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There has been an upsurge recently in investigating machine learning techniques
for activity recognition (AR) problems as they have been very effective in extract-
ing and learning knowledge from the activity datasets. The technique ranges from
heuristically derived hand-crafted feature-based traditional machine learning algo-
rithms to the recently developed hierarchically self-evolving feature-based deep
learning algorithms. AR continues to remain a challenging problem in uncon-
trolled smart environments despite the amount of work contributed by the
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researcher in this field. The complex, volatile, and chaotic nature of the activity
data presents numerous challenges that influence the performance of the AR sys-
tems in the wild. In this article, we present a comprehensive overview of recent
machine learning and data mining techniques generally employed for AR and the
underpinning problems and challenges associated with the existing systems. We
also articulate the recent advances and state-of-the-art techniques in this domain in
an attempt to identify the possible directions for future AR research.
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1 | INTRODUCTION

Extracting knowledge from the raw data, in general, has provided useful information in various fields. Human activity is
unique, as the information inferred from raw activity data has been proved to be critical in functional and behavioral health
monitoring (activities of daily living [ADL], sleeping, eating, etc.), game console designing, personal fitness tracking, and
sports analytics to name a few. Data mining and machine learning approaches have proven to be effective than the classical
mathematics and statistical techniques in extracting knowledge and discovering, learning, and inferring activity from data.
Human activity recognition (HAR) refers to the automatic detection of various physical activities performed by people in
their daily lives. A HAR system helps recognize the activities performed by a person and provide informative feedback for
intervention. Ambulation activities such as walking, jogging, walking upstairs, and walking downstairs are performed on
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daily basis (Lara & Labrador, 2013). Fitness-related activities are popular among the young adults and also allow them to
keep track of their fitness on a daily basis. Functional activities such as taking telephone calls, sweeping, preparing food, tak-
ing out the trash, folding clothes, combing hair, washing hands, brushing teeth, wearing jackets, shoes, answering the door,
and writing a check are the activities that every person does regularly. Inferring and assessing such functional and behavioral
activities, help decipher the personal health and wellness (Akl, Taati, & Mihailidis, 2015; Alam, Roy, Holmes, Gangopad-
hyay, & Galik, 2016). Table 1 describes the list of existing works and the datasets, along with the specific activities and the
application areas pertaining to the proposed HAR systems.

In activity recognition (AR), an activity can be captured using a variety of sensors with different modalities such as video
cameras, wearable physiological and motion sensors, RADAR (Khan et al., 2016), acoustic sensors (Khan, Hossain, & Roy,
2015; Pathak, Khan, & Roy, 2015), Echo (Amazon Echo, 2018), everyday objects (e.g., HAPIfork , 2018), food scale
(SITU-The Smart Food Nutrition Scale, 2018), and device-free sensing (e.g., Wi-Fi, see Ma, Wang, Zhang, Wang, & Wang,
2016), and so on. In addition, ambient sensors such as infrared motion detectors and magnetic sensors have also been used
extensively for AR (Cook, Feuz, & Krishnan, 2013). Although video camera-based HAR systems are popular for different
security applications, they pose numerous challenges related to privacy and space constraints in smart environments. For
example, if the video camera is placed in a common area, like in a corner of a room to capture the movements of a subject
within its field of view, it may also capture the movements of people who are not the subject of interest such as the care-
givers or the family members. These infringe their privacy and raises security concerns over collecting such videos. How-
ever, the most commonly used set of sensors, that is, the wearable sensors help eliminate the problem of privacy and security
concerns for activity monitoring (Roy, Misra, & Cook, 2013). Wearable sensors such as accelerometer and gyroscope are
worn on various parts of the body, and they provide three-axis acceleration and orientation, respectively. Despite the fact of
eliminating privacy and security concerns, the wearable sensors also pose a set of unique challenges such as intraclass vari-
ability, interclass similarity, class imbalance, finding the precise start and end time of each activity (San et al., 2017) hetero-
geneities across the sensing devices, and device positioning. Experiments to record data are usually conducted with multiple
participants, and the data captured for the same activity set from different participants may not be of similar nature. There-
fore, the intraclass variations become prominent. Moreover, the data pertaining to two different activities (such as running
and jogging) could be of similar nature, which poses interclass variability. Class imbalance may occur when an activity is
being performed for a longer duration than others, for example, a walking activity may be performed by the participant for a
longer duration than a jogging activity. It is also difficult to find the precise point of start and end time of an activity episode
given that the sensors usually have higher sampling frequency (hundreds of samples per second). Despite these challenges,
wearable sensors are used in the majority of the studies and researchers have been designing the appropriate methodologies
and experiments to mitigate these issues. In this study, we discuss the wearable sensors-based HAR systems in the context of
new and old machine learning and data mining methodologies needed to solve some of the underpinning challenges as men-
tioned previously.

HAR remains as one of the most challenging domain for the researcher owing to the complexity involved in recognition
of activities and the number of inhabitants present. Initial research on HAR has considered HAR to be a conventional pattern
recognition problem (Wang, Chen, Hao, Peng, & Hu, 2017). Traditional techniques such as Support Vector Machine (SVM),
Hidden Markov models have been extensively used in the AR systems; however, there is a recent shift in the use of machine
learning and data mining techniques since the popularity of deep learning. The traditional method (shallow learning) requires
feature engineering from the data, which is heuristic driven and heavily dependent on human knowledge of the domain
(Yang, Nguyen, San, Li, & Krishnaswamy, 2015). This restricts the model developed for one domain to extend to another.
In addition, it is also suitable for recognizing low-level activities such as ADLs; however, it is nearly impossible to capture
complex movements, which involves sequence of several microactivities using shallow learning (Faridee et al., 2018; Yang,
2009). However, deep learning methods learn the features directly from the data hierarchically which eliminated the problem
of hand-crafted feature approximations. In addition, deep learning such as convolutional neural networks (CNNs) have been
successful in learning complex activities due to its properties of local dependencies and scale invariance which is elaborated
by Wang, Chen, Hao, et al. (2017). HAR poses critical challenges associated with annotation of the ground truth, recognition
of activity in presence of multiple users, heterogeneity of sensing devices, faulty sensor values, and redeploying the activity
model from one domain to another. Traditionally, it is required to feed the activity model with a huge set of labeled data
using a supervised machine learning algorithm so that it can learn the hidden patterns during the training phase. Nevertheless,
labeling the ground truth for a sensor data is cumbersome and always not feasible (Hossain, Khan, & Roy, 2016). One of the
ways to tackle this challenge is to use active learning, where the model can actively query the user for labels (Settles, 2010).
Moreover, processing huge datasets incurs high computational costs and increases the training time of the model (Cook
et al., 2013). To resolve this issue, researcher started investigating transfer learning, which allows transferring the knowledge
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TABLE 1 Activitles, applications, and associated literature/datasets

Dataset/literature

Activities

Applications

USC-HAD (Zhang & Sawchuk, 2012)

MHealth (Banos et al., 2014)

OPPORTUNITY (Roggen et al.,
2009)

PAMAP?2 (Reiss & Stricker, 2012)

Daily And Sports (Barshan &
Yiiksek, 2013)

HAR (Anguita, Ghio, Oneto, Parra, &
Reyes-Ortiz, 2013)

Bicycle repair (Ogris, Stiefmeier,
Junker, Lukowicz, & Troster,
2005)

Car maintenance (Stiefmeier, Roggen,
Ogris, Lukowicz, & Troster, 2008)

WISDM (Kwapisz, Weiss, & Moore,
2011)

Smart phone accelerometer (Do,
Loke, & Liu, 2012)

Kyotol (Bagaveyev & Cook, 2014)

Daphnet Gait (Bachlin et al., 2009)
Skoda (Zappi et al., 2008)

Transportation & Physical
(Bhattacharya & Lane, 2016)

Indoor/Outdoor (Radu, Katsikouli,
Sarkar, & Marina, 2014)

Exercise activity (Cheng et al., 2013)

Daily-life activities (Huynh, Fritz, &
Schiele, 2008; Stikic, Larlus,
Ebert, & Schiele, 2011)

HappyFeet (Faridee, Ramasamy
Ramamurthy, Hossain, & Roy,
2018)

De, Bharti, Das, and Chellappan
(2015)

Dernbach, Das, Krishnan, Thomas,
and Cook (2012)

Pham and Olivier (2009)

Walking (forward, left, right, upstairs, downstairs), running forward,
jumping, sitting, standing, sleeping, elevator up, and elevator down

Standing still, sitting and relaxing, lying down, walking, climbing stairs,
waist bends forward, frontal elevation of arms, knees bending
(crouching), cycling, jogging, running, and jump front and back

Lying on the deckchair, get up, groom, relax, prepare coffee, drink coffee,
prepare sandwich, eat sandwich, cleanup, and lie on the deckchair

Lying, sitting, standing, walking, running, cycling, nordic walking,
watching TV, computer work, car driving, ascending stairs, descending
stairs, vacuum cleaning, ironing, folding laundry, house cleaning,
playing soccer, and rope jumping

Sitting, standing, lying on back and on right side, ascending and
descending stairs, standing in an elevator still, moving around in an
elevator, walking in a parking lot, walking on a treadmill with a speed
of 4 km/hr (in flat and 15° inclined positions), running on a treadmill
with a speed of 8 km/hr, exercising on a stepper, exercising on a cross
trainer, cycling on an exercise bike in horizontal and vertical positions,
rowing, jumping, and playing basketball

Walking (straight, upstairs, downstairs), sitting, standing, andlying

Pumping wheel, screw/unscrew, turn pedals, turn pedals and apply break,
assembling/disassembling wheel/seat, test bell, test light generator, turn
wheel, and take/place item from/on carrier

Open/close trunk, engine hood, check fuel filter cap, and other car
maintenance procedures

Walking (front, upstairs, downstairs), jogging, sitting, and standing

Walking, running, driving, and stay still

Make a phone call, wash hands, cook, eat, and clean

ADLs

Ten manipulative gestures performed in a car maintenance scenario

Walking, running, standing and a transportation mode (motorized)

Daily activities indoors and outdoors

Bench dips, squat upright row, dumbbells (DB) side raises, DB shoulder
press, DB curl, triceps extension, chest press, push up, DB fly, and bent-
over row

Sitting, standing, walking, posture upright, posture kneeling, hands on
table, hand above chest, wrist movement, arm pendulum swing,
translation motion, cyclic motion, intense motion, washing related, and
meal related

Ten different dance microsteps involving subtle movements of limbs

Walk indoor, run indoor, use refrigerator, clean utensil, cooking, sit and
eat, use bathroom sink, indoor to outdoor, outdoor to indoor, walk
(upstairs, downstairs), just stand, lying on bed, sit on bed, lying on
floor, sit on floor, lying on sofa, sit on sofa, and sit on toilet

Cleaning, cooking, medication, sweeping, washing hands, and watering
plants

Chopping, peeling, slicing, dicing, coring, spreading, eating, stitring,
scooping, scraping, and shaving

Smart home activity recognition

Smart home activity recognition

Smart home activity recognition,
functional, and behavioral
health assessment

Smart home activity recognition

Sports analytics

Smart home activity recognition

Maintenance activity tracking,
billing automation, and
maintenance record
documentation

Maintenance activity tracking,
billing automation, and
maintenance record
documentation

Smart home activity recognition

Smart activity detection for home
automation and fitness tracking

Smart home activity recognition,
and functional and behavioral
health assessments

Smart home activity recognition

Maintenance activity tracking,
billing automation, and
maintenance record
documentation

Smart home activity recognition
and smart home automation

Smart home automation and smart
home activity recognition

Fitness tracking and food
suggestion based on exercise

Smart home activity recognition

Activity monitoring and tracking
in teaching environments

Remote monitoring of patients
(Alzheimer's disease, bulimia,
or anorexia)

Smart home activity recognition
Smart home activity recognition

and kitchen activity recognition

(Continues)
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TABLE 1 (Continued)
Dataset/literature Activities Applications
Center for Advanced Studies in Fill medication dispenser, watch Digital Video Disc (DVD), water plants, Smart home activity recognition
Adaptive Systems (CASAS) converse on phone, write birthday card, prepare meal, sweep and dust, and functional and behavioral
(Singla, Cook, & Schmitter- and select an outfit health assessments
Edgecombe, 2009)
SmartFaber (Riboni, Sztyler, Taking medicines, cooking, and eating Smart home activity recognition
Civitarese, & Stuckenschmidt, and cognitive assessment
2016)

learned from one model to another. In effect, transferring knowledge from one model to another allows the new model to
train with less amount of training samples, and hence reduces the computational costs as well.

In this paper, we provide a comprehensive review of recent machine learning algorithms in AR such as deep learning,
transfer learning, and active learning. We discuss the state-of-the-art techniques and investigate the gaps that can help guide
the future research directions. This paper is organized as follows. Section 2 discusses about transfer learning in AR, followed
by active learning in AR in Section 3. Section 4 discusses about the advances in deep learning in AR, Section 5 discusses
about semantics-based techniques in AR, and Section 6 compares the above techniques followed by future research direc-
tions and conclusion in Section 7 and 8, respectively.

2 | TRANSFER LEARNING IN AR

Transfer learning can be defined as the ability to extend what has been learned in one context to new contexts (Byrnes, 2001).
Woodworth and Thorndike (1901) first explored how individuals transfer learned concepts between different contexts that share
common features. Barnett and Ceci (2002) provided taxonomy of features that influences transfer learning in humans. In the
field of machine learning, transfer learning is interchangeably used with different names such as learning to learn, life-long
learning, knowledge transfer, inductive transfer, context-sensitive learning, and meta learning (Cook et al., 2013).

Transfer learning lets us transfer knowledge from one domain to another assuming that there exists some relationship
between the source and target areas which allows for the successful transfer of knowledge from the source to the target.
Figure 1 illustrates three different scenarios where transfer learning can be applied. In Scenario-1, the activity is cycling,
however, the gender of the person performing the activity is different. The data acquired for the same activity is different
when performed by different persons. In Scenario-2, the device that is used to capture the activity data is different, that is,
smart phone and smart watch. In Scenario-3, the ambiance where the activity is performed is different, indoors and outdoors.
The information extracted by a model in the source domain can help train the model in the target domain with less amount
of annotated data. Figure 2 represents the effect of transfer learning, where a reduced amount of data points might be
required to train the model in target domain because of using information from the previously trained model. This

Source domain Target domain

(Scenarion-1 Scenarion-2 Scenarion-3 \ r Scenarion-1 Scenarion-2 Scenarion-3 \

N\ T&

S 1
Capture data Capture data
—

I S S

Train model A — Tra — Train model B
knowledge

S —

|

FIGURE 1 Transfer learning illustration
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Transfer learning

Model A

FIGURE 2  Effect of transfer learning

dramatically reduces the computational costs and the annotating efforts. The various scenarios where transfer learning can be
applied are explained comprehensively by Cook et al. (2013). The authors have elaborated on the different modalities, data
labeling process and the taxonomy of type of knowledge transferred in transfer learning-based AR. Khan and Roy (2017)
have investigated transferring knowledge among the models having different probability distributions. The authors have eval-
uated their AR models using random forest, decision tree, and transfer boost algorithms and have used accuracy as an evalua-
tion metric to assess the performance of the model. The authors tested this methodology on HAR (Anguita et al., 2013),
Daily And Sports (Barshan & Yiiksek, 2013), MHealth (Banos et al., 2014) datasets and have proved that a HAR model can
be trained using a reduced number of instances. The probability distribution of the accelerometer data varies heavily among
different users, and the performance of a model will degrade if the model is trained for a person and tested on another. In an
attempt to address this problem, Deng, Zheng, and Wang (2014) have proposed a cross-person AR model that integrates
transfer learning and reduced kernel extreme learning machine (RKELM). RKELM is popular and is effective when the data-
set is extremely huge. It randomly selects a subset of the dataset and analytically computes the weights of the classifier,
therefore reduces the computational time and also provides a good approximation of the AR model to that generated from
actual data. The methodology was assessed on ADL dataset. Wang, Chen, Hu, Peng, and Yu (2018), have introduced a new
framework to transfer the labeled activity data from source domain to target domain. The model, stratified transfer learning,
transforms source and target domain into the same subspace where the data distribution is comparable followed by cross-
domain AR and assessed on OPPORTUNITY (Roggen et al., 2009), PAMAP2 (Reiss & Stricker, 2012), and Daily And
Sports (Barshan & Yiiksek, 2013) datasets.

A scenario where the deployment context may be different from the learning context is inevitable. An illustration of such
scenario could be when the jogging activity is performed on a treadmill and the same on the streets. The former is performed
in a controlled setting where the speed is adjusted to a constant speed, and there may not be any obstructions, however, the
latter could suffer from many obstructions and variable speed as they cannot be controlled by us. Diethe, Twomey, and Flach
(2016) have proposed a hierarchical Bayesian transfer learning model and have also addressed the problem of accurately
labeling the data using active learning. The authors have evaluated the model using HAR using smart phone dataset
(Anguita et al., 2013) as their source and USC-HAD dataset (Zhang & Sawchuk, 2012) as target. Ying, Lin, Tseng, and
Hsieh (2015) have proposed a transfer learning model on high-variety data (data from different sources) which is validated
using statistical hypothesis Kolmogorov—Smirnov and y* goodness of fit test, and evaluated on Walk8, HAR (Anguita et al.,
2013), and DaSA (Altun, Barshan, & Tuncgel, 2010) datasets. Rokni and Ghasemzadeh (2017) have proposed an approach
for autonomous retraining of machine learning algorithms without any new labeled training data. The new data considered in
this study is from another sensor that is added to the system, and the machine learning algorithms used in this study are deci-
sion trees, k-nearest neighborhood, and SVM. The model was evaluated on OPPORTUNITY (Roggen et al., 2009) dataset
and DaSA (Altun et al., 2010) dataset.

AR is highly dependent on numerous factors such as the type of sensor used, the environmental setting, the experimental
settings, and so on. If a model is trained using one combination of the above settings, that model can be evaluated for a dif-
ferent combination of settings using transfer learning. Transfer learning is still an emerging topic, and researchers are still
exploiting the field to discover the applicability of using it for large scale cross-domain HAR.

3 | ACTIVE LEARNING IN AR

Active learning in AR is a recently emerging field. The active learning algorithms aim at mitigating the learning complexity
and cost. It helps to select an optimal number of informative unlabeled data samples and query the annotator for the labels. It
minimizes labeling effort and elevates the prediction accuracy (Hossain et al., 2016). Figure 3 shows an illustration of an
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New labeled data Selected queries

Human annotator FIGURE 3  Active learning cycle

active learning enabled model. Active learning has been popular in other fields, however, in AR, only a few researchers have
been working on active learning. Alemdar, van Kasteren, and Ersoy (2017) has investigated three different techniques (least
confidence method, margin sampling, and entropy-based) to find the most informative unlabeled data samples and have
proved that the annotation effort has been reduced by a factor of 2—4 times. Hossain et al. (2016) have proposed a dynamic
k-means clustering algorithm-based active learning approach, and have used uncertainty sampling to find the most informa-
tive unlabeled data samples, and validated the proposed approach using real-life data traces. The authors have also proposed
a data representation technique for crowd sourcing the labeling, and they have discussed its repercussion on active learning.
Bannach et al. (2017) have investigated the self-adaptability of AR model when a new sensor is introduced to the system
and have evaluated their model using a bicycle repair (Ogris et al., 2005), a car maintenance (Stiefmeier et al., 2008), and
OPPORTUNITY (Roggen et al., 2009) datasets. Abdallah, Gaber, Srinivasan, and Krishnaswamy (2015) have proposed a
personalized and adaptive framework for AR that incrementally helps learn the activity model from high-speed, multidimen-
sional streaming data. It recognized personalized user's activities using active learning, employed ensemble classifier to train
the model, and evaluated the model using OPPORTUNITY (Roggen et al., 2009), WISDM (Kwapisz et al., 2011), and
smartphone accelerometer datasets (Do et al., 2012). Bagaveyev and Cook (2014) have investigated two different approaches
to select unlabeled data for annotations using expected entropy and query by committee for active learning, used random
forest-based classifier for activity inference, and validated the results on an in house dataset, Kyotol. Active learning in AR
is still emerging field and has plenty of scope in the future.

4 | DEEP LEARNING IN AR

In HAR systems designed using shallow learning, the frequently used feature heuristics are dependent on the domain knowl-
edge of the researcher and the performance of the machine learning techniques is highly dependent on the data representation
(Bengio, 2013). The commonly used features are time domain features (mean, variance, time sequences; Bulling, Blanke, &
Schiele, 2014), frequency domain features (Fourier transform, entropy), and other transformations (wavelet transform;
Huynh & Schiele, 2005). However, in deep learning, the features are learned from the raw data hierarchically by performing
some nonlinear transformation. The nonlinear transformation determines the type of deep learning network. Deep learning
has been popular in the last few years, and numerous works have been done using deep learning in AR. The popular deep
learning techniques in AR include deep neural network (DNN), CNNs, recurrent neural networks (RNN), long- short-term
memory (LSTM) RNN networks. Wang, Chen, Hao, et al. (2017) has comprehensively described the deep learning tech-
niques and the effect of applying deep learning to time series activity signals. Hammerla, Halloran, and Ploetz (2016) have
explored DNN, CNN, and RNN for activity dataset and concluded that the RNN performed better than the state-of-the-art
results for OPPORTUNITY (Roggen et al., 2009), PAMAP2 (Reiss & Stricker, 2012), and Daphnet Gait (Bachlin et al.,
2009) dataset. The authors also found that the RNN outperformed CNN for activities which are of short duration. Ordénez
and Roggen (2016) have proposed a novel deep network comprising of convolutional and LSTM layers. The authors opti-
mized the hyperparameters of their network and fused the various sensor modalities such as accelerometer, gyroscope, and
magnetometer in different combinations and compared the results by evaluating them on OPPORTUNITY (Roggen et al.,
2009) and Skoda (Zappi et al., 2008) datasets. Ronao and Cho (2016) have proposed multilayer CNN model with alternating
convolutional and pooling layers and showed that their proposed model outperforms the state-of-the-art accuracy for ADLs
which were recorded by the authors from 30 different users. Ravi, Wong, Lo, and Yang (2016) have used short-term Fourier
transform of the accelerometer data as an input to the proposed CNN network and have achieved accuracy close to the state-
of-the-art results. Bhattacharya and Lane (2016) have designed and developed a restricted Boltzmann machine (RBM)-based
AR model for smart watches and have proved that the model does not have any hardware constraints. The authors have also
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validated their accuracy with real-life datasets such as OPPORTUNITY (Roggen et al., 2009), Transportation & Physical
(Bhattacharya & Lane, 2016), and Indoor/Outdoor (Radu et al., 2014) datasets with different state-of-the-art classifiers for
each of the activities.

The most recent contributions toward deep learning (Panwar et al., 2017) postulated a novel technique of using
ensembles of deep LSTM networks using wearable sensing data. This is the only work using an ensemble of deep
learning techniques so it has scope of further research in this direction. Sani, Wiratunga, and Massie (2017) have eval-
uated the hand-crafted features and the CNN-derived features using kNN using ADL sensor data collected from the
wrist and the waist. Studying further about the features derived from a deep learning network and comparing them
with the heuristic features will help the researcher to understand the deep learning networks better. San et al. (2017)
have proposed a multichannel CNN architecture for multiple sensor data. The authors have evaluated their results with
decision tree, kNN, and Naive Bayes classifiers and have seen drastic improvements in terms of AR accuracy. Ensem-
ble deep learning models, LSTM, and RNN have not been well investigated for multichannel multimodal sensor data
and therefore, this would be a future direction for research.

5 | SEMANTICS IN AR

Sensor-based AR approaches can be classified as data-driven and knowledge-driven approaches. A data-driven approach
involves data collection, followed by extracting knowledge from the data by performing techniques such as basic statistical
techniques or other data mining techniques. On the other hand, knowledge-driven approaches use prior domain knowledge
followed by the application-specific knowledge on the sensory data. One such commonly used model is ontology modeling
(Liu, Nie, Liu, & Rosenblum, 2016). One of the applications of knowledge-driven AR is in smart home settings. In a home,
any person tends to perform a lot of activities pertaining to time, location, context, and so on. For example, a person brushes
the teeth in the morning, and at night in the bathroom, a person cooks food in the kitchen. The domain knowledge in these
cases is the location and the timing of the activity performed. This domain knowledge allows the AR system to correctly
detect the activities. (Riboni et al., 2016) has proposed an unsupervised approach to recognize complex activities by exploit-
ing the semantic relationship between activities and smart-home environment, context data, and sensing devices. The authors
tested the model on CASAS (Singla et al., 2009) and SmartFaber (Riboni et al., 2016) datasets, and achieved an accuracy
that is comparable to the supervised state-of-the-art algorithm. (Gayathri, Easwarakumar, & Elias, 2017) leveraged the
strengths of ontological modeling through Markov logic network and its probabilistic reasoning and tested the model on
CASAS (Singla et al., 2009) dataset. (Villalonga, Pomares, Rojas, & Banos, 2017) investigated ontology-based sensor selec-
tion for real-world AR that can be used to select the best sensor to capture the activity better. (Woznowski, King, Harwin, &
Craddock, 2016) have presented a hierarchical ontological modeling for annotating activity data and further discussed the
labeling strategies and the best practices. Ye, Stevenson, and Dobson (2015) have proposed an algorithm that constructs
domain ontologies profiles and, extract the semantic features form sensor events into spatial, temporal, and thematic aspects.
The activities are then recognized by matching segmented sensor sequences to ontological profiles. The authors have evalu-
ated using the interleaved ADL activities (IAA) dataset (Cook & Schmitter-Edgecombe, 2009) which is described in
Table 1. The authors Liu et al. (2016) have presented an algorithm to identify the complex high-level activities from simple
low-level actions in the sensor domain. The algorithm computes the support after adding the subsequent patterns iteratively
to build a feature space that can be fed to a SVM classifier. The proposed technique has been evaluated on OPPORTUNITY
(Roggen et al., 2009) dataset. In another study, the authors combined the data-driven and knowledge-driven approaches
which posit unsupervised techniques to discover sequential activity patterns based on the learned ontological model. Cheng
et al. (2013) proposed a zero-shot learning framework based on semantic sequences of data that considers both hierarchical
and sequential nature of the activity to detect unseen activities. The model was evaluated on their own exercise activity data-
set, and daily-life activities dataset. De et al. (2015) have proposed a conditional random field classifier for activity prediction
that captures temporal relationships in activity time series that helps to capture complex activities. The technique was evalu-
ated using an in-house dataset comprising of 19 activities listed in Table 1. Since knowledge-driven approaches combine
information from various sources to build the domain knowledge, it can be used for multi-inhabitant AR.

One of the major challenges in multi-inhabitant AR in a smart-home environment is that the ambient sensors are suscepti-
ble to recording data pertaining to nonsubjects. Despite the disadvantages, there has been some research on the same. The
authors Roy et al. (2013) have combined the ambient sensors along with the body-worn sensors to extract person-
independent context and person-specific context of activity and used hidden Markov model to detect the activities. The ambi-
ent sensors detect the movements of the subject; however, in addition, it also captures the movements of others who live in
its range in a multi-inhabitant environment. Alam, Roy, Misra, and Taylor (2016) proposed a probabilistic hierarchical
dynamic Bayesian network (HDBN) to combine the postural and gestural microactivities, and further extended to a multi-
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inhabitant framework using coupled HDBN. The authors further discovered the spatiotemporal constraints for activities of
users in the multi-inhabitant environment and evaluated their model with a dataset collected from real-life scenarios. The
multi-inhabitant AR for smart-home environment is relatively a new field, and further work based on ambient and wearable
sensors is required to build a robust knowledge-driven system. Building semantic knowledge requires domain knowledge,
and it has to be well represented in such a way that the data mining techniques can understand the semantics which is still a
challenging problem and requires further studies.

6 | COMPARATIVE DISCUSSION

All the techniques discussed so far for HAR have its own merits and demerits. Transfer learning allows transferring knowl-
edge, which addresses the problems of class imbalance, insufficient annotated data, domain adaptation, scalable model con-
struction, and so on. However, for transfer learning to be effective, the quality of the source data is crucial. The activity
event start and end time mismatch with the annotations, motion artifacts caused by wearable sensors, intraclass variability
are few major concerns that hinders the performance of transfer learning in AR. Active learning helps ease the annotation
efforts by querying the labels of informative samples only and therefore reduce the annotation efforts. However, active learn-
ing requires a high-quality data similar to transfer learning. In addition, selection of an appropriate criterion for selection of
informative data points is challenging. The error in reannotating informative data points leads to propagation of error to the
model that tries to learn the activity. Active learning poses another challenge of selection of annotators. Different annotators
may label the sequence of data differently depending on their expertise, therefore, there is a need for annotator selection
model (Hossain et al., 2016).

Another most recent trend in AR is deep learning. It is noted that deep learning has been outperforming traditional
machine learning methods as deep learning is able to extract the features from the raw data in contrast to expensive feature
engineering in traditional techniques. Feature engineering requires domain knowledge, which leads to approximations of the
features and makes them sensitive to the challenges related to AR as discussed in Section 1 in comparison to deep learning
where the features are hierarchically learned directly from the raw data. Despite the advantages, deep learning methods have
high computational requirements. Deep learning for mobile and low powered devices is an emerging field and it is also a
potential area for future research. In all of the above techniques, the objective was to learn/classify/detect the activities. How-
ever, the context and the intention of doing the activity were not discussed. Semantics-based techniques utilize the prior
knowledge and integrate with the sensory data to infer the context and the intention of performing the activity. This
knowledge-driven approach allows HAR systems to be used in a variety of applications as discussed in Section 1. Neverthe-
less, these approaches are sensitive to the prior knowledge as the context is derived from it.

7 | FUTURE DIRECTIONS

The nature of the activity data is such that they are self-similar fractal patterns and they repeat over time. The authors Gupta
and Dallas (2014) have used detrended fluctuation analysis coefficients as features in learning their classifier and Sekine
et al. (2002) have used the fractal dimensions of wavelet coefficients to differentiate three different walking styles, age
groups, and patients suffering from Parkinson disease. As fractal analysis has been explored and proven successful in analyz-
ing physiological data-like heart rate variability, and have shown promising results in Gupta and Dallas (2014) and Sekine
et al. (2002), it is a direction that needs further investigation for AR.

Another future direction in AR could be synthetic data generation. In most cases, for the data mining technique to learn
the model effectively, it is essential to train the model with a huge dataset. In addition, as discussed in Section 1, the data
could suffer from challenges such as intraclass variability and class imbalance. This occurs due to the fact that some activities
take a longer time when compared to the others. In a real scenario, a person may walk for a longer duration when compared
to jogging. The duration varies drastically for activities such as sweeping, cleaning the house, cooking, bathing, jogging,
walking upstairs and downstairs, and so on. Generating synthetic data could help solve some of the above problems. Few
researchers have already worked on generating synthetic data for AR. Mendez-Vazquez, Helal, and Cook (2009) have used
Markov chains to generate the patterns of activities and Poisson processes to generate the time stamps. This study is exten-
sive and considers activities such as walking, reading, sleep, sitting, housework, and exercise. Activity data show subtle vari-
ations, even among the data collected from the same subject for the same activity at a different time, for which generating
data synthetically might be a challenging problem. Alzantot, Chakraborty, and Srivastava (2017) have proposed a synthetic
data generation model using deep learning for ADLs using smartphones. The authors have presented a LSTM and mixture
density network-based generator model to generate the synthetic data and a LSTM-based discriminative model that
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distinguishes between true and the synthesized data. Synthetic data generation requires further investigation to enumerate
data patterns that give a better representation of the raw signals for a variety of activity signals so that the AR models can
extract maximum information from the data.

Another possible area for HAR could be in processing and fusing data from heterogeneous devices. In recent times, there
are a huge number of off-the-shelf devices are available such as Actigraph (2018), Microsoft Band (2018), Empatica E4
(2018), Fitbit (2018), Google Home (2018), and Amazon Echo (2018). Often it is the case that a model that is developed
using the data collected using one device does not perform well with the other devices. This occurs due to the heterogeneities
among the devices. The heterogeneities among various mobile devices, smart watches have been discussed in detail by Stisen
et al. (2015). The authors have investigated a large number of devices to study device heterogeneities and have proposed
techniques to mitigate them. The heterogeneities they address include sampling rate heterogeneity, sampling rate instability,
and sensor biases. Investigating cross-domain transfer and deep learning to accommodate heterogeneity in the learned models
are potential future directions in AR (Khan & Roy, 2018; Khan, Roy, & Misra, 2018).

8 | CONCLUSION

Mining the activity data to detect and understand the activity is of utmost importance as AR finds its application in various
fields such as personal healthcare like fitness tracking, fall detection of elderly people, monitoring functional and behavioral
health using wearables. In this paper, we articulate the recent trends in AR toward addressing the limitations of the traditional
machine learning algorithms and mitigating few system design challenges. We note that deep learning architectures have
been used largely due to its advantage of hierarchically self-derived features, which help represent the data better compared
to the handcrafted features. Therefore, it is important to design and develop robust data mining techniques to extract the
knowledge and machine learning techniques to infer and validate that knowledge from data which will allow the AR system
to make intelligent decisions. This study presents the recent trends and developments in machine learning techniques, to
address the next-generation AR challenges across many devices, systems, persons and environments.

ACKNOWLEDGMENTS

This work is partially supported by the Office of Naval Research Grant N00014-15-1-2229 and the Alzheimer's Association
Grant AARG-17-533039.

CONFLICT OF INTEREST

The authors have declared no conflicts of interest for this article.

FURTHER READING

Roy, N., Misra, A., & Cook, D. (2016). Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant smart environments. Journal of Ambient Intelli-
gence and Humanized Computing, 7(1), 1-19. https://doi.org/10.1007/s12652-015-0294-7

REFERENCES

Abdallah, Z. S., Gaber, M. M., Srinivasan, B., & Krishnaswamy, S. (2015). Adaptive mobile activity recognition system with evolving data streams. Neurocomputing,
150, 304-317.

ActiGraph. (2018). ActiGraph, LLC. Retrieved from http://www.actigraphcorp.com/

AKkl, A., Taati, B., & Mihailidis, A. (2015). Autonomous unobtrusive detection of mild cognitive impairment in older adults. IEEE Transactions on Biomedical Engi-
neering, 62(5), 1383-1394.

Alam, M. A. U,, Roy, N., Holmes, S., Gangopadhyay, A., & Galik, E. (2016). Automated functional and behavioral health assessment of older adults with dementia.
Paper presented at the meeting of the Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2016 LE. First International Conference
(pp. 140-149). IEEE.

Alam, M. A. U,, Roy, N., Misra, A., & Taylor, J. (2016). Cace: Exploiting behavioral interactions for improved activity recognition in multi-inhabitant smart homes.
Paper presented at the meeting of the Distributed Computing Systems (ICDCS), 2016 LE. 36th International Conference (pp. 539-548). IEEE.

Alemdar, H., van Kasteren, T., & Ersoy, C. (2017). Active learning with uncertainty sampling for large scale activity recognition in smart homes. Journal of Ambient
Intelligence and Smart Environments, 9(2), 209-223.

Altun, K., Barshan, B., & Tuncel, O. (2010). Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition,
43(10), 3605-3620.

Alzantot, M., Chakraborty, S., & Srivastava, M. (2017). Sensegen: A deep learning architecture for synthetic sensor data generation. Paper presented at the meeting
of the Pervasive Computing and Communications Workshops (PerCom Workshops), 2017 L.E. International Conference (pp. 188-193). IEEE.

Amazon Echo. (2018). Amazon.com, Inc. Retrieved from https://www.amazon.com/echo/

Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A public domain dataset for human activity recognition using smartphones. In ESANN.


https://doi.org/10.1007/s12652-015-0294-7
http://www.actigraphcorp.com
https://www.amazon.com/echo

‘E;/DW{ Downloaded from https://iranpaper.ir https://www. tarjomano.com e | C}JUD}J

10 of 11 A RAMASAMY RAMAMURTHY AND ROY
nan L WILEY @ Wi

DATA MINING AND KNOWLEDGE DISCOVERY

Bachlin, M., Roggen, D., Troster, G., Plotnik, M., Inbar, N., Meidan, 1., ... Hausdorff, J. M. (2009). Potentials of enhanced context awareness in wearable assistants
for Parkinson's disease patients with the freezing of gait syndrome. In Wearable Computers, 2009. ISWC'09. International Symposium on (pp. 123-130). IEEE.
Bagaveyev, S., & Cook, D. J. (2014). Designing and evaluating active learning methods for activity recognition. In Proceedings of the 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing: Adjunct Publication (pp. 469-478). ACM.

Bannach, D., Janicke, M., Rey, V. F., Tomforde, S., Sick, B., & Lukowicz, P. (2017). Self-adaptation of activity recognition systems to new sensors. CoRR
abs/1701.08528. http://arxiv.org/abs/1701.08528.

Banos, O., Garcia, R., Holgado-Terriza, J. A., Damas, M., Pomares, H., Rojas, L, . . . Villalonga, C. (2014). mhealthdroid: A novel framework for agile development
of mobile health applications. Paper presented at the meeting of the International Workshop on Ambient Assisted Living (pp. 91-98). Springer.

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612—637.

Barshan, B., & Yiiksek, M. C. (2013). Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units. The
Computer Journal, 57(11), 1649-1667.

Bengio, Y. (2013). Deep learning of representations: Looking forward. Paper presented at the meeting of the International Conference on Statistical Language and
Speech Processing (pp. 1-37). Springer.

Bhattacharya, S., & Lane, N. D. (2016). From smart to deep: Robust activity recognition on smartwatches using deep learning. Paper presented at the meeting of the
Pervasive Computing and Communication Workshops (PerCom Workshops), 2016 LE. International Conference (pp. 1-6). IEEE.

Bulling, A., Blanke, U., & Schiele, B. (2014). A tutorial on human activity recognition using body-worn inertial sensors. ACM Computing Surveys (CSUR), 46(3), 33.

Byrnes, J. P. (2001). Cognitive development and learning in instructional contexts. Allyn & Bacon.

Cheng, H.-T., Sun, F.-T., Griss, M., Davis, P., Li, J., & You, D. (2013). Nuactiv: Recognizing unseen new activities using semantic attribute-based learning. In Pro-
ceeding of the 11th annual international conference on Mobile systems, applications, and services (pp. 361-374). ACM.

Cook, D., Feuz, K. D., & Krishnan, N. C. (2013). Transfer learning for activity recognition: A survey. Knowledge and Information Systems, 36(3), 537-556.

Cook, D. J., & Schmitter-Edgecombe, M. (2009). Assessing the quality of activities in a smart environment. Methods of Information in Medicine, 48(5), 480—485.

De, D., Bharti, P., Das, S. K., & Chellappan, S. (2015). Multimodal wearable sensing for fine-grained activity recognition in healthcare. IEEE Internet Computing,
19(5), 26-35.

Deng, W.-Y., Zheng, Q.-H., & Wang, Z.-M. (2014). Cross-person activity recognition using reduced kernel extreme learning machine. Neural Networks, 53, 1-7.

Dernbach, S., Das, B., Krishnan, N. C., Thomas, B. L., & Cook, D. J. (2012). Simple and complex activity recognition through smart phones. Paper presented at the
meeting of the Intelligent Environments (IE), 2012 8th International Conference (pp. 214-221). IEEE.

Diethe, T., Twomey, N., & Flach, P. (2016). Active transfer learning for activity recognition. In European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Bruges, Belgium.

Do, T. M., Loke, S. W., & Liu, F. (2012). Healthylife: An activity recognition system with smartphone using logic-based stream reasoning. Paper presented at the
meeting of the International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services (pp. 188—199). Springer.

Empatica E4. (2018). Empatica Inc. Retrieved from https://www.empatica.com/en-eu/research/e4/

Faridee, A. Z. M., Ramasamy Ramamurthy, S., Hossain, H. M. S., & Roy, N. (2018). Happyfeet: Recognizing and assessing dance on the floor. In Proceedings of the
19th InternationalWorkshop on Mobile Computing Systems & Applications, HotMobile'l8, 49-54. New York, NY, USA: ACM. http://doi.acm.org/10.1145/
3177102.3177116

Fitbit. (2018). Fitbit, Inc. Retrieved from https://www fitbit.com/home

Gayathri, K., Easwarakumar, K., & Elias, S. (2017). Probabilistic ontology based activity recognition in smart homes using markov logic network. Knowledge-Based
Systems, 121, 173-184.

Google Home. (2018). Google LLC. Retrieved from https://store.google.com/product/google_home

Gupta, P., & Dallas, T. (2014). Feature selection and activity recognition system using a single triaxial accelerometer. I[EEE Transactions on Biomedical Engineering,
61(6), 1780-1786.

Hammerla, N. Y., Halloran, S., & Ploetz, T. (2016). Deep, convolutional, and recurrent models for human activity recognition using wearables. CoRR,
abs/1604.08880. http://arxiv.org/abs/1604.08880.

HAPIfork. (2018). HAPILABS, Inc. Retrieved from https://www.hapi.com/product/hapifork

Hossain, H. S., Khan, M. A. A. H., & Roy, N. (2016). Active learning enabled activity recognition. In Pervasive and Mobile Computing.

Huynh, T., Fritz, M., & Schiele, B. (2008). Discovery of activity patterns using topic models. In Proceedings of the 10th International Conference on Ubiquitous
Computing (pp. 10-19). ACM.

Huynh, T., & Schiele, B. (2005). Analyzing features for activity recognition. In Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence:
Innovative Context-Aware Services: Usages and Technologies (pp. 159-163). ACM.

Khan, M. A. A. H., Hossain, H., & Roy, N. (2015). Infrastructure-less occupancy detection and semantic localization in smart environments. In proceedings of the
12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services on 12th EAI International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services (pp. 51-60). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

Khan, M. A. A. H., Kukkapalli, R., Waradpande, P., Kulandaivel, S., Banerjee, N., Roy, N., & Robucci, R. (2016). Ram: Radar-based activity monitor. Paper pre-
sented at the meeting of the INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, IEEE (pp. 1-9). IEEE.

Khan, M. A. A. H., & Roy, N. (2017). Transact: Transfer learning enabled activity recognition. Paper presented at the meeting of the Pervasive Computing and Com-
munications Workshops (PerCom Workshops), 2017 LE. International Conference (pp. 545-550). IEEE.

Khan, M. A. A. H., & Roy, N. (2018). Untran: Recognizing unseen activities with unlabeled data using transfer learning. Paper presented at the meeting of the Inter-
national Conference on Internet-of-Things Design and Implementation (IoTDI). ACM/IEEE.

Khan, M. A. A. H, Roy, N., & Misra, A. (2018). Scaling human activity recognition via deep learning-based domain adaptation. In Proceedings of the IEEE Interna-
tional Conference on Pervasive Computing and Communications (PerCom). IEEE.

Kwapisz, J. R., Weiss, G. M., & Moore, S. A. (2011). Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter, 12(2), 74-82.

Lara, O. D., & Labrador, M. A. (2013). A survey on human activity recognition using wearable sensors. I[EEE Communications Surveys and Tutorials, 15(3),
1192-1209.

Liu, Y., Nie, L., Liu, L., & Rosenblum, D. S. (2016). From action to activity: Sensor-based activity recognition. Neurocomputing, 181, 108—115.

Ma, J., Wang, H., Zhang, D., Wang, Y., & Wang, Y. (2016). A survey on wi-fi based contactless activity recognition. Paper presented at the meeting of the Ubiquitous
Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Conferences (pp. 1086—-1091). IEEE.

Mendez-Vazquez, A., Helal, A., & Cook, D. (2009). Simulating events to generate synthetic data for pervasive spaces. In Workshop on Developing Shared Home
Behavior Datasets to Advance HCI and Ubiquitous Computing Research.

Microsoft Band. (2018). Microsoft Corporation. Retrieved from https://www.microsoft.com/en-us/band


https://www.empatica.com/en-eu/research/e4
http://doi.acm.org/10.1145/3177102.3177116
http://doi.acm.org/10.1145/3177102.3177116
https://www.fitbit.com/home
https://store.google.com/product/google_home
https://www.hapi.com/product/hapifork
https://www.microsoft.com/en-us/band

‘E;/DW{ Downloaded from https://iranpaper.ir

https://www.tarjomano.com)

RAMASAMY RAMAMURTHY AND ROY &) WIREs
WI LEY & DATA MINING AND KNOWLEDGE DISCOVERY

11 of 11

Ogris, G., Stiefmeier, T., Junker, H., Lukowicz, P., & Troster, G. (2005). Using ultrasonic hand tracking to augment motion analysis based recognition of manipulative
gestures. In Wearable Computers, 2005. Proceedings. Ninth IEEE International Symposium (pp. 152-159). IEEE.

Ordéiiez, F. J., & Roggen, D. (2016). Deep convolutional and Istm recurrent neural networks for multimodal wearable activity recognition. Sensors, 16(1), 115.

Panwar, M., Dyuthi, S. R., Prakash, K. C., Biswas, D., Acharyya, A., Maharatna, K., . . . Naik, G. R. (2017). Cnn based approach for activity recognition using a
wrist-worn accelerometer. Paper presented at the meeting of the Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Confer-
ence of the IEEE (pp. 2438-2441). IEEE.

Pathak, N., Khan, M. A. A. H., & Roy, N. (2015). Acoustic based appliance state identifications for fine-grained energy analytics. Paper presented at the meeting of
the Pervasive Computing and Communications (PerCom), 2015 LE. International Conference (pp. 63—70). IEEE.

Pham, C., & Olivier, P. (2009). Slice&dice: Recognizing food preparation activities using embedded accelerometers. Paper presented at the meeting of the European
Conference on Ambient Intelligence (pp. 34—43). Springer.

Radu, V., Katsikouli, P., Sarkar, R., & Marina, M. K. (2014). A semi-supervised learning approach for robust indoor-outdoor detection with smartphones. In Proceed-
ings of the 12th ACM Conference on Embedded Network Sensor Systems (pp. 280-294). ACM.

Ravi, D., Wong, C., Lo, B., & Yang, G.-Z. (2016). Deep learning for human activity recognition: A resource efficient implementation on low-power devices. Paper
presented at the meeting of the Wearable and Implantable Body Sensor Networks (BSN), 2016 L.E. 13th International Conference (pp. 71-76). IEEE.

Reiss, A., & Stricker, D. (2012). Introducing a new benchmarked dataset for activity monitoring. Paper presented at the meeting of the Wearable Computers (ISWC),
2012 16th International Symposium (pp. 108-109). IEEE.

Riboni, D., Sztyler, T., Civitarese, G., & Stuckenschmidt, H. (2016). Unsupervised recognition of interleaved activities of daily living through ontological and probabi-
listic reasoning. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 1-12). ACM.

Roggen, D., Forster, K., Calatroni, A., Holleczek, T., Fang, Y., Troster, G., ... Pirkl, G. (2009). OPPORTUNITY: Towards opportunistic activity and context recogni-
tion systems. In World of Wireless, Mobile and Multimedia Networks & Workshops, 2009. WoWMoM 2009. IEEE International Symposium on a (pp. 1-6).
IEEE.

Rokni, S. A., & Ghasemzadeh, H. (2017). Synchronous dynamic view learning: A framework for autonomous training of activity recognition models using wearable
sensors. In IPSN (pp. 79-90).

Ronao, C. A., & Cho, S.-B. (2016). Human activity recognition with smartphone sensors using deep learning neural networks. Expert Systems with Applications, 59,
235-244.

Roy, N., Misra, A., & Cook, D. (2013). Infrastructure-assisted smartphone-based adl recognition in multi-inhabitant smart environments. Paper presented at the meet-
ing of the Pervasive Computing and Communications (PerCom), 2013 LE. International Conference (pp. 38—46). IEEE.

San, P. P., Kakar, P., Li, X.-L., Krishnaswamy, S., Yang, J.-B., and Nguyen, M. N. (2017). Deep learning for human activity recognition

Sani, S., Wiratunga, N., and Massie, S. (2017). Learning deep features for knn-based human activity recognition.

Sekine, M., Tamura, T., Akay, M., Fujimoto, T., Togawa, T., & Fukui, Y. (2002). Discrimination of walking patterns using wavelet-based fractal analysis. /EEE
Transactions on Neural Systems and Rehabilitation Engineering, 10(3), 188-196.

Settles, B. (2010). Active learning literature survey ( Computer Sciences Technical Report 1648). University of Wisconsin, Madison, 52(55-66):11.

Singla, G., Cook, D. J., & Schmitter-Edgecombe, M. (2009). Tracking activities in complex settings using smart environment technologies. International Journal of
Biosciences, Psychiatry, and Technology (IJBSPT), 1(1), 25.

SITU-The Smart Food Nutrition Scale. (2018). Michael Grothaus Ltd. Retrieved from http://situscale.com/

Stiefmeier, T., Roggen, D., Ogris, G., Lukowicz, P., & Troster, G. (2008). Wearable activity tracking in car manufacturing. /[EEE Pervasive Computing, 7(2), 42-50.

Stikic, M., Larlus, D., Ebert, S., & Schiele, B. (2011). Weakly supervised recognition of daily life activities with wearable sensors. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(12), 2521-2537.

Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjergaard, M. B., Dey, A., . . . Jensen, M. M. (2015). Smart devices are different: Assessing and mitigating-
mobile sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems
(pp. 127-140). ACM.

Villalonga, C., Pomares, H., Rojas, I., & Banos, O. (2017). Mimu-wear: Ontology-based sensor selection for real-world wearable activity recognition. Neurocomput-
ing, 250, 76-100.

Wang, J., Chen, Y., Hao, S., Peng, X., & Hu, L. (2017). Deep learning for sensor-based activity recognition: A survey. CoRR, abs/1707.03502. http://arxiv.
org/abs/1707.03502.

Wang, J., Chen, Y., Hu, L., Peng, X., & Yu, P. S. (2018). Stratified transfer learning for cross-domain activity recognition. CoRR, abs/1801.00820. http://arxiv.
org/abs/1801.00820.

Woodworth, R. S., & Thorndike, E. (1901). The influence of improvement in one mental function upon the efficiency of other functions. (i). Psychological Review,
8(3), 247.

Woznowski, P., King, R., Harwin, W., & Craddock, I. (2016). A human activity recognition framework for healthcare applications: Ontology, labelling strategies, and
best practice. In Proceedings of the International Conference on Internet of Things and Big Data (IoTBD) (pp. 369-377).

Yang, J., Nguyen, M. N., San, P. P, Li, X., & Krishnaswamy, S. (2015). Deep convolutional neural networks on multichannel time series for human activity recogni-
tion. In IJCAI (pp. 3995-4001).

Yang, Q. (2009). Activity recognition: Linking low-level sensors to high-level intelligence. In IJCAI (Vol. 9, pp. 20-25).

Ye, J., Stevenson, G., & Dobson, S. (2015). Kcar: A knowledge-driven approach for concurrent activity recognition. Pervasive and Mobile Computing, 19, 47-70.

Ying, J. J.-C,, Lin, B.-H., Tseng, V. S., & Hsieh, S.-Y. (2015). Transfer learning on high variety domains for activity recognition. In Proceedings of the ASE Big-
Data & Sociallnformatics 2015 (p. 37). ACM.

Zappi, P., Lombriser, C., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., & Troster, G. (2008). Activity recognition from on-body sensors: Accuracy-power
trade-off by dynamic sensor selection. Lecture Notes in Computer Science, 4913, 17.

Zhang, M., & Sawchuk, A. A. (2012). Usc-had: A daily activity dataset for ubiquitous activity recognition using wearable sensors. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing (pp. 1036-1043). ACM.

How to cite this article: Ramasamy Ramamurthy S, Roy N. Recent trends in machine learning for human activity
recognition—A survey. WIREs Data Mining Knowl Discov. 2018;e1254. https://doi.org/10.1002/widm.1254

qulop


http://situscale.com/
https://doi.org/10.1002/widm.1254

	 Recent trends in machine learning for human activity recognition-A survey
	1  INTRODUCTION
	2  TRANSFER LEARNING IN AR
	3  ACTIVE LEARNING IN AR
	4  DEEP LEARNING IN AR
	5  SEMANTICS IN AR
	6  COMPARATIVE DISCUSSION
	7  FUTURE DIRECTIONS
	8  CONCLUSION
	8  ACKNOWLEDGMENTS
	8  CONFLICT OF INTEREST
	  FURTHER READING
	  REFERENCES


