architecture where the 
blockchain network interacts with off-chain resources. Hence, OCBS are a critical data gover
nance component in the design of enterprise blockchain solutions, resulting in extensive research 
and development exploring the interplay between on-chain and off-chain storage and computa
tion and efforts to evaluate their performance relative to other information management systems. 
Key features of OCBS’ are their ability to improve scalability, reduce data storage requirements, 
and enhance data privacy, all extremely critical issues to enable broader blockchain adoption. 
These OCBS features map well to the needs of the healthcare industry, particularly due to the 
need to manage various types of medical, consumer, and other health-related data. However, 
different types of health data are also subject to stringent regulatory, security and legal re
quirements, a key factor limiting blockchain adoption in the sector. In response, there is a critical 
need to better align OCBS design features to different types of healthcare data management and 
their respective governance and privacy regimes. This article first reviews the characteristics of 
different constructs of OCBS. It then proposes a modular hybrid privacy-preserving framework 
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leveraging off-chain and on-chain blockchain system design applied to three different reference 
models that illustrate how blockchain can enhance healthcare information management. Through 
this privacy-preserving framework we hope to liberate healthcare data by enabling sharing, 
sovereignty and enhanced trust.   

1. Introduction 

Privacy and security compliance have traditionally constrained the implementation and development of approaches for infor
mation system management of healthcare data. Traditional centralized database systems, siloed in physical locations, remain a popular 
and widely used approach in Electronic Health Record (EHR) system architecture, even as cloud computing and distributed systems 
have become more ubiquitous in other industries (Baniata, Anaqreh, & Kertesz, 2021; S. W. Smith & Koppel, 2014). These traditional 
system architectures are often protected by firewalls, encryption, and network isolation. Although secure, this static system archi
tecture poses challenges to modernizing aspects of healthcare, such as encouraging patient-centric data stewardship, shared 
decision-making, and personalized medicine (Chu, Shah, Rouholiman, Riggare, & Gamble, 2018; Chu et al., 2016; Hoffman & Wil
liams, 2011). Hence, there is an inherent need for an updated information system management framework, which enables consented 
sharing of healthcare data while maintaining security, privacy, and regulatory compliance. 

Distributed systems are a type of system architecture where components are located on different computers across a network and 
communicate their actions by passing messages to one another. One type of distributed system architecture is called Peer-to-Peer (P2P) 
computing or networking where computers share files directly with one another across the Internet often associated with torrenting 
software. Although P2P networks significantly enhance file sharing, security and privacy are concerns (Sanjabi & Pommereau, 2010,). 
One solution to the privacy and security problems of P2P networks is blockchain technology, which was first proposed by Satoshi 
Nakamoto, the pseudo-anonymous person behind the cryptocurrency Bitcoin. Blockchain technology is a linked-list structure 
distributed over a P2P network that provided a systematic approach to maintain the order of transactions throughout a P2P network 
and avoid the double-spending problem of cryptocurrencies (Nakamoto, 2019). 

Bitcoin, the first implementation of blockchain technology, orders transactions and groups them in a constrained-size structure 
named blocks. The nodes/peers of the network are responsible for linking the blocks to each other in chronological order, with every 
block containing the hash of the previous block to create a “chain” of “blocks” linked to each other (i.e. a “blockchain”) (Kuo, Kim, & 
Ohno-Machado, 2017). Thus, the blockchain structure contains a robust and indelible record of all transactions. Blockchain began as 
applications enabling digital cryptocurrency transactions but have expanded into areas beyond financial transactions, such as gov
ernment, energy, science, transportation, supply chain, media, copyright management, public auditing, and healthcare, wherein 
complex logic can be securely automated through smart contracts (Berdik, Otoum, Schmidt, Porter, & Jararweh, 2021; Chen et al., 
2020; Jing, Liu, & Sugumaran, 2021; J. Li, Wu, Jiang, & Srikanthan, 2020; Mackey et al., 2019; Oham et al., 2021). 

Healthcare services could significantly benefit from the evolution of traditional information management systems to more modern 
and participatory systems that utilize distributed networks (Berdik et al., 2021). Each year an estimated $7.2 trillion is spent 
worldwide on providing health services, and in the U.S alone, the 2018 bill for healthcare was $3.6 trillion (WHO, 2020). The massive 
spending in healthcare presents several opportunities to encourage innovation in healthcare data management and address the “Triple 
Aim”; improving the patient experience with care, improving the health of populations, and reducing the per capita costs of healthcare 
(Berwick, Nolan, & Whittington, 2008). Further, an explosion in the volume and diversity of healthcare data generation has high
lighted the limitations of siloed traditional healthcare data storage systems. 

Increasingly the ecosystem of healthcare data is not limited to medical records but includes a host of new sources of health and 
behavioral data collected outside the clinical setting, including proliferation of the Internet of Things (IoT) and mobile health 
(mHealth) technologies, as well as the need for remote data integrity checking (Hardin & Kotz, 2021; Zhao, Chen, Liu, Baker, & Zhang, 
2020). For example, many wearable and mHealth devices now collect biometrics and consumer health data (e.g. heart rate, steps, sleep 
patterns, etc.) on devices owned by the individual (Dubovitskaya, Novotny, Xu, & Wang, 2019). This renaissance in digitization has led 
to increased attention around the applicability of privacy frameworks, such as the U.S. Health Insurance Portability and Accountability 
Act (HIPAA) and the European Union General Data Protection Regulation (GDPR), including debate about whether these regimes 
inhibit innovation and data sharing (Yuan & Li, 2019; Karampela, Ouhbi, & Isomursu, 2019). Significant health improvements could 
be made by opening up healthcare data for broader sharing, aggregation, and population health analysis, but maintaining privacy and 
autonomy is also critical (Kuo et al., 2017). However, the current state of institution-centric EHR information management systems 
introduces barriers that limit patient access to data, which can hamper efforts to enable patient engagement, data portability and 
information exchange (Hylock, 2019). 

Blockchain technology has the potential to offer improvements for healthcare data management not possible with current infor
mation management system infrastructure (Mayer, da Costa, & Righi, 2019). The distributed nature of blockchain technology can 
enable transparent and fast access to personal healthcare data, promote data standardization, and enhance transfer and sharing of 
healthcare data by enabling privacy-preserving approaches using cryptography, private key management, and self-sovereign identity 
(Bernal Bernabe, Luis Canovas, Hernandez-Ramos, Torres Moreno, & Skarmeta, 2019). Distributed systems can also enable 
patient-centric data storage that utilizes an agreed upon governance model to share and distribute information under the rubric of data 
stewardship (Atzori, 2015). Labor intensive tasks of transferring healthcare data from different providers can be automated and 
mediated via smart contracts, significantly reducing both cost and time required in current systems (Kruse, Goswamy, Raval, & 
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Marawi, 2016). Evidencing the potential utility of blockchain in healthcare data management, several use cases have emerged, 
including EHR aggregation, privacy preserving algorithms for health systems data, integration of blockchain systems with the 
Internet-of-Things, and enhancing patient-provider directories (Dimitrov, 2019; Hussien, Yasin, Udzir, Zaidan, & Zaidan, 2019). 
However, there are also real-world challenges to implementing blockchain technology, including limitations on how to store and 
transfer data, manage permissions, and enable scalability (O’Donoghue, 2019; Attaran, 2020, ). 

Although blockchain technology has the potential to address contemporary healthcare information management challenges, there 
are inherent problems with translating traditional designs of public blockchain approaches in the context of health data storage and 
transfer. Specifically, the privacy and security requirements for the treatment of healthcare data are unique compared to other forms of 
data (Berdik et al., 2021). Additionally, there is a need for a scalable and high throughput system to enable processing of large volumes 
of data with relative low computation costs for the purposes of real-world clinical care. Importantly, traditional public blockchain 
characteristics may be incompatible with this type of dynamic treatment of healthcare data due to permission/access management, 
consensus mechanisms (often utilizing proof-of-work), and transparency that is distributed, necessitating new blockchain design 
approaches. 

In response, this paper first describes the research objective of this study; the exploration of using core features and technology 
characteristics of Off-Chain Blockchain Systems (OCBS) as a blockchain-based design to address limitations of current healthcare 
information management systems. These blockchain technology features are then used to conceptualize a hybrid OCBS information 
system framework based on patient-centric and privacy-preserving approaches to managing three different types of healthcare data 
illustrated by a set of reference models. We conclude that a privacy-by-design and compliance-by-design approach is necessary for the 
optimal utilization of modern healthcare data and inclusive governance needs. 

2. Research objective 

In this paper, we first describe the current state of healthcare information systems, while also assessing ongoing challenges with 
traditional blockchain approaches to managing healthcare data. There is inherent friction when integrating traditional blockchain 
solutions with healthcare data storage and distribution due to issues related to scalability, and the security and privacy of the data 
stored and transferred. OCBS’ mitigate this friction by integrating traditional data storage and security components that are needed to 
address challenges introduced by distributed ledger technologies. 

Hence, the primary motivation of this study was to conceptualize, design, and evaluate a blockchain-based information man
agement system framework that could simultaneously utilize OCBS system architecture while also preserving performance and se
curity features required by existing healthcare data management systems, while also taking into consideration the compliance needs of 
different forms of healthcare data. This is necessary to ensure that the benefits of blockchain information system features can be scaled 
to the scope and diversity of types of health-related data, while also maintaining privacy and security, core tenets of healthcare data 
governance. These concepts were also crucial in breaking down data silos to ensure maximal utility of healthcare data for all stake
holders (Berdik et al., 2021). 

In order to better understand how this interplay could work between traditional information systems and blockchain approaches, 
we first characterize OCBS system architecture and technology features, which were then used to conceptualize the specific design 
features of a on-chain and off-chain hybrid design architecture (hereinafter referred to as “hOCBS”) mapped to key principles relevant 
to healthcare blockchains. We also describe an evaluation framework to assess the performance and security of the hOCBS compared to 
other traditional health information management systems. The aim of this study was to conceptualize a privacy-preserving blockchain 
system using OCBS characteristics and then translate it to three reference models of different types of healthcare data for assessment of 
real-world data application. Data types included:  

1 Protected Health Information (PHI) defined under HIPAA (e.g., information contained in an electronic health record);  
2 Consumer Health Information (CHI) (e.g., data generated outside of the clinical setting often by the consumer); and  
3 Genomic data (e.g., whole genome sequencing data, data generated from a genetic screening test, etc.) (Demiris, 2016). 

Specifically, OCBS’ mitigate the issues associated with public blockchain systems integrating with healthcare information systems 
by enabling a modular and flexible system architecture that can interact with traditional data storage, while still maintaining the core 
value propositions around transfer, transparency, and immutability of blockchain technology. Some of the key benefits we aim to 
highlight in the conceptualization of our hybrid OCBS framework are the following:  

• Ensuring that privacy-by-design and regulatory compliance is built into the software infrastructure of the proposed system. This 
would represent an improvement over traditional healthcare data storage and transfer systems that rely on other administrative 
forms of compliance. 

• Focusing on integration with current healthcare information management systems as opposed to re-implementing all core com
ponents of healthcare data storage and transfer already available in off-chain systems. This is an improvement over other 
blockchain-based healthcare data management systems by reducing potential migration time. This also enables a tiered approach 
to converting to the new proposed architecture that is more practical.  

• Enabling modularity in information system architecture as a critical improvement over other health data information systems in 
order to enable adaptive design responsive to different forms of healthcare data and their respective privacy and compliance 
requirements. 
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3. Related work 

3.1. Limitations of current healthcare information management systems 

One of the main challenges of current healthcare information management systems (e.g. EHRs, computer-based, client-server- 
based, cloud-based) is that the centralized and siloed storage of healthcare data in physical locations causes significant friction in 
sharing and transferring healthcare data (Ismail, Materwala, Karduck, & Adem, 2020; Norgeot, Glicksberg, & Butte, 2019). 
Furthermore, these siloed data systems create concerns about a single point-of failure, data fragmentation, system vulnerabilities, 
incompatible formats of data storage, and generally have failed to meet growing needs for data ingestion from non-clinical health data 
sources (such as Internet-of-Medical-Things, mHealth sources, sensors and wearables) that could improve the quality of diagnosis and 
care (Ismail et al., 2020). Another problem with these systems is the lack of active patient participation in facilitating access, man
agement and sharing of healthcare data, as most of these systems only passively allow read access and do not have tools to facilitate 
data exchange (Dubovitskaya et al., 2019). Hence, current systems have yet to satisfactorily enable patient-centric and participatory 
information management approaches that are now in growing demand in modern medicine (Chu et al., 2016; Chu, Shah, Rouholiman, 
Riggare, & Gamble, 2018; Hoffman & Williams, 2011). 

In response to these challenges, there have been concerted efforts by the U.S. Federal government under the Health Information 
Technology for Economic & Clinic Health (HITECH) Act and rules/guidance set by the National Coordinator for Health Information 
Technology (ONC) and the Centers for Medicare and Medicaid Services (CMS) to improve health information exchange (HIE) to reduce 
cost and enhance utilization (Joshua R Vest, 2010). However, progress towards more “meaningful use” required by HITECH and 
wide-scale adoption of HIE have been uneven, hampered by implementation and operational challenges including lack of interop
erability across systems, data availability and quality, goal alignment and cooperation across different stakeholders, immaturity of 
current information systems, and an absence of high-quality tools and processes for exchanging data (Berdik et al., 2021; Hochman, 
Garber, & Robinson, 2019; Yeager, Vest, Walker, Diana, & Menachemi, 2017). Further, it is unclear if existing health information 
technology systems actually improve the quality of care or reduce costs, emphasizing the importance of other factors such as ensuring a 
combination of IT adoption and organization and technical innovation in driving productivity gains (Agha, 2014). 

Given these challenges, development of health information systems that can facilitate a transition from institutional-centric to 
patient-mediated data sharing and that change incentives for parties in managing healthcare data are now actively being explored 
using blockchain technology (Gordon & Catalini, 2018). Though research and commercialization in the space of blockchain health 
information systems has increased, few studies or commercial solutions (where information is publicly available), specifically link the 
use of OCBS technology features for the purposes of concurrently addressing privacy and security with needs of data storage and 
scalability in a patient-centric manner as proposed in this paper. Next, we describe key components of blockchain systems, data 
storage, and cryptography that will act as the fundamental building blocks for our proposed hOCBS framework. 

3.2. Components of blockchain systems 

The fundamental technology behind all three reference models proposed in this paper is blockchain. Blockchain is a digital ledger 
technology comprised of near immutable, digitally recorded information in data structures called blocks. Each block is ‘chained’ to the 
next block using a cryptographic signature, hence the adoption of the term “blockchain.” Consensus algorithms are used to ensure 
agreement in a distributed network of what operations are written to the blockchain, information which can be shared and accessed by 
anyone with the proper permissions (Ferdous, Chowdhury, Hoque, & Colman, 2020). The structure of blockchain technology is 
represented by a list of blocks with transactions in a particular order to establish data provenance. The fundamental data structure used 
in blockchain are linked lists. The core concepts behind blockchain technology are:  

• Node: Any computer connected to the blockchain network is referred to as a node. A full node is a computer that can fully validate 
transactions and download the entire data of a specific blockchain.  

• Transaction: smallest building block of information that can be stored in a blockchain system.  
• Block: a data structure used for keeping a set of transactions which are validated through consensus algorithms and distributed to 

all nodes in the network.  
• Chain: a sequence of blocks in a specific order  
• Consensus: a set of rules and arrangements to verify and distribute blockchain operations  
• Digital Signatures: A string generated by public key encryption and attached to an electronically transmitted document in order to 

verify the contents of the document.  
• Oracle: In a blockchain network an oracle (human or machine) helps communicate data to a smart contract which can then be used 

to verify an event or specific outcome.  
• Smart Contract: Software programs whose terms are recorded in an executable code instead of legal language. Smart contracts are 

automated actions that can be coded and executed once a set of conditions is met. 

Our proposed hOCBS system utilizes these core components of blockchain technology as value propositions along with integration 
with traditional data storage and information management concepts that enable privacy and scalability. 
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3.3. Decentralized data storage concepts 

OCBS systems enable users to store data external to a distributed system while enabling secure and standardized interaction be
tween the distributed system and external storage. External data can be exposed to the distributed system upon meeting specific 
criteria, such as the owner of external data opting in and validating their identity. Data storage in OCBS systems can be categorized into 
three main groups: hardware storage, centralized cloud storage, and distributed storage. Hardware storage is often referred to as Direct 
Attached Storage (DAS). DAS includes types of data storage that are physically connected to a computer and is generally accessible to 
only a single machine. Some common devices in this category include:  

• Hard Drives  
• Solid-State Drives (SSD)  
• CD/DVD Drives  
• Flash Drives 

Centralized cloud data storage is the storage of information such as files and databases shared between computing servers over a 
network. Centralized cloud storage systems are currently popular in healthcare data information management systems. However, these 
systems have raised issues regarding the restrictive nature of some services deployed on the cloud and broader concerns about security 
(single point of attack/vulnerability). Specifically, centralized cloud solutions have been vulnerable to issues such as data breaches and 
hacking as well as ransomware (Fernandes, Soares, Gomes, Freire, & Inacio, 2014). Some common types of centralized cloud data 
storage include:  

• Networked Attached Storage (NAS)  
• Storage Virtualization  
• Hyperconverged Storage (HCS) 

Decentralized storage is a system in which information is stored on multiple computers (called nodes) on a decentralized network 
(Andoni et al., 2019). Decentralized storage shares similarities with centralized cloud storage as users can request and receive data 
upon authorization and authentication on the network. Decentralized storage secures data stored in the network by automatically 
encrypting files, wherein only an encryption key can decrypt the data, ensuring security and proper access (Huang et al., 2020). 
Furthermore, through a process of sharding data, no single entity holding your information has the entirety of it. This, along with 
digital signatures and other traditional security techniques can ensure the security and privacy of data stored on decentralized net
works. In comparison, centralized cloud storage keeps data in a central point, which can result in performance issues related to 
competing for bandwidth (van Steen & Tanenbaum, 2016). The nature of decentralized storage enables retrieval of data to be handled 
by nearby peers regardless of physical location. This can also result in higher transfer speeds due to utilizing local network bandwidth. 

3.4. Cryptography concepts 

Blockchain and traditional cyber security approaches heavily rely on cryptography to ensure security and privacy throughout 
digital storage and transfer systems (Shi et al., 2020). Our proposed hOCBS system utilizes many aspects of and layers of cryptography, 
along with a novel data storage and privacy-by-design infrastructure to create an optimal system for healthcare data storage and 
transfer. Some of the core concepts used are:  

• Hashing  
• Public Key Infrastructure (PKI)  
• Asymmetric Encryption  
• Digital Signatures  
• Secure Multiparty Computation (SMPC)  
• Trusted Execution Environments (TEE)  
• Verifiable Computation 

The value of combining certain cryptographic techniques with specific data storage types can enable highly available and scalable 
systems that maintain the security and privacy of traditional centralized data storage systems (Shi et al., 2020). Hashing, PKI, and 
asymmetric encryption are core cryptography techniques that are the foundation of blockchain technology (Yaga, Mell, Roby, & 
Scarfone, 2019). Digital Signatures is a broad scoped area of cryptography which underpins digital identity. In a healthcare infor
mation management system focused on data storage and transfer, it is integrally important to collect, verify, and confirm identity in the 
system due to the highly private nature and compliance requirements associated with data being accessed. SMPC, TEE, and verifiable 
computation are all security techniques used to mitigate the security and privacy issues that are introduced by distributed and 
decentralized systems and will be discussed in the context of our proposed hOCBS framework. 

K. Miyachi and T.K. Mackey                                                                                                                                                                                        

Downloaded from https://iranpaper.ir



Information Processing and Management 58 (2021) 102535

6

4. Characteristics of OCBS systems 

4.1. Central tenets of OCBS 

Examining the central tenets of OCBS systems starts with a discussion of the general technical objectives of off-chain systems, which 
focus on reducing computational load and data storage on blockchain networks (Eberhardt & Tai, 2017). Traditionally, data contents 
are locally stored directly on distributed nodes of a blockchain, leading to higher operating costs and hampering scalability (Yu, Li, & 
He, 2020). Hence, “off-chaining” is proposed as a method to enhance blockchain scalability and privacy, regardless of the permis
siveness of a network (Eberhardt & Heiss, 2018). 

Off-chain systems can enable scalability when the blockchain is used to reference or validate an off-chain data asset, without the 
need to store the data explicitly on the blockchain (Hardin & Kotz, 2021; Hepp, Sharinghousen, Ehret, Schoenhals, & Gipp, 2018). 
However, these off-chain systems lose their utility if they compromise fundamental properties central to blockchain advantages, such 
as enhancing data security, trust, and immutability (Eberhardt & Tai, 2018). Two of the primary challenges in this area are ensuring 
data integrity and data availability, as a blockchain loses an inherent advantage if it cannot ensure the trustworthiness of its associated 
data (Warren & Bandeali, 2017). Off-chain systems can also slow down blockchain computational output due to the unavailability of 
off-chain information that needs to be retrieved and verified before the computing phase (Eberhardt & Tai, 2017). Hence, existing 
research on OCBS focuses on experimentation to mitigate the degradation of data integrity and data availability (Poon & Dryja, 2016). 

Blockchain systems also face challenges with scalability when managing large data sets, a key factor hampering broader adoption 
and moving blockchains into production in enterprise environments (Herrera-Joancomartí & Pérez-Solà, 2016). One of the reasons is 
the limited size of blocks on a blockchain, essentially making it difficult to store more complex data other than state of data, transaction 
history, registry entries, and hashes on a block (Sadhya & Sadhya, 2018). One solution is to use off-chain storage to store and access 
larger and higher complexity data through a hash pointer. For example, off-chain data may be linked with on-chain transactions that 
contain relevant metadata or state of data that takes up much of the on-chain data storage (Xu, Weber, & Staples, 2019). The on-chain 
metadata allows the secure proof and auditing mechanism that off-chain data was not tampered with or modified (Eberhardt & Heiss, 
2018). Application developers can also determine what levels of availability, access and linkage they need between on-chain and 
off-chain data processes (Paik et al., 2019). For example, there may be different security credentials such as a public-private key pair 
protecting off-chain data (Lewison & Corella, 2016). 

Critically, these off-chain systems must maintain certain functionality in order to be properly implemented on a blockchain through 
hash pointers. Off-chain systems also need to be properly backed up and distributed to avoid single points of failure, maintain stability 
with high accessibility, and offer unbreakable connectivity between the blockchain and off-chain storage sources during possible 
attacks (Eberhardt & Tai, 2017). The data stored on-chain must be immutable and unmodifiable and have a system to generate unique 
signifiers to integrate the blockchain network with off-chain storage locations. This is extremely important to maintain the deter
ministic nature of blockchain technology as off-chain data must always be retrievable given the input from the application layer or a 
smart contract (Eberhardt & Tai, 2017). Data stored off-chain may also be modified, though such modifications must be tracked in the 
on-chain network (Xiao, Zhang, Lou, & Hou, 2019). For example, if a row in an off-chain relational database table is modified, this 
should be recorded in the on-chain network and a new signifier should be generated wherein a new pointer is generated to the modified 
row. 

4.2. OCBS design constructs 

In order to strike a balance between maintaining utility of key blockchain features and also ensuring scalability and data integrity, 

Table 1 
OCBS design constructs.  

Design Feature Definition Example 

On-chain Transaction Execution [not OCBS but 
default for most blockchain systems] 

Standard blockchain architecture wherein all the data is stored on the blockchain and 
distributed to connected nodes and all computation to write transactions, validate 
transactions, and distribute blocks is done through the blockchain network. 

Bitcoin 
Ethereum 
Hyperledger 
Fabric 

Off-chain Storage Off-chain storage refers to storing data on an Off-chain node. An Off-chain node is an 
arbitrary computing machine not necessarily part of the blockchain network. 

IPFS 
Swarm 
StorJ 
MySQL 
MongoDB 

Off-chain Computation Off-chain computation is an execution model where the state transition function is 
computed by an Off-chain Node and the resulting state then persists on-chain after 
verification of the computation of the state transition. 

ZoKrates 
ZKSnarks 
ChainLink  

Hybrid Off-Channing Hybrid off-chaining, is the set of designs that combine off-chain state and off-chain 
computations in arbitrary ways and potentially in conjunction with on-chain processing. 

Lightning 
Network 
Raiden Network  
Plasma  
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Table 2. 
Summary of off-chain storage approaches.  

Off-chain storage 
type 

Description Storage Method Advantages 

Swarm Swarm is a distributed storage platform and content distribution 
service that stores data redundantly and distributed over 
multiple nodes, built as a native layer to the Ethereum Web3 
stack It is primarily designed to store Ethereum’s public records 
but also can store other types of files. 

Swarm is DDoS-resistant, fault-tolerant, and censorship-resistant 
during large-scale operation. Swarm stores information in P2P 
networks separate from on-chain Ethereum storage in basic units 
called chunks, which are limited in size. Chunks of data are 
assigned a unique identifier known as a reference that allows 
clients to retrieve and access files. 

Swarm is DDoS-resistant, fault-tolerant, and censorship- 
resistant during large-scale operation. Swarm philosophy is 
very anti-censorship and utilizes an incentive system to 
motivate peers to offer data storage, which can even penalize 
a peer for losing the hosted data of another party.  

IPFS 
(Interplanetary 
File System) 

IPFS is a distributed file management system with the goal of 
connecting computing devices with the same files. IPFS is a 
platform agnostic decentralized storage system and is linked to a 
cryptocurrency called FileCoin to incentive consumers to make 
storage available to the IPFS network. 

IPFS identifies a file’s content with its hash value while storing it 
in a Merkle directed-acyclic graph (DAG) for fast access (Benet, 
2014). Hash values created on IPFS are unique, enabling 
distributed hash table (DHT) systems like Coral and Kademlia to 
take advantage of their ability to enable constant lookup times. 
This allows IPFS systems to act as a distributed repository for 
data that can be queried and linked based on a unique hash value 
through a DHT. 

IPFS can transport large files, split into multiple parts called 
“chunks”, each with by default, a maximum size of 256 kB. In 
place of the file on the DHT, a list of the chunk addresses is 
saved. 

StorJ StorJ is a network of distributed and encrypted data storage that 
splits a file into different “shards”, which then get encrypted on 
the client site for uploading to different storage nodes. The hash 
value of the original file is used and supplemented with ordering 
information of the blocks. StorJ uses a DHT to locate all the 
shards and piece them together. These files are also encrypted 
before sharing and the person uploading it has their own private 
key to validate ownership. 

As individual/private computers or servers can be used, the 
shards are stored redundantly on multiple machines. Further, the 
storage owner gets an incentive payment after checking the 
availability and integrity of the data from time to time. Splitting, 
hashing and encrypting has to be done by the publisher of the 
file, an approach that is generally computationally intensive for 
the client. 

The developer of StorJ (Storj Labs) also runs a for-profit 
business that rents out its network to thousands of users and 
charges for the network usage. This represents a more 
centralized model and draws comparisons with traditional 
cloud storage services such as Dropbox and Google Drive. 
StorJ has recently developed an integration with IPFS where 
users can upload and store files to the Storj network through 
the IPFS system.    
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OCBS’ utilize different design constructs (See Table 1). On-chain transaction execution is generally the default for standard blockchain 
architecture, where data is not only stored on-chain, but also enables on-chain transactions to occur without the need to interface with 
off-chain computational resources (Eberhardt & Heiss, 2018). Following, traditional on-chain storage and transaction environments, 
there are generally three design constructs for OCBS’ including: (1) off-chain storage; (2) off-chain computation; and (3) hybrid 
off-chaining (Eberhardt & Heiss, 2018). 

Hybrid off-chaining refers to an OCBS that combines both off-chain storage and off-chain computation as further discussed below. 
There are a number of different implementations of hybrid off-chain system due to all the potential combinations of off-chain storage 
and computational design features. This makes it difficult to describe hybrid off-chain systems in a general manner. However, some 
popular implementations of hybrid off-chaining include payment channel protocols such as the Lightning Network (Bitcoin) and the 
Raiden Network (Ethereum). Computation/State transitions are agreed upon by participant signatures and transactions are tempo
rarily stored off-chain and committed to the network upon verification. Plasma is another hybrid off-chain system that combines off- 
chain state storage and off-chain computations by building a hierarchy of blockchains to achieve high scalability. 

4.2.1. Off-chain data storage 
Off-chain storage refers to any data storage that resides external to on-chain data. Therefore, traditional data stores such as DAS, 

NAS, storage visualization, centralized databases, cloud computing, and physical servers, are considered off-chain storage and can be 
incorporated into OCBS’. However, other decentralized data storage platforms are being developed in order to better align with 
blockchain technology different from traditional storage approaches. Off-chain storage is important for healthcare data storage for 
both privacy and scalability reasons. Many types of healthcare data are subject to regulatory requirements that require controlled and 
secure environments (e.g. HIPAA-compliant databases/storages), often not compatible with public storage (whether encrypted or not), 
therefore requiring off-chain storage (Pasquale & Ragone, 2014). By connecting off-chain healthcare data stores the friction regarding 
data transfer is significantly decreased. Furthermore, access and modification of data can be tracked in order to establish better data 
provenance. 

There are a variety of open-source projects for decentralized data storage. Three popular decentralized storage systems are Swarm, 
IPFS and StorJ (Huang et al., 2020) (see Table 2). Overall, Swarm, IPFS, and StorJ have many similarities but also introduce different 
approaches to decentralized storage that can be adopted for different use cases, including healthcare. IPFS represents a platform 
agnostic approach to distributing data for purposes of linkage via hash values and is the most popular and mature of decentralized 
storage solutions and has been proposed for other blockchain-based data storage systems (Khalid, et al., 2021). Swarm enables data 
redundancy and anti-censorship incentivization for distributed storage, as well as being built into the base layer of the Ethereum Web3 
stack. StorJ enables both distributed data storage and encryption on multiple personal and enterprise machines and offers 
consumer-friendly and dynamic usability that promotes adoption. 

P2P file sharing was made popular by torrenting platforms such as LimeWire. The decentralized storage platforms outlined above 
improve on these P2P systems by incorporating incentivization mechanisms, along with encryption, security and integrity features. 
However, certain use cases require a centralized data store to be used. Depending on the type of data, storage needs, regulatory re
strictions, accessibility requirements, and functional integration needed to a blockchain system, all of these off-chain storage ap
proaches have different and unique capabilities that can be deployed. 

4.2.2. Off-chain computation 
Public blockchains present a host of potential privacy issues due to transactions being distributed to all participating nodes, which 

can also have a negative impact on the overall computational performance of the blockchain network (Eberhardt & Heiss, 2018). 
Private blockchains improve privacy issues by specifying authorization rules to join the network. However, if there is a single breach or 
mistake in authorization credentials, the improper participant could gain access to transactions distributed to participating nodes. 
Off-chaining has been suggested as a solution to address these limitations by offloading computational efforts and data-storage outside 
of the blockchain environment (i.e. processing and validation of transactions) (Eberhardt & Tai, 2017). However, this architecture 
introduces issues regarding the availability and immutability of data, which cannot be compromised as they are the defining aspects of 
blockchain technology. 

Off-chain computation is required in OCBS systems to validate the integrity and correctness of off-chain data storage, as well as 
assisting with the scalability of blockchain-based healthcare data storage and transfer systems. Specifically, distributed file storage, 
such as IPFS, introduces new security and data integrity risks because the physical location of the storage is dynamic. Furthermore, 
processing large amounts of data may be computationally expensive and slow down on-chain activity. For example, querying large 
EHR, clinical, and genomic datasets may require significant computational logic and processing (Schadt, Linderman, Sorenson, Lee, & 
Nolan, 2010). 

Off-chain computation can be used in a variety of ways and can integrate certain cryptographic techniques to mitigate issues that 
arise from using OCBS’. Off-chain computation is often used to perform state transition and computational logic to speed up and bypass 
on-chain verification and data distribution. These types of off-chain computations often cannot be verified by the same consensus 
algorithms used in on-chain computation (Eberhardt & Heiss, 2018). For example, when a payment channel is setup on the Bitcoin 
Network through Lightning, the transactions are not verified until the payment channel is closed, improving the speed in which the 
Bitcoin currency can be moved. While off-chain computation can reduce redundant processing, the mechanisms involved often 
introduce trust issues between parties, which are avoided in traditional on-chain transactions (Eberhardt & Tai, 2017). 

Theoretically, in a system where one entity’s computers/nodes are validating all transactions on a network, all the other partic
ipants must trust that entity to act in good-faith and that their validation mechanisms are correct and trustworthy. Hence, a number of 
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different off-chain computational models have been conceptualized to address this challenge while also addressing scalability and 
privacy (Eberhardt & Tai, 2017). Some popular approaches include Verifiable Off-chain Computation, Enclave-based Off-chain 
Computation, Secure Multiparty-based Off-chain Computation, and Incentive Driven Off-chain Computation, some of which will be 
used in our proposed reference models (see Table 3 for summary). 

Table 3. 
Summary of off-chain computation approaches.  

Off-chain 
storage type 

Description Technical Requirements/ 
Functions 

Advantages Example(s) 

Verifiable Off- 
chain 
Computation 

Verifiable Off-chain 
Computation utilizes 
cryptographic proofs to ensure 
the integrity and correctness of 
off-chain computations upon 
being written to the 
blockchain. Verifiable Off- 
chain Computation is a 
technique where an off-chain 
node (known as a Prover) 
executes a computation and 
then publishes the result of that 
computational output and 
generates a cryptographic 
proof attesting to the 
computation’s correctness, 
which is then sent to the 
blockchain (Eberhardt & 
Heiss, 2018). An on-chain node 
(known as a Verifier) is 
designated to verify the proof 
and persists the result in case of 
success. 

The underpinning 
cryptographic techniques are 
extremely complicated and 
there has been extended 
research resulting in many 
variants of verifiable 
computation schemes. 
Verifiable Off-chain 
Computation requires 
functionality such as Non- 
Interactivity, Cheap Verification, 
Weak Security Assumptions, and 
Zero Knowledge in order to 
integrate properly and preserve 
the value propositions of 
blockchain technology ( 
Eberhardt & Heiss, 2018). 

The major tenant behind 
Verifiable Off-chain 
Computation, is that a 
Cryptographic Proofing Process 
replaces the consensus 
algorithm for transaction 
verification.   

Popular Off-Chain Computation 
projects include zk-SNARK, the 
underlying technology behind 
zCash. Zk-SNARK stand for zero- 
knowledge succinct Non- 
Interactive Argument of 
Knowledge and has strong 
privacy guarantees enabling 
fully encrypted transactions on 
the blockchain, while still being 
verified for correctness and 
integrity. ZoKrates, is a popular 
project which is the Ethereum 
(Ethereum is a popular public 
blockchain environment focused 
on smart contract functionality) 
implementation of zk-SNARK ( 
Eberhardt & Tai, 2018). 

Enclave-based 
Off-chain 
Computation 

In this model Trusted 
Execution Environments 
(TEEs) are used to guarantee 
confidential and integral code 
execution of computational 
processes. A TEE is an isolated 
and secure processing 
environment that protects a 
computational execution from 
the rest of the system . 
Therefore, TEEs can still 
perform secure computation 
even if a computer has been 
accessed in an unauthorized 
manner or a bug occurs 
anywhere else in the computer. 

To guarantee the enclave’s 
authenticity, an attestation 
certified by a trusted external 
entity is attached to every 
message that is computed and 
distributed by the TEE. For 
example, private keys are often 
embedded into the TEE portion 
of the chip during 
manufacturing and every 
message may be encrypted with 
a private key. The private key 
ensures a message is coming 
from the TEE as the associated 
public key would not be able to 
properly decrypt any message 
signed by a different private 
key. 

This approach enables 
verification of TEE execution 
and adds an extra security layer 
if a TEE computational result 
was intercepted .   

An example of an Enclave-based 
Off-chain computation is Intel 
SGX, which is used as the 
Trusted Execution Environment 
(TEE) for the Hyperledger 
Sawtooth PoET algorithm. 

Secure 
Multiparty- 
based Off- 
chain 
computation 
(SMPC) 

This type of computation 
enables a set of nodes to 
compute functions on secret 
data in a way that none of the 
nodes ever has access to the 
data in its entirety . 

SMPC is a subfield of 
cryptography that enables 
parties to jointly compute a 
function over their inputs while 
keeping those inputs private. 

SMTP assures security and 
integrity of communication or 
storage of participants’ privacy 
from each other (in a shared 
network) (Lindell, 1AD).   

One Secure Multiparty-based 
Off-chain computation is used 
by a project called zkChannels, 
designed to build a modular 
privacy preserving transactional 
layer on-top of many 
blockchains created by Bolt 
Labs. 

Incentive Driven 
off-chain 
computation 
(IOC) 

IOC utilize systems that assume 
economical and rational 
behavior of blockchain 
participants who will strive to 
maximize their own utility ( 
Eberhardt & Heiss, 2018). 

System rules can be enforced by 
retaining deposits as a leverage 
against contravening activity 
and by financially rewarding 
desired behavior. For example, 
an entity may be required to 
deposit collateral in order to use 
their resources for off-chain 
computation. In the event error 
and malicious behavior occurs, 
the collateral would be lost to 
the system. 

IOC systems use financial rules 
to ensure private and secure 
computation. 

One incentive driven off-chain 
computation is called 
ChainLink, which is a 
decentralized Oracle designed to 
eliminate any one point of 
failure and incentive Oracle 
smart contracts that are highly 
secure, reliable, and 
trustworthy.    
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5. Design characteristics of healthcare blockchains 

We now pivot to an assessment of how to apply blockchain technology concepts and central tenets of OCBS to health-related 
distributed data governance. Specifically, these concepts are mapped to our proposed hOCBS framework that emphasizes a patient- 
centered privacy-preserving approach to ensuring the resilience, provenance, traceability, and management of different forms of 
healthcare data. Factors such a scalability, accessibility, portability, identity validation, and maintaining the overall utility of data to 
effectuate healthcare transactions and processes, must be evaluated to determine optimal design features. Our modular framework also 
focuses on ensuring system architecture maximizes the benefits of OCBS in alignment with security and privacy legal requirements 
across different types of healthcare data. In conceptualizing our hOCBS framework, we adopt the “Fit-for-Purpose” (FIP) design 
framework by Mackey et al. Specifically, the FIP considers the following key design principles: (a) the general type of blockchain being 
developed (public, private, or consortium); (b) developing a data governance approach that includes identifying nodes in the 
blockchain network, their respective roles, and their decision-making process; and (c) deciding on a permissions structure for 
blockchain participants and assets (Mackey et al., 2019). Each of these hOCBS characteristics is described below and then discussed in 
the context of specific reference models. 

5.1. Healthcare-centric data governance 

Data governance defines decision-making and responsibility rights for a system or organization’s use of data, executed based on 
agreed-upon models that describe the actions, actors, and circumstances to perform data-related processes (Abraham, Schneider, & 
Brocke, 2019). Data governance related to the use of healthcare data is of particular importance due to strategic business and regu
latory requirements specific to the industry, including interoperability with other data systems (such as in and between EHRs, patient 
portals, and patient and provider directories), strict compliance with HIPPA and the management of PHI, and ensuring data maintains 
utility for its diverse set of users including patients/consumers, providers, healthcare administrators, and researchers (Hripcsak, et al., 
2014). 

It is also critical that healthcare data governance define decision-making and responsibility rights between internal and external 
organizations that may be involved in multiparty healthcare transactions. Healthcare delivery is not only complex, but also involves 
the coordination of care across multiple stakeholders, including different clinicians/providers, hospital systems, healthcare admin
istrators, payers/insurers, and of course the patient and their families (D’Amore, Sittig, & Ness, 2012). Hence, distributed governance 
needs to ensure not only that information is communicated safely and securely, but also in a manner where robust identification and 
authentication schemes can validate identify of involved parties (Berdik et al., 2021). 

Adding an additional layer of complexity is the policy environment that governs healthcare practice, coverage, and reimbursement, 
which can directly impact the availability and usability of healthcare data (Institute of Medicine (US) Committee on Regional Health 
Data Networks, Donaldson & Lohr, 1994). For example, national and state-level health and insurance policy often define different 
levels of healthcare coverage, which can lead to data silos, lack of health data portability, and challenges with interoperability in 
comparison to single-payer or universal healthcare systems (Institute of Medicine (US)National Academy of Engineering (US) 
Roundtable on Value & Science-Driven Health Care, 2011). All these factors need to be considered when devising good governance 
approaches to managing healthcare data regardless of technology utilized. 

5.2. Blockchain system design for healthcare 

Healthcare-related blockchains are often structured as private or consortium (also known as “hybrid”) designs. This differs from 
public or “open” blockchain systems that allow public participation and have a wider user base to maximize decentralization, yet with 
no central authority. Public blockchain networks are the common design for many popular cryptocurrencies (e.g. the bitcoin block
chain). In contrast, private blockchain networks require participants or nodes to have their identity validated and pre-determined and 
are closed to the public (Zhuang, Sheets, Shae, Tsai, & Shyu, 2018). A private blockchain network, also known as a “permission-based 
blockchain”, is preferred for healthcare use cases because of requirements for identity validation tied to levels of privacy and per
missions to manage access to data (Pirtle & Ehrenfeld, 2018). By their definition, private blockchains have an owner or operator that 
determines the governance of the blockchain (such as who can join, permission structures, and rules about reading and writing to the 
ledger) and are inherently less decentralized than public blockchains. 

Consortium-based blockchains combine elements of both public and private blockchains. In this sense, consortium blockchains are 
similar to private blockchains as they are not open to public participation, but instead participation is granted to a group of entities/ 
organizations that meet certain pre-established credentials or criteria set by the consortium (Mackey et al., 2019). However, they are 
also similar to public blockchains as their operation is not limited to a single entity, but instead granted in a semi-decentralized manner 
by consortium members. Hence, consortium blockchains have their participation and authority more distributed and de-centralized 
compared to private blockchains and also allow pre-defined participation of nodes to smaller groups that share a common goal in 
the operation of the blockchain network. 

Private and consortium blockchain approaches offer distributed networks that can enable more compatible health data governance 
that validates digital identity for the purposes of data storage, access and sharing (Azaria, Ekblaw, Vieira, & Lippman, 2016). For 
example, patients can leave and rejoin a blockchain system multiple times, for arbitrary periods, and always regain access to their 
history by querying, linking and decrypting on-chain transactions written to the ledger associated with their validated digital identity. 
As long as there are nodes participating in the network, the blockchain log is maintained along with the historical record and 
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provenance of that data. Hence, both private and consortium-based blockchain designs can enable shared healthcare data management 
tied to digital identity. These systems can also benefit from other key blockchain advantages of immutability, creating a central record 
of data management agreed to by all participants, an audit log, and enabling data access based on rules set by the network (Mackey 
et al., 2019). 

Further enabling private and consortium blockchain designs in healthcare are OCBS characteristics, which ensure the correct 
balance between on-chain and off-chain storage and computation, while also enabling more dynamic permission structures. Other 

Table 4. 
Examples of healthcare data permission structures and roles adopted from MedRec.  

Stakeholder Role Example of Implementation 

Patients/Data Owners The patient role is the primary “data owner” of 
information throughout the framework and choices 
about data access and availability are dictated by 
these preferences through smart contracts. The 
patient smart contract functions as an authorizer for 
patient data and an audit trail for participants in the 
system to locate their medical record history or other 
forms of healthcare-related data. 

Relevant smart contracts contain references to 
Patient-Provider Relationships (PPRs) or other 
relationships with stakeholders in the system. These 
references represent all the participant’s previous and 
current engagements with other nodes in the system. 
Patients, for instance, would have their timestamped 
data structure populated with references to all care 
providers they have been engaged with or anyone 
who has accessed their data. The patient smart 
contract also implements functionality to enable user 
notifications.   

System Administrators This global role maps participant identification codes 
to their blockchain wallet address used to identify 
nodes performing transactions in the blockchain 
network (e.g. healthcare administrators, staff 
involved in reimbursement, etc.). Mapping 
identification codes to blockchain wallet addresses 
allows integration into existing healthcare ID 
systems. Policies coded into the system administrator 
smart contract can regulate registering new identities 
or changing the mapping of existing ones. Identity 
registration can thus be restricted only to certified 
institutions, providers, and patients. 

The system administrator will be connected to an 
Oracle Smart contract that will enable the verification 
of identification in third-party databases such as 
licensing databases, patient and provider directories, 
Medicare eligibility databases, etc.   

Healthcare Providers The provider role is associated with licensed 
healthcare providers and must be verified from 
external data sources (e.g. provider directories, 
National Practitioner Data Bank, etc.) in order to 
obtain access into the system. Providers in the system 
set the relationship status in their patients’ smart 
contract whenever they update records or as part of 
creating a new physician-patient relationship. 
Accordingly, the patients can poll their smart 
contract and be notified whenever a new relationship 
is suggested, or an update is available. Patients can 
accept, reject or delete relationships, deciding which 
records in their history they acknowledge. 

The Provider Smart Contract establishes a PPR 
between two nodes in the system when one node 
stores and manages medical records for the other. 
While we use the case of care provider and patient, 
this notion extends to any pairwise data stewardship 
interaction. The PPR defines an assortment of data 
pointers and associated access permissions that 
identify the records held by the provider. Each 
pointer consists of a query string that, when executed 
on the provider’s database, returns a subset of patient 
data. The query string is affixed with the hash of this 
data subset, to guarantee that data have not been 
altered at the source. Additional information 
indicates where the provider’s database can be 
accessed in the network, i.e. hostname and port in a 
standard network topology. The data queries and 
their associated information are crafted by the care 
provider and modified when new records are added. 
To enable patients to share records with others, a 
dictionary implementation (hash table) maps 
viewers’ addresses to a list of additional query strings. 
Each string can specify a portion of the patient’s data 
to which the third-party viewer is allowed access.  

Other Third Parties that seek to access or 
provide Healthcare Data (e.g. 
Researchers, Population and Behavioral 
Health companies, etc.) 

Given our framework is based on a Consortium 
blockchain design, other third parties such as 
research entities, non-profit organizations, and 
health and wellness companies seeking access to 
healthcare data will need to go through a screening 
process in order to be included as consortium 
members. Consortium members will acknowledge 
that any access to off-chain data will be governed by 
smart contract provisions dictated by the individual 
and relevant privacy regulations depending on the 
type of data.   

Third parties will only be able to access data wherein 
the data owner has explicitly opted-in upon a third- 
party request to access data. Furthermore, they will 
only have specific rights in the blockchain network 
such as read only, single-use access upon an opt-in 
access grant from the data owner, verification 
through an external database and extending the on- 
boarding requirement process that can be agreed 
upon through network consensus.   
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fundamental technical components of this blockchain-based infrastructure critical in their integration with OCBS are validation, 
consensus and digital identity. 

5.3. Healthcare data permission structures 

Structuring data permissions on a blockchain is driven by privacy considerations, which in turn can originate from different legal 
interpretations. Generally, privacy includes the two fundamental concepts of anonymity and confidentiality. In blockchain terms, 
anonymity focuses on concealing the parties to a transaction, and confidentiality addresses the need to hide transaction details. Certain 
privacy regulations, including GDPR provisions, align with blockchain approaches that are geared towards improving data portability, 
data traceability, lawful access auditability, and consent management (Hawig, Zhou, Fuhrhop, Fialho, & Ramachandran, 2019). This is 
particularly true with private or consortium blockchain approaches, where transactions of digital records can be deleted or modified 
depending on the use of off-chain storage and consensus algorithms (Puthal, Mohanty, Yanambaka, & Kougianos, 2020). However, 
blockchain systems must also take into account other provisions of GDRP that may be less compatible with distributed information 
systems, such as having the “right to be forgotten” or automated smart contract execution that may limit a user’s control and autonomy 
over their data (Mirchandani, 2019). 

Hence, the first step in defining rules about privacy on a blockchain is by developing permission structures at a granular level with 
appropriate verification and authentication to identity of parties (Berdik et al., 2021). This includes the use of smart contracts with 
privacy features imbedded in their structural design, such as conferring access to a patient’s personal information only to those granted 
lawful access (Dwivedi, Srivastava, Dhar, & Singh, 2019). Permission structures are also important when considering consortium 
blockchains where participants may be in “coopetition” (i.e. when enterprises collaborate in the business network to achieve a mutual 
objective, while also actively competing with each other) (Dagher, Mohler, Milojkovic, & Marella, 2018). In this case, not only is the 
patient data subject to privacy restrictions, but underlying business and transaction data between parties can also be deemed as highly 
sensitive and confidential. For this reason, user identity should be mapped to specific smart contract addresses in order to ensure 
proper use of the system and restrict user functionality based on their roles in the system. For example, a patient would only have the 
functionality to change, modify, or specify access to data tied to their validated digital identify. 

As private and consortium blockchain designs are the most compatible approach for healthcare use cases, understanding how to 
formulate permissions structures as a critical interface between on-chain and off-chain data storage and computation while preserving 
privacy is critical (Cao, Sun, & Min, 2020). The multi-stakeholder nature of healthcare necessitates that multiple parties have access to 
data in order to effectuate optimal clinical decision-making, improve patient safety, and enable better population health outcomes. 
Hence, validated digital identity on blockchains using pre-defined roles that dictate data access privileges (both read and write) 
governed by smart contacts forms the basis for how we conceptualize a hybrid OCBS health information management system. 

To further illustrate how this permission structure would work for different stakeholders, we describe blockchain permission-based 
roles in Table 4 that are adopted from the blockchain solution MedRec operated by Beth Israel Deaconess Medical Center (Azaria et al., 
2016). However, we note that the privacy-preserving emphasis of our framework necessitates placing the patient/consumer at the 
center of this permissions structure though validation of their digital identity as will be discussed in the reference models. 

6. hOCBS health data framework reference models 

6.1. Reference model framework design 

We developed three reference models for our conceptual hOCBS framework in order to better illustrate the real-world utility and 
application of the framework to different forms of healthcare data. We focused on three distinct types of healthcare data due to their 
different purposes, sources of information, use and ownership, and legal treatment that include PHI, CHI, and genomic data. 
Importantly, all of these approaches utilize a hybrid off-chain architecture that combines on-chain storage and off-chain storage as well 
as off-chain computational approaches adapted to the specific needs of the healthcare data use case. 

Different types of off-chain storage will be used based on the needs for distributed data storage, regulatory compliance, redun
dancy, and security. Different off-chain computation approaches will focus on verifying the credentials and identity of the data owner 
coupled with determining the integrity and correctness of data storage for purposes of on-chain and off-chain interaction. Issues related 
to ensuring scalability of healthcare blockchain systems and enabling efficient computation of blockchain-related information stored 
on-chain and off-chain are also important considerations incorporated into each of these reference models. 

A core foundation of all three reference models is validating to the sovereign digital identity of the patient/consumer. Given this 
identity-centric approach, all reference models utilize a Proof-of-Authority (PoA) consensus mechanism. PoA is a consensus method 
that specifies a designated number of participants with the power to validate transactions or interactions on the network. As a general 
approach, the on-chain storage of each reference model will only act as a de-identified access log and provide linkage to off-chain data 
storage. The on-chain computation that occurs on these reference models will be used to validate the access logs and data linkage 
pointers to off-chain datasets. 

Each of our three reference models starts with a depiction of the general blockchain architectural components and its specific off- 
chain functions and application layers. This includes the core functions of blockchain data, which may include certain transaction 
data/metadata or state-of-data information residing on-chain. The data layer represents where and what data resides on-chain and off- 
chain, as well as the interaction between these data assets. The core design features of the blockchain are also identified, including 
whether the blockchain is private or consortium. Finally, an application feature layer that consists of blockchain-enabled technology 
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applications (discussed below) are identified. A summary of the pros and cons of hOCBS design features is also summarized in Table 5. 
Additionally, a summary of the design principles of each of the reference models is provided in Table 6. 

6.2. hOCBS blockchain application and features layers 

We also identify the blockchain application feature layers that should be incorporated into our reference models in order to enable 
utility of a privacy-preserving health information management system, centered on patient/consumer digital identity verification. The 
specific blockchain application and feature layers adopted in our proposed hOCBS framework include smart contracts, digital wallets, 
and tokens. Smart contracts will dictate the flow of information creation, access, retrieval, and deletion, while also allowing records 
and information to be stored on-chain via a digital ledger and off-chain via OCBS (Chatterjee, Goharshady, & Velner, 2018). A digital 
wallet, a type of distributed application (Dapp) that holds verifiable credentials about an identity and enables the signing and sub
mitting of a transaction through an off-chain construct (e.g. private keys), will authorize healthcare data-related transactions in a 
secure and patient-centric manner (Mikula & Jacobsen, 2018). Tokens, whether they be in the form of utility tokens (used for a specific 
purpose) or security tokens (ownership in an asset), can be used to encourage certain behavior on the network, such as enabling 
commoditization of healthcare data assets or encouraging positive health behavior change through token-based incentives (Dimitrov, 
2019). 

Our hOCBS framework envisions combining these different feature layers to address current challenges of fragmented healthcare 
data governance for the purposes of improving data portability, transparency, and patient-centered data stewardship. For example, if a 
patient moves from one provider to another, oftentimes there is no automatic way for healthcare records to be transferred and made 
visible to the patient in a consolidated way (i.e. patients may have to access separate provider patient portals for their full medical 
history). Similarly, healthcare providers often rely on multiple databases populated with different forms of patient information 
(Vazirani, 2019). However, these siloed databases can be too restrictive in allowing for appropriate sharing of data between provider 
parties, particularly in the absence of the patient serving as an intermediary to provide data access permission (Lokhande, Mukadam, 
Chikane, & Bhonsle, 2020). To address this, our framework puts the patient/consumer as the central intermediary within a distributed 
permissioned-blockchain network, allowing them to control the flow of data access per specific rules pre-determined in smart contracts 
that are also subject to applicable privacy requirements depending on the type of data. 

Specifically, the terms of data access and sharing will be explicitly defined into the smart contract layer based on the health data 
classification and relevant schema (e.g. PHI, CHI, genomic data). This will enable the individual to act as the data steward for their own 
health information with associated visibility to the terms dictating how their data is shared, and who gained access to their data. This 
user-centered decision-making is also important to enabling dynamic consent management, where the user has the ability to adap
tively change their “consent” to who can access their data, an approach that aligns with HIPAA and GDPR requirements (European 
Parliament, 2019). Importantly, permission preferences and consent versioning will be logged and recorded on-chain in a way that 
does not expose the underlining off-chain healthcare data itself and ensures its underlining security. 

In the absence of blockchain and smart contract functionality, confirming what the individual has consented to in regard to data 
management falls back to paper and electronic-based consents that are static, or confusing terms of use and privacy statements dictated 
by platforms and providers that are not patient-centric or participatory. This can lead to data portability and sharing being delayed, 
mistaken, or potentially subject to greater risk of accidental disclosure, fraud or hacking. 

6.3. hOCBS healthcare data reference models 

6.3.1. Reference model 1: protected health information 
The first reference model will focus on the most highly regulated form of healthcare data; Protected Health Information (PHI). The 

treatment of PHI is governed by the HIPAA Privacy Rule, which defines it as any information in a medical record that can be used to 
identify an individual, and that was created, used, or disclosed in the course of providing a healthcare service (e.g. diagnosis or 
treatment). In this sense, PHI focuses on information that identifies an individual patient, is linked to medical records and is created in 
the course of provisioning of healthcare services (National Academies, 2009). 

Table 5. 
Pros and cons of hOCBS features.  

Design Feature Pros Cons 

Distributed / Modular Data Storage and 
access/modification logs   

Non-Siloed Databases, Increased Transparency of 
data to patient, Standardized Data Structures 

Implementation Cost, Integration Issues, Attack Vectors of 
distributed ledger technology 

Transfer and Access Control of Data 
controlled through Smart Contracts  

Enhanced Security, Community Governance, 
Automated execution of rules 

Smart contract bugs, Updating Smart contract features, 
incorrect/malicious information written to on-chain storage 

Dual Traditional and Smart Contract 
Authorization/Authentication   

Enhanced Security, Identity tied to specific 
functionality in the system 

UI/UX of multi-factor authentication, added complexity to 
identity system 

Data Integrity/Correctness Verification Trust improved by automation/software, Enables 
integration to modular and distributed data storage 

Bugs with data integrity/correctness, added computational 
processing to transfer data  
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HIPAA also focuses on two specific healthcare stakeholders in its compliance obligations; the Covered Entity (e.g. the healthcare 
provider, plan or clearinghouse, “CE”) and the Business Associate (i.e. an organization that performs services on behalf of the Covered 
Entity and requires access or use of PHI, “BA”). Once deemed PHI, there are specific administrative, physical and technical controls and 
safeguards that must be implemented by HIPAA BAs and CEs for the purposes of data confidentiality, integrity, and availability 
(including the right for patients to obtain a copy of PHI). De-identification of PHI in order to relieve it from HIPAA obligations requires 
it to be stripped of 18 identifiers that constitute personally identifiable information (PII). 

Given these regulatory obligations are focused on healthcare providers, administrators, and intermediaries, our first reference 
model (see Fig. 1) focuses on the management of PHI on a consortium blockchain model involving different organizations that are 
legally classified as Covered Entities and Business Associates, but also includes the patient at the center of this network, a party not 
traditionally included in this exchange process. Specifically, this consortium blockchain would invoke smart contracts dictated by 

Table 6. 
Summary of design characteristics of reference models.   

Protected Health Information (PHI) Consumer Health Information (CHI) Genomic Data 

Network Type Consortium Consortium Consortium 
Consensus Mechanism PoA PoA PoA 
On-Chain Storage Access Logs, Linkage Access Logs, Linkage Access Logs, Linkage 
On-Chain Computation Validation of Access Logs Validation of Access Logs Validation of Access Logs 
Off-Chain Storage Central IPFS Modular 
Off-Chain Computation Verifiable Off-Chain Computation, TEE SMPC, Incentive Verifiable Off-Chain Computation, SMPC 
Incentive None (Regulatory) Token Token  

Fig. 1. PHI reference model 
Description: The PHI reference model is the most restrictive and wherein the smart contract that is executed is specified by the data owner’s pre- 
defined consent and legal requirements of the relevant privacy policy (i.e. HIPAA) which requests validation of identity of requestor, maintains 
private key and public key management, and grants or denies data access off-chain. Centralized Storage in Healthcare Facilities must still be 
implemented to maintain regulatory compliance. 
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patient data access privileges linked to each provider portal or EHR (retrieving medical records from these off-chain sources that hold 
personal health records) and populating it into a digital wallet linked to a patient’s digital identity to enable greater health record 
portability facilitated by the patient’s own participation. 

Importantly, there are strict technical requirements for safeguards regarding where PHI is held. Distributed storage frameworks do 
not meet these criteria due to their non-specified physical location of storage. Therefore, the off-chain storage mechanism will remain 
located in healthcare facilities that generate PHI in an EHR or other sources. However, on-chain linkage is critical to enable the patient 
to specify access and transfer of PHI. Specifically, Verifiable Off-Chain Computation can be used to generate proofs regarding access 
granted to specific clinicians, healthcare facilities, and administrators. The verification process and data linkage from on-chain to off- 
chain resources can be done within TEEs to ensure security and integrity as has been suggested for blockchain applications using 
mHealth data (Hardin & Kotz, 2021). This will mitigate any improper access of the off-chain PHI data and will create an extra layer of 
security dictated by the patient. 

The PHI reference model is the most restrictive with rules governing the smart contract specified by the data owner’s pre-defined 
consent and also applicable legal requirements of HIPAA. Records will be shared by the patient’s different providers who participate in 
the consortium blockchain but operate their own distinct EHRs, based on the permission rules set by the patient and any underlining 
HIPAA BA agreements, all executed through dynamic consent and smart contract logic/rules. The reference model requests validation 
of identity of the requestor and source (BA or CE), maintains private key and public key management, and grants or denies data access 
off-chain. Centralized storage in Healthcare Facilities must still be implemented to maintain data security and regulatory compliance 
per HIPAA. Permission rules may utilize off-chain storage databases to determine credentials and access of specific entities (e.g. for 
example making rules-based distinctions between a requestor who is validated as a licensed private health insurance provider versus 
Medicare provider). 

The primary use case of this reference model is to enable patient-mediated and centered management of PHI in a secure envi
ronment with lower computational costs via hybrid on-chain and off-chain storage and computation. Data storage and computational 
costs are reduced as data continues to reside off-chain and consensus to write to the chain is based on POA tied to the patient identity. 
Costs can further be reduced by removing manual execution of HIPAA legal agreements via smart contract logic that facilities access 
and permissions of BAs and CEs with electronic consent by the patient. The real-world application focuses on enhancing portability of 
healthcare records subject to HIPAA requirements (the legislative intent of the HIPAA). As the current system is institutional-centric 
between HIPAA BAs and CEs, patients currently do not have decentralized health information systems that allow their active 
participation in accessing, sharing, and exchanging their healthcare data even though there are requirements for meaningful use. 
Hence, the proposed framework will allow healthcare data to remain in off-chain secure storage per HIPAA, but also enable patients to 
exchange data to a decentralized group of validated consortium healthcare providers and administrators in order to improve continuity 
and quality of care that is currently fragmented between providers, facilities and payers. 

The technical blockchain and OCBS components of the PHI reference model were designed to enable patient control and access to 
their medical history from off-chain data sources and also have a verified history of all entities that processed or accessed their PHI in a 
HIPAA compliant fashion. The PHI reference model is the most rigid and similar to existing health information systems that utilize 
traditional data storage and transfer systems but emphasizes a blockchain-mediated form of health information exchange. As stated 
previously, it is necessary to utilize existing health information systems (e.g. institutional EHRs) given the regulatory compliance 
requirements needed to manage PHI. A summary of the key OCBS features of the reference model are provided below:  

• OCBS Feature Advantages: Allows data storage to stay on current HIPPA compliant systems, while utilizing the security and 
auditability advantages of blockchain technology to enable health information exchange from existing EHR systems or patient 
portals with the reference model. 

• Potential Challenges: Interoperability, integration and data standardization with existing health information systems are chal
lenges with this model, requiring use of industry standardization of data formats (e.g. HL7 Fast Healthcare Interoperability Re
sources or IEEE P2418.6 standard for Framework of Distributed Ledger Technology Use in Healthcare and the Life and Social 
Sciences).  

• Security Considerations: Security is added to ensure proper authorization and authentication of both access and modification of 
data. Furthermore, cryptographic techniques are used to validate information stored on the connected databases such as TEE and 
verifiable computation. Multiple layers of security are used to mitigate mistakes, and misuse of the system. 

6.2. Reference model 2: consumer health information 

The second reference model in our framework is designed for healthcare data that is subject to less stringent privacy requirements; 
Consumer Health Information (CHI). CHI generally refers to “information on health and diseases that is created for and directed to the 
general public”, but also includes data that is generated and shared by consumers related to their health, lifestyle and well-being 
(Sherif, Pluye, Thoër, & Rodriguez, 2018). CHI-derived data is diverse, including aforementioned behavior, biometric and sensor 
data generated by IoT, wearables, connected medical devices, mHealth apps, consumer health portals, online health coaching plat
forms, blogs, online forums, social media posts, and other data sources that engage consumers in shared and interactive environments 
regarding their health. 

The treatment of CHI is not explicitly governed by the HIPAA Privacy Rule if it does not include PII or is not involved in the course 
of care by a Covered Entity. In this sense, CHI data (generally any health-related data residing outside of the medical record or that is 
not transmitted to a healthcare provider for treatment) is much more expansive in scope and diversity than PHI, and is estimated to see 
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rapid increases in data volume (Demiris, 2016; S. Smith & Duman, 2009). Properly utilizing this data opens up many opportunities to 
advance individually tailored and personally driven healthcare solutions, such as precision medicine and behavior change and 
modification interventions. CHI also raises different privacy considerations regarding the treatment of PII that also includes 
health-related status or information but does not legally constitute PHI. 

Hence, our second reference model focuses on the control, management, and sharing of CHI that is consumer-centric and subject to 
general privacy frameworks such as GDPR and the Federal Trade Commission Act. The second reference model maintains privacy as a 
key feature of the architecture, wherein data sharing can be opted into explicitly by the consumer for distributed sharing across a 
private blockchain or a trusted consortium or marketplace of vetted participants who agree to ethical principles of using CHI (see 
Fig. 2). Distinctly different from the PHI framework is that this data is generated primarily from consumer-initiated sources, though 
CHI may nevertheless be fragmented across different platforms, apps, websites, and other data stores. Specifically, this model envisions 
consumers managing their own CHI in a digital wallet tied to their validated identity governed by smart contracts. 

Due to the diversity of types of CHI data, the utility of real-time and connected health data that can enable continuous and remote 
monitoring, along with the inherent value of data aggregation to identify broader trends in population health, we adopt IPFS for off- 
chain storage management. IPFS enables a fault tolerant, scalable, highly available distributed file store system that can be secured, 
modified, and deleted by the user. Sharing data for aggregation and big data analysis means that correct profiling of data is critical. 
Therefore, TEE will be used to execute any modifications to IPFS. Using this approach, CHI data can be retrieved from respective off- 
chain sources (APIs, consumer web portal profiles, etc.) and shared with participants in exchange for token payments with the con
sumer deciding what underlining data, metadata, or PII is shared per dynamic smart contract terms. Consumers could also share their 

Fig. 2. CHI reference model 
Description: The CHI Reference Model utilizes a decentralized storage mechanism such as IPFS. Off-chain computation is executed using a trusted 
execution environment (TEE) and using Distributed Hash Tables for fast access to data and verifying identity, and associated access and read 
privileges. This, along with dynamic security settings for CHI data access, controlled via a smart contract and a token-based incentive system enables 
and promotes sharing of CHI data while maintaining privacy and security of CHI data. 
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CHI to researchers through active consent written to the blockchain for clinical, epidemiological and health outcomes research. 
The primary goal of this reference model is to manage CHI for the purposes of enhancing sharing in a privacy-preserving manner, 

while also helping to develop digital health tools that can provide more personalized care when augmenting clinical data. The 
blockchain and OCBS technical components of the CHI reference model were chosen to maximize user control and shareability of data 
as use is not as restrictive as PHI under HIPAA. Specifically, the CHI reference model is more flexible than the PHI reference model and 
is designed to optimize data transfer speeds throughout the system. Distributed data storage leveraging IPFS allows users to not only 
retrieve CHI, but also host their own content via hash values and content addresses in a platform agnostic environment similar to P2P 
networks. Validation of access to and exchange of CHI linked to a consumer’s digital identity via POA can help ensure fast access, 
querying, and sharing governed by smart contract logic specific to a consumer’s preferences. 

Though generating a blockchain P2P distributed network for CHI might concern privacy advocates, the motivation for this 
approach would be to enable a privacy-preserving OCBS framework that allows consumer-driven autonomy over CHI in a decen
tralized manner. Currently, most CHI is subject to a process that is platform-centric, where data is stored and access controlled by 
platform owners and their complicated legal terms of use and privacy agreements that do not involve active participation from 
consumers who generate CHI (i.e. click thru agreements). Further, storage and computing costs for an IPFS-based CHI framework as 
proposed here would likely be minimal (Huang et al., 2020). Currently, most CHI is stored on central server-client architecture, 
limiting the speed and accessibility of CHI to both consumers and those who they may want to share it with (e.g. to their healthcare 
provider, researchers, health behavior companies, etc.). Enhanced scalability and relative lower costs of computing and storage of IPFS 
systems could reduce some of these barriers by decoupling CHI from origin servers, while at the same time ensuring content-addressing 
is validated to digital identity/host (Treiblmaier & Beck, 2019). Benefits in the context of security could also inure to such systems, 
insulating CHI from discontinued services and shut down websites where CHI may be lost to the consumer or subject to DDoS attacks. 

In exchange for this autonomy and data resilience, consumers may be more willing to share CHI with outside parties that can put 
the data into action for better individual and population health level outcomes. Consumers would be able to change their preferences 
based on dynamic consent via smart contracts and could also be incentivized to share data through tokenomics models (which could 
also include incentives for health behavior interventions or gamification) in a transparent manner. Built into smart contracts in this 
framework is also required legal compliance to FTC and GDRP consumer-focused protections. This includes smart contract requests 
originating from the user for record deletion/removal (e.g. GDRP ‘right to be forgotten’), rectification, or other revocation of access, all 
cryptographically logged and hashed on the blockchain. 

Our CHI reference model focuses on the real-world use case of enabling consumers to gain greater control of all the disparate CHI 
data they generate on different platforms and applications while using blockchain and OCBS technology features to enable consumer- 
centric data stewardship. Due to the distributed nature and massive amounts of CHI data that are subject to less stringent privacy 
requirements than PHI, the main OCBS features of this reference model include:  

• OCBS Feature Advantages: Distributed storage through IPFS that allows faster transfer while also enabling users to store their data 
only on their personal storage or devices while maintaining integration to the reference model. Enables opt-in governance to share 
information dictated by the consumer and utilizes distributed hash tables for fast lookups in the massive data storage network of 
CHI data.  

• Potential Challenges: Availability and ensuring appropriate data access is the biggest hurdle in the CHI reference model due to the 
highly distributed and potentially sparse nature of data that largely still resides in platform-specific storage. Data schema stan
dardization based on different types of CHI data will also be needed.  

• Security Considerations: Security is implemented to ensure data is not shared without proper authentication and authorization 
from the consumer. Correctness verification is an important security aspect of the CHI reference model because the massive 
amounts and sparse distributed nature of storage. End users of CHI data must be ensured that data on distributed storage system has 
been collected correctly and not been modified due to a mistake or malicious source. 

6.3. Reference model 3: genomics data 

The third and last reference model focuses on a unique and growing form of health-related data; genomics data. Generally defined 
as data about a person’s genes generated by sequencing techniques, this data is also protected by certain regulations (e.g. The Genetic 
Information and Nondiscrimination Act and HIPAA) and is a highly debated topic in relation to privacy. Genomic data is also diverse in 
both its data characteristics and uses, including array data, exome sequence data, and Whole Genome Sequenced (WGS) data, and can 
be collected in clinical, research, commercial, or consumer settings (e.g. direct-to-consumer genetic tests) (Navarro et al., 2019). As the 
volume of cost-accessible genomic data exponentially grows (due to the reduction of cost in WGS), concerns about what and how to 
store it, what phylogenetic/phenotypical data should be associated with it, deletion/expunging protocols, and whether physical DNA 
samples should be stored or destroyed, remain unresolved issues (Gutmann & Wagner, 2013). 

Though privacy concerns remain a key topic of debate, the immense value of genomics data to advance precision medicine and 
pharmacogenomics has nevertheless been demonstrated by large scale collaboration projects, such as International Cancer Genome 
Consortium, which has amassed over 800 terabytes of data on cancerous genomes (Phillips et al., 2020). Several genomics companies 
are also attempting to use blockchain technology for purposes of enabling better management, sharing, and control of data in a 
privacy-centric fashion (Eman Ahmed, 2019; Thiebes, Schlesner, Brors, & Sunyaev, 2020). Importantly, genomics data requires an 
intermediary reference model that can handle large volumes of data (such as raw sequence data), that can facilitate off-chain 
computationally intensive analysis, and which enables sharing while emphasizing individual-centered privacy and ownership 
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(Ozercan, Ileri, Ayday, & Alkan, 2018). Hence, our third reference model (see Fig. 3) focuses on anonymized and secure multi-factor 
consent processes that enables trusted participants on a consortium blockchain to query and access genomics data upon explicit 
consent by the individual. 

The genomics data reference model utilizes a consortium blockchain network made up again of pre-vetted participants (e.g. 
biotechnology companies, researchers, etc.) that uses smart contracts dictated by data owner access privilege preferences similar to our 
other reference models. Genomics data storage will be stored off-chain due to on-chain storage restraints and privacy issues. The exact 
location of the genomic data storage will be specified by the user upon data generation. For example, a genomics data owner may 
choose to store their genomics data in an off-chain private research or trusted third-party database, or they may choose to store their 
own genomics data themselves using DAS. A researcher can query the system with a set of characteristics of features of interest, and 
upon being identified by the system, a notification will go out to the data owner (if they opted-in) further requesting if they would like 
to share their genomics data without explicitly revealing their PII. This design is similar to our CHI reference model, with an added 
second layer of authentication, and the first layer always being encrypted and anonymized. 

The primary goal of this reference model is to manage genomics data differently from PHI and CHI, by adding a second layer of 
authentication and using off-chain storage approaches that can accommodate larger volumes of data and higher off-chain computa
tional demands. Aggregate analysis of genomics data can lead to powerful insights. However, the size of these datasets are often much 
larger as a whole genome sequencing data is approximately 2.9GB for an individual. Further, as regulations, next generation 
sequencing technology, and best practices change around genomics data management, a flexible framework is required. Therefore, 
modular off-chain storage, wherein the data owner can choose the off-chain storage medium to house their genomic data will be 
employed. 

Here again, distributed storage such as IPFS can improve the scalability and availability of sharing, while a data owner could also 
store their data on their own servers/machines and share data upon explicit consent. All of the on-chain storage will be de-identified, 
while a verifiable off-chain computation approach will be used to prove a genomic dataset has not changed since generated. SMPC may 
also be used to perform computational analysis on the genomics data. This is beneficial for multiple reasons, as it enhances the security 
of any translations made to the genomic data as well as speeds up performance of retrieving and computing large genomic datasets that 

Fig. 3. Genomic data reference model 
Description: The Genomic Data Reference Model has the most extensive modularity and dynamic settings based on user preferences. Off-Chain 
storage can either be in distributed storage, personal storage, or through a third-party service. A second layer of authentication is added via a 
phylogenetic off-chain storage mapping, that enables researchers to request access to data from owners without disclosing any private information. 
A token-based system, along with a consumer-centric security design promotes sharing of genomic data. 
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are stored. 
A centralized off-chain database will store mappings of phylogenetic data associated with a de-identified code associated with a 

user. When specific types of phylogenetic features are queried, a TEE will perform a query on the centralized off-chain database and 
identify the codes associated with these features. This will invoke an explicit notification to the data owner regarding information 
about the querying party and details about the proposed usage of the data. The data owner can then decide whether or not to share 
their genomic data. The decisions and data transfer will be authenticated by a private key associated with the data owner. 

The genomics data reference model is the most dynamic and modular reference model. The genomics reference model was also 
designed with the ability to change over time based upon the ongoing regulatory guidance surrounding genomics data. Similar to the 
CHI model, the genomics data reference model was designed to optimize data sharing and transfer mediated by the individual, 
important due to the extremely impactful nature of genomics data to inform precision medicine and population health issues. Key 
OCBS features of this reference model include:  

• OCBS Feature Advantages:Distributed storage through IPFS which allows faster transfer while also enabling users to store their 
data on the storage modality of their choice while still enabling integration to the reference model. The model also utilizes SMPC 
and verifiable computation to ensure large genomics data maintains integrity and will use opt-in governance to share information.  

• Potential Challenges: Ensuring correctness and data loss resiliency is the biggest hurdle with the genomics reference model due to 
the large file size of WGS.  

• Security Considerations: Extra security is added to verify the owner approves sharing while maintaining anonymity. This is due to 
genomics data value having a high reliance on phylogenetic data. 

7. Evaluation framework 

7.1. Performance evaluation 

In order to appropriately assess the potential utility of real-world deployment of our hOCBS framework, we propose an evaluation 
framework adopted from the literature on health information systems. Specifically, we adopt Yusof et al.’s Human-Organization- 
Technology Fit (HOT-fit) framework for purposes of evaluating the potential performance of our reference models when compared 
to traditional health information systems (Yusof, Kuljis, Papazafeiropoulou, & Stergioulas, 2008). The HOT-fit framework is an 
evaluation framework built on the Information Systems Success Model (IS Model) and the IT Organizational Fit Model (IT Model) 
(Yusof, Paul, & Stergioulas, 2006). Holistically, the IT Model is an evaluation based on a dynamic equilibrium of organizational 
components including business strategy, organizational structure, management processes, and roles and skills. 

The HOT-fit Framework can be broken down into eight dimensions: System Quality, Information Quality, Service Quality, System 
Use, User Satisfaction, Organizational Structure, Organizational Environment and Net Benefits. Both the human and organizational 
aspects of the HOT-fit framework will be evaluated in the future through iterative testing, industry use cases, and semi-structured 
interviews with healthcare stakeholders and patient/consumer stakeholders who will utilize the user interface components of the 
reference model solutions, an approach that has been used in other blockchain prototype evaluations (Putz, Dietz, Empl, & Pernul, 
2021). Specific measures to evaluate performance of the system will include: (1) the response time and availability of data in the 
hOCBS system compared to other healthcare data storage and transfer systems; and (2) quantitative measurement of storage and 
computing costs of the system compared to current stand-alone information management systems. 

Anticipated outcomes include that the modular architecture of hOCBS’ and its use of different combinations of OCBS technology 
features over a distributed network to store and transfer data will reduce the friction caused by extra-organization data transfer in a 
way that can be quantitatively measured by the costs of system operation, reduction in healthcare administrative-related costs 
(currently estimated at 34.2% of national health expenditures in the U.S.), and increased speed and access to permissioned data. The 
reliability and flexibility of the data should also be improved due to a coherent system requiring data standardization and encouraging 
interoperability. The security of the data will be built into the system with cryptographic techniques such as hashing, PKI, SMPC, and 
verifiable computation. 

Relative computing costs are expected to be reduced due to lower requirements for systems integration based on reference models 
utilizing existing health information systems (e.g. PHI reference model will focus on integration with existing EHRs and patient 
portals) and decentralized platform agnostic applications and storage approaches (e.g. CHI and Genomics reference models using 
IPFS). In relation to analytical evaluation of transaction performance, we will also explore the use of novel approaches used on other 
blockchain frameworks (such as for permissioned blockchains on Hyperledger Fabric), including models developed to calculate 
transaction latency based on different network configurations for performance bottlenecks (Xu et al., 2021). Other non-technical 
components of the HOT-fit model will also be important to incorporate into this evaluation, including user experience evaluations 
to continuously iterate on the user interface and functionality of the system. Additionally, verifying the solution is privacy compliant 
will also likely require other evaluations, such as a HIPAA Security Risk Assessment or a GDPR Data Protection Impact Assessment 
(Campanile, et al., 2021). 

7.2. Blockchain platform choice and evaluation 

A variety of factors were considered when choosing the blockchain protocol and smart contract infrastructure that we will use to 
implement our proposed hOCBS framework, which included purpose, mode of accessibility, programming language, consensus 
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mechanism, ecosystem, and maturity. Ethereum was chosen as the blockchain protocol for future proof-of-concept (POC) development 
of our hOCBS framework due to its ability to excel in a variety of aspects of our decision framework. First, Ethereum has the largest and 
most mature smart contract blockchain ecosystem along with sophisticated tooling to enable developers to build complex and robust 
applications (Hu et al., 2021). Furthermore, Ethereum has an extensive network of experienced developers, allowing for robust 
development and maintenance of production services. The core development team along with its massive developer community has 
continued to make improvements in functionality, which is a great sign for long-term success of this open source blockchain platform. 

Ethereum is also a very accessible software, and due to its open-source nature, it is relatively easy to create private Ethereum 
blockchains that are not connected to the public Mainnet. Solidity, the most popular programming language used to write Ethereum 
Smart contracts is a developer friendly language based off principles of many traditional programming languages such as JavaScript, 
Python, and C++. This enhances development speeds and enables application development for faster integration with other infor
mation systems as we propose. Some may argue that Ethereum was created for public blockchain applications while Hyperledger was 
designed specifically for more business and enterprise solutions. However, Ethereum has multiple commercial healthcare applications 
(e.g. projects supported by Consensys Health), enabling collaboration and re-usable code and healthcare specific smart contract 
functionality. Overall, Ethereum was determined to be the blockchain protocol that would enable more rapid development of POCs 
and offers the most mature and developed set of tooling to implement our proposed hOCBS system. 

The inherent benefits of blockchain technology are improvements to both the system quality and information quality as previously 
described in this paper. Aligning with the HOT-fit evaluation model, Ethereum currently offers application features that can enable 
improvements in service quality, user satisfaction, system use, User Satisfaction, Organizational Structure, Organizational Environ
ment and Net Benefits over other platforms. For example, projects such as chainlink, Uniswap, and the Raiden Network enable 
integration not currently supported by other protocols. However, we will also assess if other existing blockchain platforms (such as 
Hyperledger Fabric that is used for business blockchain development) can offer greater utility in scaling up a specific hOCBS reference 
model for business-to-business transactions, improve integration with other off-chain systems, or provide more modular architecture 
needed for management of specific types of healthcare data.  The distributed technology space is consistently changing at a high- 
velocity and continuous evaluation will be conducted to ensure the best protocol is used for performance optimization. 

8. Conclusion 

This study sought to better understand and characterize OCBS’ for the purposes of developing a privacy-preserving hybrid on-chain 
and off-chain blockchain framework to better manage different forms of healthcare data. We conclude that the relative complexity, 
regulatory requirements, and multiparty nature of modern health information systems would benefit from distributed governance 
facilitated by blockchain OCBS systems. The study proposes the hOCBS framework, which includes features that enable integration 
with off-chain storage in a secure, scalable, and privacy and patient-centric manner. Underpinning the conceptualization of the hOCBS 
is the fact that healthcare could significantly benefit from a privacy-by-design infrastructure that liberates current data silos currently 
not governed by the patient/consumer (H. A, K, D, SA, & A, 2020; Hylock, 2019). Some of the primary benefits for this architecture are 
enabling greater sharing and processing of healthcare data, reducing storage requirements to facilitate scale-up of health blockchain 
information systems, and developing dynamic privacy-persevering mechanisms, such as preserving anonymity and enabling dynamic 
consent management. 

Conceptualization of this framework also considered key off-chain and on-chain storage tradeoffs, the regulatory and legal con
siderations of different types of healthcare data, and relevant storage and computational features in its adaptive design that are specific 
to PHI, CHI, and genomic data. Adaptability of the system was one of the core principles of the FIP framework used to conceptualize 
hOCBS, with a focus on ensuring modularity of blockchain design for healthcare. Specifically, a blockchain privacy-preserving 
framework needs to leverage the utility of different approaches for on-chain and off-chain storage while concomitantly adapting to 
different needs of data sharing, storage, access, and computing execution in order to ensure such data remains useful and beneficial for 
healthcare processes and parties involved. 

Our framework also places special emphasis on a single stakeholder in this network; the patient or consumer who is the rightful 
subject of the data asset and associated digital identity. This is meant to align technology with patient-centered care approaches, 
defined as care provision that is consistent with the values, needs, and desires of patients and is only achieved when clinicians involve 
patients in healthcare discussions and decisions (Constand, MacDermid, Bello-Haas, & Law, 2014). Our framework makes a broader 
push for patient-centered values in a distributed OCBS governance system for healthcare data, features we argue are currently lacking 
in traditional healthcare information management systems (Hylock, 2019). We adopt this approach as any privacy-preserving system 
also needs to consider concepts of self-sovereign identity, which recognizes that users should control and manage elements of their own 
digital identity. 

However, our framework also recognizes that in addition to control of identity, mechanisms need to be in place that ensure the right 
to privacy and anonymity, particularly given the sensitive and personal nature of healthcare data (Bernabe, Canovas, 
Hernandez-Ramos, Moreno, & Skarmeta, 2019). Though sharing of data is critical to improving the quality and performance of 
healthcare (both at the individual and population level), this invaluable digital asset should be managed and controlled by the 
patient/consumer, with technology facilitating this stewardship (Yue, Wang, Jin, Li, & Jiang, 2016). In this sense, blockchain tech
nology provides a secure mechanism to track timestamped specified rights attributed to individual healthcare data all governed by 
smart contracts, where personalized access rules can be set by the individual themselves underpinned by regulatory frameworks meant 
to protect them. 

It is our belief that a revolution to transform the utility of healthcare data will only occur when privacy protections are explicitly 
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linked to an individual’s digital identity in a privacy-preserving fashion, and that blockchain systems using hybrid off-chain design 
approaches represent the optimal way to achieve this goal by establishing enhanced trust, transparency, and sovereignty in a 
distributed network. We also believe that an individual’s healthcare data should be consistent and available across institutional 
boundaries, and the terms of its access strictly dictated by said individual. Without such principles purposefully imbedded in tech
nology, data governance, and privacy policy, healthcare data will remain siloed, not able to reach its full potential to improve the 
health of all. 
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Sherif, El, R., Pluye, P., Thoër, C., & Rodriguez, C (2018). Reducing Negative Outcomes of Online Consumer Health Information: Qualitative Interpretive Study with 

Clinicians, Librarians, and Consumers. Journal of Medical Internet Research, 20(5), e169. https://doi.org/10.2196/jmir.9326. 
Shi, S., He, D., Li, L., Kumar, N., Khan, M. K., & Choo, K.-K. R. (2020). Applications of blockchain in ensuring the security and privacy of electronic health record 

systems: A survey. Computers & Security, 97, Article 101966. https://doi.org/10.1016/j.cose.2020.101966. 
Smith, S. W., & Koppel, R. (2014). Healthcare information technology’s relativity problems: a typology of how patients‘ physical reality, clinicians’ mental models, 

and healthcare information technology differ. Journal of the American Medical Informatics Association, 21(1), 117–131. https://doi.org/10.1136/amiajnl-2012- 
001419. 

Smith, S., & Duman, M. (2009). The state of consumer health information: an overview. Health Information and Libraries Journal, 26(4), 260–278. https://doi.org/ 
10.1111/j.1471-1842.2009.00870.x. 

Thiebes, S., Schlesner, M., Brors, B., & Sunyaev, A. (2020). Distributed Ledger Technology in genomics: a call for Europe. European Journal of Human Genetics, 28(2), 
139–140. https://doi.org/10.1038/s41431-019-0512-4. 

Treiblmaier, H., & Beck, R. (2019). Business transformation through blockchain. Palgrave Macmillan.  
van Steen, M., & Tanenbaum, A. S. (2016). A brief introduction to distributed systems. Computing, 98(10), 967–1009. https://doi.org/10.1007/s00607-016-0508-7. 
Vazirani, A. A. (2019). Implementing Blockchains for Efficient Health Care: Systematic Review. Journal of Medical Internet Research, 21(2), e12439. https://doi.org/ 

10.2196/12439. 
Warren, W., & Bandeali, A. (2017). 0x: An open protocol for decentralized exchange on the Ethereum blockchain. n.d. 0x.org 
WHO. (2020). Global Health Observatory (GHO) Data: Health Financing. World Health Organization. http://www.who.int/gho/health_financing/en/.  
Xiao, Y., Zhang, N., Lou, W., & Hou, Y. T. (2019). Privacy Guard: Enforcing Private Data Usage Control with Blockchain and Attested Off-chain Contract Execution. April 15 

(pp. 610–629). European Symposium on Research in Computer Security 2020. 
Xu, X., Sun, G., Luo, L., Cao, H., Yu, H., & Vasilakos, A. V. (2021). Latency performance modeling and analysis for hyperledger fabric blockchain network. Information 

Processing & Management, 58(1), Article 102436. https://doi.org/10.1016/j.ipm.2020.102436. 
Xu, X., Weber, I., & Staples, M. (2019). Architecture for Blockchain Applications. Architecture for Blockchain Applications (pp. 113–148). Springer International 

Publishing. https://doi.org/10.1007/978-3-030-03035-3_7. 
Yaga, D., Mell, P., Roby, N., & Scarfone, K. (2019, June 26). Blockchain Technology Overview. Gaithersburg, MD: National Institute of Standards and Technology. 

https://doi.org/10.6028/NIST.IR.8202. arXiv.org.  
Yeager, V. A., Vest, J. R., Walker, D. M., Diana, M. L., & Menachemi, N. (2017). Challenges to Conducting Health Information Exchange Research and Evaluation: 

Reflections and Recommendations for Examining the Value of HIE. eGEMs (Generating Evidence & Methods to Improve Patient Outcomes), 5(1), 15. https://doi.org/ 
10.5334/egems.217. 

Yu, B., Li, X., & He, Z. (2020). Virtual Block Group: A Scalable Blockchain Model with Partial Node Storage and Distributed Hash Table. n.d.. 63 pp. 1524–1536) The 
Computer Journal 

Yue, X., Wang, H., Jin, D., Li, M., & Jiang, W. (2016). Healthcare Data Gateways: Found Healthcare Intelligence on Blockchain with Novel Privacy Risk Control. 
Journal of Medical Systems, 40(10), 218. https://doi.org/10.1007/s10916-016-0574-6. 

Yusof, MM, Kuljis, J, Papazafeiropoulou, A, & Stergioulas, LK. (2008). An evaluation framework for Health Information Systems: human, organization and 
technology-fit factors (HOT-fit). International Journal of Medical Informatics, 77(6), 386–398. Jun10.1016/j.ijmedinf.2007.08.011. Epub 2007 Oct 26. PMID: 
17964851. 

K. Miyachi and T.K. Mackey                                                                                                                                                                                        

Downloaded from https://iranpaper.ir

http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0057
https://doi.org/10.1007/978-981-13-8715-9_33
https://doi.org/10.1007/978-981-13-8715-9_33
https://doi.org/10.1109/EMBC.2019.8856550
https://doi.org/10.1186/s12916-019-1296-7
https://doi.org/10.1177/1460458219866350
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0062
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0062
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0063
https://doi.org/10.1186/s13059-019-1724-1
https://doi.org/10.1038/s41591-018-0320-3
https://doi.org/10.2196/12426
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0067
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0067
https://doi.org/10.1101/gr.207464.116
https://doi.org/10.1101/gr.207464.116
https://doi.org/10.1109/ACCESS.2019.2961404
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0070
https://doi.org/10.1038/d41586-020-00082-9
https://doi.org/10.1007/s10916-018-1025-3
https://doi.org/10.1007/s10916-018-1025-3
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0073
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0074
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0074
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0075
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0075
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0076
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0077
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0077
https://doi.org/10.1038/nrg2857
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0079
https://doi.org/10.2196/jmir.9326
https://doi.org/10.1016/j.cose.2020.101966
https://doi.org/10.1136/amiajnl-2012-001419
https://doi.org/10.1136/amiajnl-2012-001419
https://doi.org/10.1111/j.1471-1842.2009.00870.x
https://doi.org/10.1111/j.1471-1842.2009.00870.x
https://doi.org/10.1038/s41431-019-0512-4
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0085
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.2196/12439
https://doi.org/10.2196/12439
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0088
http://www.who.int/gho/health_financing/en/
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0090
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0090
https://doi.org/10.1016/j.ipm.2020.102436
https://doi.org/10.1007/978-3-030-03035-3_7
https://doi.org/10.6028/NIST.IR.8202
http://arXiv.org
https://doi.org/10.5334/egems.217
https://doi.org/10.5334/egems.217
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0095
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0095
https://doi.org/10.1007/s10916-016-0574-6
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0097
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0097
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0097


Information Processing and Management 58 (2021) 102535

24

Yusof, M. M., Paul, R. J., & Stergioulas, L. K. (2006). Towards a framework for health information systems evaluation. n.d. Proceedings of the 39th Hawaii International 
Conference on System Sciences 

Zhao, Q., Chen, S., Liu, Z., Baker, T., & Zhang, Y. (2020). Blockchain-based privacy-preserving remote data integrity checking scheme for IoT information systems. 
Information Processing & Management, 57(6), Article 102355. https://doi.org/10.1016/j.ipm.2020.102355. 

Zhuang, Y., Sheets, L., Shae, Z., Tsai, J. J. P., & Shyu, C. R. (2018). Applying Blockchain Technology for Health Information Exchange and Persistent Monitoring for 
Clinical Trials. In AMIA Annu Symp Proc (pp. 1167–1175). AMIA.  

K. Miyachi and T.K. Mackey                                                                                                                                                                                        

Downloaded from https://iranpaper.ir

http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0098
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0098
https://doi.org/10.1016/j.ipm.2020.102355
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0100
http://refhub.elsevier.com/S0306-4573(21)00043-1/sbref0100

	hOCBS: A privacy-preserving blockchain framework for healthcare data leveraging an on-chain and off-chain system design
	1 Introduction
	2 Research objective
	3 Related work
	3.1 Limitations of current healthcare information management systems
	3.2 Components of blockchain systems
	3.3 Decentralized data storage concepts
	3.4 Cryptography concepts

	4 Characteristics of OCBS systems
	4.1 Central tenets of OCBS
	4.2 OCBS design constructs
	4.2.1 Off-chain data storage
	4.2.2 Off-chain computation


	5 Design characteristics of healthcare blockchains
	5.1 Healthcare-centric data governance
	5.2 Blockchain system design for healthcare
	5.3 Healthcare data permission structures

	6 hOCBS health data framework reference models
	6.1 Reference model framework design
	6.2 hOCBS blockchain application and features layers
	6.3 hOCBS healthcare data reference models
	6.3.1 Reference model 1: protected health information

	6.2 Reference model 2: consumer health information
	6.3 Reference model 3: genomics data

	7 Evaluation framework
	7.1 Performance evaluation
	7.2 Blockchain platform choice and evaluation

	8 Conclusion
	Declarations
	Data availability statement
	Author statement
	Acknowledgments
	References


