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Preface
It is our firm belief that an ambitious student major in finance should learn at least 
one computer language. The basic reason is that we have entered a so-called big data 
era. In finance, we have a huge amount of data, and most of it is publically available 
free of charge. To use such rich sources of data efficiently, we need a tool. Among 
many potential candidates, Python is one of the best choices.

A few words for the second edition
For the second edition, we have reorganized the structure of the book by adding 
more chapters related to finance. This is recognition and response to the feedbacks 
from numerous readers. For the second edition, the first two chapters are exclusively 
devoted to Python. After that, all remaining chapters are associated with finance. 
Again, Python in this book is used as a tool to help readers learn and understand 
financial theories better. To meet the demand of using all types of data by various 
quantitative programs, business analytics programs and financial engineering 
programs, we add Chapter 4, Sources of Data. Because of this restructuring, this edition 
is more suitable for a one-semester course such as Quantitative Finance, Financial 
Analysis using Python and Business Analytics. Two finance professors, Premal P. 
Vora, at Penn State University, Sheng Xiao, at Westminister College, have adopted 
the first edition as their textbook. Hopefully, more finance, accounting professors 
would find the second edition is more suitable for their students, especially for 
those students from a financial engineering program, business analytics and other 
quantitative areas.
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Why Python?
There are various reasons that Python should be used. Firstly, Python is free in terms 
of license. Python is available for all major operating systems, such as Windows, 
Linux/Unix, OS/2, Mac, and Amiga, among others. Being free has many benefits. 
When students graduate, they could apply what they have learned wherever they 
go. This is true for the financial community as well. In contrast, this is not true for 
SAS and MATLAB. Secondly, Python is powerful, flexible, and easy to learn. It is 
capable of solving almost all our financial and economic estimations. Thirdly, we 
could apply Python to big data. Dasgupta (2013) argues that R and Python are two of 
the most popular open source programming languages for data analysis. Fourthly, 
there are many useful modules in Python. Each model is developed for a special 
purpose. In this book, we focus on NumPy, SciPy, Matplotlib, Statsmodels, and 
Pandas modules.

A programming book written by a finance 
professor
There is no doubt that the majority of programming books are written by professors 
from computer science. It seems odd that a finance professor writes a programming 
book. It is understandable that the focus would be quite different. If an instructor 
from computer science were writing this book, naturally the focus would be 
Python, whereas the true focus should be finance. This should be obvious from the 
title of the book Python for Finance. This book intends to change the fact that many 
programming books serving the finance community have too much for the language 
itself and too little for finance. Another unique feature of the book is that it uses a 
huge amount public data related to economics, finance and accounting, see Chapter 4, 
Sources of Data for more details.

What this book covers
Chapter 1, Python Basics, offers a short introduction, and explains how to install 
Python, how to launch and quit Python, variable assignment, vector, matrix and 
Tuple, calling embedded functions, write your own functions, input data from an 
input file, simple data manipulations, output our data and results, and generate a 
Python dataset with an extension of pickle.
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Chapter 2, Introduction to Python Modules, discusses the meaning of a module, how 
to import a module, show all functions contained in an imported module, adopt a 
short name for an imported module, compare between import math and from math 
import, delete an imported module, import just a few functions from a module, 
introduction to NumPy, SciPy, matplotlib, statsmodels, pandas and Pandas_reader, 
find out all built-in modules and all available (preinstalled) modules, how to find a 
specific uninstalled module.

Chapter 3, Time Value of Money, introduces and discusses various basic concepts 
and formulae associated with finance, such as present value of one future cash 
flow, present value of (growing) perpetuity, present and future value of annuity, 
perpetuity vs. perpetuity due, annuity vs. annuity due, relevant functions contained 
in SciPy and numpy.lib.financial submodule, a free financial calculator, written in 
Python, definition of NPV (Net Present Value) and its related rule, definition of IRR 
(Internal Rate of Return) and its related rule, Python graphical presentation of time 
value of money, and NPV profile.

Chapter 4, Sources of Data, discusses how to retrieve data from various public sources, 
such as Yahoo!Finance, Google finance, FRED (Federal Reserve Bank's Economics 
Data Library), Prof. French's Data Library, BLS (Bureau of Labor Statistics) and 
Census Bureau. In addition, it would discuss various methods to input data, such as 
files with formats of csv, txt, pkl, Matlab, SAS or Excel.

Chapter 5, Bond and Stock Valuation, introduces interest rate and its related concepts, 
such as APR (Annual Percentage Rate), EAR (Effective Annual Rate), compounding 
frequency, how to convert one effective rate to another one, the term structure of 
interest rate, how to estimate the selling price of a regular bond, how to use the so-
called discount dividend model to estimate the price of a stock and so on.

Chapter 6, Capital Asset Pricing Model, shows how to download data from 
Yahoo!Finance in order to run a linear regression for CAPM, rolling beta, several 
Python programs to estimate beta for multiple stocks, adjusted beta and portfolio 
beat estimation, two beta adjustment methods by Scholes and Williams (1977) 
Dimson (1979).

Chapter 7, Multifactor Models and Performance Measures, shows how to extend the 
single-factor model, described in Chapter 6, Capital Asset Pricing Model, to multifactor 
and complex models such as the Fama-French three-factor model, the Fama-French-
Carhart four-factor model, and the Fama-French five-factor model, and performance 
measures such as the Sharpe ratio, Treynor ratios, Sortino ratio, and Jensen's alpha.
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Chapter 8, Time-Series Analysis, shows how to design a good date variable, merge 
datasets by this date variable, normal distribution, normality tests, term structure 
of interest rate, 52-week high and low trading strategy, return estimation, convert 
daily returns to monthly or annual returns, T-test, F-test, Durbin-Watson test for 
autocorrelation, Fama-MacBeth regression, Roll (1984) spread, Amihud's (2002) 
illiquidity, Pastor and Stambaugh's (2003) liquidity measure, January effect, 
weekday effect, retrieving high-frequency data from Google Finance and from Prof. 
Hasbrouck's TORQ database (Trade, Order, Report and Quotation) and introduction 
to CRSP (Center for Research in Security Prices) database.

Chapter 9, Portfolio Theory, discusses mean and risk estimation of a 2-stock portfolio, 
N-stock portfolio, correlation vs. diversification effect, how to generate a return 
matrix, generating an optimal portfolio based on the Sharpe ratio, the Treynor 
ratio and the Sortinor ratio; how to construct an efficient frontier; Modigliani and 
Modigliani performance measure (M2 measure); and how to estimate portfolio 
returns using value-weighted and equal-weighed methodologies.

Chapter 10, Options and Futures, discusses payoff and profit/loss functions for calls 
and puts and their graphical representations, European versus American options; 
normal distribution; standard normal distribution; cumulative normal distribution; 
the famous Black-Scholes-Merton option model with/without dividend; various 
trading strategies and their visual presentations, such as covered call, straddle, 
butterfly, and calendar spread; Greeks; the put-call parity and its graphical 
representation; a graphical representation of a one-step and a two-step binomial tree 
model; how to use the binomial tree method to price both European and American 
options; and implied volatility, volatility smile, and skewness.

Chapter 11, Value at Risk, first reviews the density and cumulative functions of a 
normal distribution, then discusses the first method to estimate VaR based on the 
normality assumption, conversion from one day risk to n-day risk, one-day VaR to 
n-day VaR, normality tests, impact of skewness and kurtosis, modifying the VaR 
measure by including both skewness and kurtosis, the second method to estimate 
VaR based on historical returns, how to link two methods by using Monte Carlo 
simulation, back testing, and stress testing.

Chapter 12, Monte Carlo Simulation, discusses how to estimate the π value by using 
Monte Carlo simulation; simulating stock price movement with a lognormal 
distribution; constructing efficient portfolios and an efficient frontier; replicating 
the Black-Scholes-Merton option model by simulation; pricing several exotic 
options, such as lookback options with floating strikes; bootstrapping with/without 
replacements; long term expected return forecast and a related efficiency, quasi 
Monte Carlo simulation, and Sobol sequence.
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Chapter 13, Credit Risk Analysis, discusses Moody's, Standard & Poor's, and Fitch's 
credit ratings, credit spread, 1-year and 5-year migration matrices, term structure of 
interest rate, Altman's Z-score to predict corporate bankruptcy, the KMV model to 
estimate total assets and its volatility, default probability and distance to default, and 
credit default swap.

Chapter 14, Exotic Options, first compares European and American options we learned 
about in Chapter 9, Portfolio Theory with Bermudan options, then discusses methods 
to price simple chooser options; shout, rainbow, and binary options; the average 
price option; barrier options such as the up-and-in option and the up-and-out option; 
and barrier options such as down-and-in and down-and-out options.

Chapter 15, Volatility, Implied Volatility, ARCH, and GARCH, focuses on two issues: 
volatility measures and ARCH/GARCH.

Small-program oriented
Based on the author's teaching experience at seven schools, McGill and Wilfrid 
Laurier University (in Canada), NTU (in Singapore), and Loyola University, 
Maryland, UMUC, Hofstra University, and Canisius College (in the United States), 
and his eight-year consulting experience at Wharton School, he knows that many 
finance students like small programs that solve one specific task. Most programming 
books offer just a few complete and complex programs. The number of programs 
is far too less than enough few. There are two side effects to such an approach. 
First, finance students are drowned in programming details, get intimidated, and 
eventually lose interest in learning a computer language. Second, they don't learn 
how to apply what they just learned, such as running a capital asset pricing model 
(CAPM) to estimate IBM's beta from 1990 to 2013. This book offers about 300 
complete Python programs around many finance topics.

Using real-world data
Another shortcoming of the majority of books for programming is that they use 
hypothetical data. In this book, we use real-world data for various financial topics. 
For example, instead of showing how to run CAPM to estimate the beta (market 
risk), I show you how to estimate IBM's, Apple's, or Walmart's betas. Rather than just 
presenting formulae that shows you how to estimate a portfolio's return and risk, the 
Python programs are given to download real-world data, form various portfolios, 
and then estimate their returns and risk, including Value at Risk (VaR). When I 
was a doctoral student, I learned the basic concept of volatility smiles. However, 
until writing this book, I had a chance to download real-world data to draw IBM's 
volatility smile.
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What you need for this book
Here, we use several concrete examples to show what a reader could achieve after 
going through this book carefully.

First, after reading the first two chapters, a reader/student should be able to use 
Python to calculate the present value, future value, present value of annuity, IRR 
(internal rate of return), and many other financial formulae. In other words, we could 
use Python as a free ordinary calculator to solve many finance problems. Second, 
after the first three chapters, a reader/student or a finance instructor could build a 
free financial calculator, that is, combine a few dozen small Python programs into a 
big Python program. This big program behaves just like any other module written by 
others. Third, readers learn how to write Python programs to download and process 
financial data from various public data sources, such as Yahoo! Finance, Google 
Finance, Federal Reserve Data Library, and Prof. French's Data Library.

Fourth, readers will understand basic concepts associated with modules, which are 
packages written by experts, other users, or us, for specific purposes. Fifth, after 
understanding the Matplotlib module, readers can produce various graphs. For instance, 
readers could use graphs to demonstrate payoff/profit outcomes based on various 
trading strategies by combining the underlying stocks and options. Sixth, readers will 
be able to download IBM's daily price, the S&P 500 index price, and data from Yahoo! 
Finance and estimate its market risk (beta) by applying CAPM. They will also be able 
to form a portfolio with different securities, such as risk-free assets, bonds, and stocks. 
Then, they can optimize their portfolios by applying Markowitz's mean-variance model. 
In addition, readers will know how to estimate the VaR of their portfolios.

Seventh, a reader should be able to price European and American options by 
applying both the Black-Scholes-Merton option model for European options only, 
and the Monte Carlo simulation for both European and American options. Last but 
not least, readers will learn several ways to measure volatility. In particular, they 
will learn how to use AutoRegressive Conditional Heteroskedasticity (ARCH) and 
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models.

Who this book is for
If you are a graduate student majoring in finance, especially studying computational 
finance, financial modeling, financial engineering, or business analytics, this book 
will benefit you greatly. Here are two examples: Prof. Premal P. Vora at Penn State 
University has used this book for his course titled Data Science in Finance, and Prof. 
Sheng Xiao at Westminister College has done so for his course titled Financial Analytics. 
If you are a professional, you could learn Python and use it in many financial projects. 
If you are an individual investor, you could benefit from reading this book as well.
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Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"The sqrt(), square root, function is contained in the math module."

A block of code is set as follows:

>>>sqrt(2)
NameError: name 'sqrt' is not defined
>>> Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
math.sqrt(2)
1.4142135623730951
>>>

Any command-line input or output is written as follows:

help(pv_f)

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "To write  
a Python program, we click File, then New File."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.
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If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can  
visit http://www.packtpub.com/support and register to have the files e-mailed 
directly to you.

You can download the code files by following these steps:

1. You can download the code files by following these steps:
2. Log in or register to our website using your e-mail address and password.
3. Hover the mouse pointer on the SUPPORT tab at the top.
4. Click on Code Downloads & Errata.
5. Enter the name of the book in the Search box.
6. Select the book for which you're looking to download the code files.
7. Choose from the drop-down menu where you purchased this book from.
8. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Python-for-Finance-Second-Edition. We also have  
other code bundles from our rich catalog of books and videos available at  
https://github.com/PacktPublishing/. Check them out!

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Python-for-Finance-Second-Edition
https://github.com/PacktPublishing/Python-for-Finance-Second-Edition
https://github.com/PacktPublishing/
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
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Python Basics
In this chapter, we will discuss basic concepts and several widely used functions 
related to Python. This chapter plus the next one (Chapter 2, Introduction to Python 
Modules) are only the chapters exclusively based on Python techniques. Those two 
chapters serve as a review for readers who have some basic Python knowledge. 
There is no way that a beginner, with no prior Python knowledge, could master 
Python by reading just those two chapters. For a new learner who wants to learn 
Python in more detail, he/she could find many good books. From Chapter 3, Time 
Value of Money onward, we will use Python, which will help in explaining or 
demonstrating various finance concepts, running regression, and processing data 
related to economics, finance, and accounting. Because of this, we will offer more 
Python-related techniques and usages in each of the upcoming chapters.

In particular, in this chapter, we will discuss the following topics:

• Python installation
• Variable assignment, empty space, and writing our own programs
• Writing a Python function
• Data input
• Data manipulation
• Data output

Python installation
In this section, we will discuss how to install Python. More specifically, we will 
discuss two methods: installing Python via Anaconda and installing Python directly.
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There are several reasons why the first method is preferred:

• First, we can use a Python editor called Spyder, which is quite convenient 
for writing and editing our Python programs. For example, it has several 
windows (panels): one for the console, where we can type our commands 
directly; one for the program editor, where we can write and edit our 
programs; one for Variable Explorer,where we can view our variables and 
their values; and one for help, where we can seek help.

• Second, different colors for codes or comment lines will help us avoid some 
obvious typos and mistakes.

• Third, when installing Anaconda, many modules are installed 
simultaneously. A module is a set of programs written by experts, 
professionals, or any person around a specific topic. It could be viewed as a 
toolbox for a specific task. To speed up the process of developing new tools, 
a new module usually depends on the functions embedded in other, already 
developed modules. This is called module dependency. One disadvantage of 
such a module dependency is how to install them at the same time. For more 
information about this, see Chapter 2, Introduction to Python Modules.

Installation of Python via Anaconda
We could install Python in several ways. The consequence is that we will have 
different environments for writing a Python program and running a Python program.

The following is a simple two-step approach. First, we go to http://continuum.io/
downloads and find an appropriate package; see the following screenshot:

http://continuum.io/downloads
http://continuum.io/downloads
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For Python, different versions coexist. From the preceding screenshot, we see that 
there exist two versions, 3.5 and 2.7.

For this book, the version is not that critical. The old version had fewer problems 
while the new one usually has new improvements. Again, module dependency 
could be a big headache; see Chapter 2, Introduction to Python Modules for more detail. 
The version of Anaconda is 4.2.0. Since we will launch Python through Spyder, it 
might have different versions as well.

Launching Python via Spyder
After Python is installed via Anaconda, we can navigate to Start (for a Windows 
version) |All Programs |Anaconda3(32-bit), as shown in the following screenshot:

After we click Spyder, the last entry in the preceding screenshot, we will see the 
following four panels:
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The top-left panel (window) is our program editor, where we write our programs. 
The bottom-right panel is the IPython console, where we cantype our simple 
commands. IPython is the default one. To know more about IPython, just type a 
question mark; see the following screenshot:

Alternatively, we could launch Python console by clicking Consoles on the menu bar 
and then Open a Python console. After that, the following window will appear:

From the image with four panels, the top-right panel is our help window, where 
we can seek help. The middle one is called Variable Explorer, where the names of 
variables and their values are shown. Depending on personal preference, users will 
scale those panels or reorganize them.

Direct installation of Python
For most users, knowing how to install Python via Anaconda is more than enough. 
Just for completeness, here the second way to install Python is presented.
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The following steps are involved:

1. First, go to http://www.python.org/download:

2. Depending on your computer, choose the appropriate package, for example, 
Python version 3.5.2. For this book, the version of Python is not important. At 
this stage, a new user could just install Python with the latest version. After 
installation, we will see the following entries for a Windows version:

3. To launch Python, we could click IDLE (Python 3.5. 32 bit) and get to 
see the following screen:

http://www.python.org/download
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4. From the IPython shown in the screenshot with four panels, or from the 
Python console panel or from the previous screenshot showing Python Shell, 
we could type various commands, as shown here:
>>>pv=100

>>>pv*(1+0.1)**20

672.7499949325611

>>> import math

>>>math.sqrt(3)

1.7320508075688772

>>>

5. To write a Python program, we click File, then New File:

6. Type this program and then save it:
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7. Click Run, then Run module. If no error occurs, we can use the function just 
like other embedded functions, as shown here:

Variable assignment, empty space, and 
writing our own programs
First, for Python language, an empty space or spaces is very important. For  
example, if we accidently have a space before typing pv=100, we will see the 
following error message:

The name of the error is called IndentationError. The reason is that, for Python, 
indentation is important. Later in the chapter, we will learn that a proper indentation 
will regulate/define how we write a function or why a group of codes belongs to a 
specific topic, function, or loop.

Assume that we deposit $100 in the bank today. What will be the value 3 years later 
if the bank offers us an annual deposit rate of 1.5%? The related codes is shown here:

>>>pv=100
>>>pv
    100
>>>pv*(1+0.015)**3
    104.56783749999997
>>>
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In the preceding codes, ** means a power function. For example, 2**3 has a value 
of 8. To view the value of a variable, we simply type its name; see the previous 
example. The formula used is given here:

Here, FV is the future value, PV is the present value, R is the period deposit rate 
while n is the number of periods. In this case, R is the annual rate of 0.015 while n is 
3. At the moment, readers should focus on simple Python concepts and operations.

In Chapter 3, Time Value of Money, this formula will be explained in detail. Since 
Python is case-sensitive, an error message will pop up if we type PV instead of pv;  
see the following code:

>>>PV
NameError: name 'PV' is not defined
>>>Traceback (most recent call last):
  File "<stdin>", line 1, in <module>

Unlike some languages, such as C and FORTRAN, for Python a new variable does 
not need to be defined before a value is assigned to it. To show all variables or 
function, we use the dir() function:

>>>dir()
['__builtins__', '__doc__', '__loader__', '__name__', '__package__', 
'__spec__', 'pv']
>>>

To find out all built-in functions, we type dir(__builtings__). The output is 
shown here:
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Writing a Python function
Assume that we are interested in writing a Python function for equation (1).

After launching Spyder, click File, then New File. We write the following two lines, 
as shown in the left panel. The keyword def is for function,fv_f is the function name, 
and the three values of pv, r , and n in the pair of parentheses are input variables.

The colon (:) indicates the function hasn't finished yet. After we hit the Enter key, the 
next line will be automatically indented.

After we enter return pv*(1+r)**n and hit the Enter key twice, this simple program 
is completed. Obviously, for the second line, ** represents a power function.

Assume that we save it under c:/temp/temp.py:

To run or debug the program, click the arrow key under Run on the menu bar; see 
the preceding top-right image. The compiling result is shown by the bottom image 
right (the second image on top right). Now, we can use this function easily by calling 
it with three input values:

>>>fv_f(100,0.1,2)
     121.00000000000001
>>>fv_f(100,0.02,20)
    148.59473959783548

If some comments are added by explaining the meanings of input variables, the 
formula used, plus a few examples, it will be extremely helpful for other users or 
programmers. Check the following program with comments:

def pv_f(fv,r,n):
    """Objective: estimate present value
                     fv
    formula  : pv=-------------
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                   (1+r)^n
          fv: fture value
          r : discount periodic rate
          n : number of periods

    Example #1  >>>pv_f(100,0.1,1)
                   90.9090909090909
    
    Example #2: >>>pv_f(r=0.1,fv=100,n=1)
                    90.9090909090909
    """
    return fv/(1+r)**n

The comments or explanations are included in a pair of three double quotation 
marks (""" and """). The indentation within a comment is not consequential. When 
compiling, the underlying software will ignore all comments. The beauty of those 
comments is that we can use help(pv_f) to see them, as illustrated here:

In Chapter 2, Introduction to Python Modules, we will show how to upload a financial 
calculator written in Python, and in Chapter 3, Time Value of Money, we will explain 
how to generate such a financial calculator.

Python loops
In this section, we discuss a very important concept: loop or loops. A loop is used to 
repeat the same task with slightly different input or other factors.
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Python loops, if...else conditions
Let's look at a simple loop through all the data items in an array:

>>>import numpy as np
>>>cashFlows=np.array([-100,50,40,30])
>>>for cash in cashFlows:
...    print(cash)
... 
-100
50
40
30

One type of data is called a tuple, where we use a pair of parentheses, (), to include 
all input values. One feature of a tuple variable is that we cannot modify its value. 
This special property could be valuable if some our variables should never be 
changed.A tuple is different from a dictionary, which stores data with key-value 
pairs. It is not ordered and it requires that the keys are hashable. Unlike a tuple, the 
value for a dictionary can be modified.

Note that for Python, the subscription for a vector or tuple starts from 0. If x has a 
length of 3, the subscriptions will be 0, 1 and 2:

>>> x=[1,2,3]
>>>x[0]=2
>>>x
>>>
     [2, 2, 3]
>>> y=(7,8,9)
>>>y[0]=10
>>>
TypeError: 'tuple' object does not support item assignment
>>>Traceback (most recent call last):
  File "<stdin>", line 1, in <module>

>>>type(x)
>>>
<class'list'>
>>>type(y)
>>>
<class'tuple'>
>>>
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Assuming that we invest $100 today and $30 next year, the future cash inflow will be 
$10, $40, $50, $45, and $20 at the end of each year for the next 5 years, starting at the 
end of the second year; see the following timeline and its corresponding cash flows:

-100    -30       10       40        50         45       20
|--------|---------|--------|---------|----------|--------|
0        1         2        3         4          5        6

What is the Net Present Value (NPV) if the discount rate is 3.5%? NPVis defined as 
the present values of all benefits minus the present values of all costs. If a cash inflow 
has a positive sign while a cash outflow has a negative sign, then NPV can be defined 
conveniently as the summation of the present values of all cash flows. The present 
value of one future value is estimated by applying the following formula:

Here,PV is the present value, FV is the future value,R is the period discount rate 
and n is the number of periods. In Chapter 3, Time Value of Money, the meaning of 
this formula will be explained in more detail. At the moment, we just want to write 
annpv_f() function which applies the preceding equation n times, where n is the 
number of cash flows. The complete NPV program is given here:

def npv_f(rate, cashflows):
       total = 0.0
       for i in range(0,len(cashflows)):
             total += cashflows[i] / (1 + rate)**i
       return total

In the program, we used a for loop. Again, the correct indentation is important for 
Python. Lines from 2 to 5 are all indented by one unit, thus they belong to the same 
function, called npv_f. Similarly, line 4 is indented two units, that is, after the second 
column (:), it belongs to the forloop. The command of total +=a is equivalent to 
total=total +a.

For the NPV function, we use a for loop. Note that the subscription of a vector in 
Python starts from zero, and the intermediate variable i starts from zero as well.  
We could call this function easily by entering two sets of input values. The output  
is shown here:

>>>r=0.035
>>>cashflows=[-100,-30,10,40,50,45,20]
>>>npv_f(r,cashflows)
14.158224763725372 
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Here is another npv_f() function with a function called enumerate(). This function 
willgenerate a pair of indices, starting from0, and its corresponding value:

def npv_f(rate, cashflows):
      total = 0.0
      for i, cashflow in enumerate(cashflows):
               total += cashflow / (1 + rate)**i
      return total

Here is an example illustrating the usage of enumerate():

x=["a","b","z"]
for i, value in enumerate(x):
      print(i, value)

Unlike the npv_f function specified previously, the NPV function from Microsoft 
Excel is actually a PV function, meaning that it can be applied only to the future 
values. Its equivalent Python program, which is called npv_Excel, is shown here:

def npv_Excel(rate, cashflows):
       total = 0.0
       for i, cashflow in enumerate(cashflows):
                total += cashflow / (1 + rate)**(i+1)
       return total

The comparisons are shown in the following table. The result from the Python 
program is shown in the left panel while the result by calling the Excel NPV function 
is shown in the right panel. Please pay enough attention to the preceding program 
shown itself and how to call such a function:
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By using a loop, we can repeat the same task with different inputs. For example, we 
plan to print a set of values. The following is such an example for a while loop:

i=1
while(i<10):
      print(i)
      i+=1

The following program will report a discount (or any number of discount rates), 
making its corresponding NPV equal zero. Assume the cash flow will be 550, -500, 
-500, -500, and 1000 at time 0, at the end of each year of the next 4 years. In  
Chapter 3, Time Value of Money, we will explain the concept of this exercise in  
more detail.

Write a Python program to find out which discount rate makes NPV equal zero. 
Since the direction of cash flows changes twice, we might have two different rates 
making NPV equal zero:

cashFlows=(550,-500,-500,-500,1000)
r=0
while(r<1.0):
     r+=0.000001
     npv=npv_f(r,cashFlows)
     if(abs(npv)<=0.0001):
            print(r)

The corresponding output is given here:

0.07163900000005098
0.33673299999790873

Later in the chapter, a forloop is used to estimate the NPV of a project.

When we need to use a few math functions, we can import the math module first:

>>>import math
>>>dir(math)
['__doc__', '__loader__', '__name__', '__package__', '__spec__', 
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 
'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 
'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 
'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 
'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 
'nan', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 
'trunc']
>>>math.pi
3.141592653589793
>>>
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The sqrt(), square root, function is contained in the math module. Thus, to use the 
sqrt() function, we need to use math.sqrt(); see the following code:

>>>sqrt(2)
NameError: name 'sqrt' is not defined
>>>Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
math.sqrt(2)
1.4142135623730951
>>>

If we want to call those functions directly, we can use from math import *; see the 
following code:

>>>from math import *
>>>sqrt(3)
1.7320508075688772
>>>

To learn about individual embedded functions, we can use the help() function; see 
the following code:

>>>help(len)
Help on built-in function len in module builtins:
len(obj, /)
    Return the number of items in a container.
>>>

Data input
Let's generate a very simple input dataset first, as shown here. Its name and location 
is c:/temp/test.txt. The format of the dataset is text:

a b
1 2
3 4

The code is shown here:

>>>f=open("c:/temp/test.txt","r")
>>>x=f.read()
>>>f.close()
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The print() function could be used to show the value of x:

>>>print(x)
a b
1 2
3 4
>>>

For the second example, let's download the daily historical price for IBM from 
Yahoo!Finance first. To do so, we visit http://finance.yahoo.com:

Enter IBM to find its related web page. Then click Historical Data, then click 
Download:

Assume that we save the daily data as ibm.csv under c:/temp/. The first five lines 
are shown here:

Date,Open,High,Low,Close,Volume,Adj Close
2016-11-
04,152.399994,153.639999,151.869995,152.429993,2440700,152.429993
2016-11-
03,152.509995,153.740005,151.800003,152.369995,2878800,152.369995
2016-11-
02,152.479996,153.350006,151.669998,151.949997,3074400,151.949997
2016-11-01,153.50,153.910004,151.740005,152.789993,3191900,152.789993

http://finance.yahoo.com
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The first line shows the variable names: date, open price, high price achieved during 
the trading day, low price achieved during the trading day, close price of the last 
transaction during the trading day, trading volume, and adjusted price for the 
trading day. The delimiter is a comma. There are several ways of loading the text file. 
Some methods are discussed here:

• Method I: We could use read_csv from the pandas module:
>>> import pandas as pd
>>> x=pd.read_csv("c:/temp/ibm.csv")
>>>x[1:3]
         Date        Open        High         Low       Close   
Volume  \
1  2016-11-02  152.479996  153.350006  151.669998  151.949997  
3074400   
2  2016-11-01  153.500000  153.910004  151.740005  152.789993  
3191900   

Adj.Close
1  151.949997
2  152.789993>>>

• Method II: We could use read_table from the pandas module; see the 
following code:

>>> import pandas as pd
>>> x=pd.read_table("c:/temp/ibm.csv",sep=',')

Alternatively, we could download the IBM daily price data directly from 
Yahoo!Finance; see the following code:

>>> import pandas as pd
>>>url=url='http://canisius.edu/~yany/data/ibm.csv'
>>> x=pd.read_csv(url)
>>>x[1:5]
         Date        Open        High         Low       Close   Volume  
\
1  2016-11-03  152.509995  153.740005  151.800003  152.369995  2843600   
2  2016-11-02  152.479996  153.350006  151.669998  151.949997  3074400   
3  2016-11-01  153.500000  153.910004  151.740005  152.789993  3191900   
4  2016-10-31  152.759995  154.330002  152.759995  153.690002  3553200   

Adj Close  
1  152.369995
2  151.949997
3  152.789993
4  153.690002>>>
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We could retrieve data from an Excel file by using the ExcelFile() function from 
thepandas module. First, we generate an Excel file with just a few observations; see 
the following screenshot:

Let's call this Excel file stockReturns.xlxs and assume that it is saved under  
c:/temp/. The Python code is given here:

>>>infile=pd.ExcelFile("c:/temp/stockReturns.xlsx")
>>> x=infile.parse("Sheet1")
>>>x
date  returnAreturnB
0  2001     0.10     0.12
1  2002     0.03     0.05
2  2003     0.12     0.15
3  2004     0.20     0.22
>>>

To retrieve Python datasets with an extension of .pkl or .pickle, we can use the 
following code. First, we download the Python dataset called ffMonthly.pkl  
from the author's web page at http://www3.canisius.edu/~yany/python/
ffMonthly.pkl.

Assume that the dataset is saved under c:/temp/. The function called read_
pickle() included in the pandas module can be used to load the dataset with an 
extension of .pkl or .pickle:

>>> import pandas as pd
>>> x=pd.read_pickle("c:/temp/ffMonthly.pkl")
>>>x[1:3]
>>>
Mkt_RfSMBHMLRf
196308  0.0507 -0.0085  0.0163  0.0042
196309 -0.0157 -0.0050  0.0019 -0.0080
>>>

http://www3.canisius.edu/~yany/python/ffMonthly.pkl
http://www3.canisius.edu/~yany/python/ffMonthly.pkl
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The following is the simplest if function: when our interest rate is negative, print a 
warning message:

if(r<0):
    print("interest rate is less than zero")

Conditions related to logical AND and OR are shown here:

>>>if(a>0 and b>0):
  print("both positive")
>>>if(a>0 or b>0):
  print("at least one is positive")

For the multiple if...elif conditions, the following program illustrates its 
application by converting a number grade to a letter grade:

grade=74
if grade>=90:
    print('A')
elif grade >=85:
    print('A-')
elif grade >=80:
    print('B+')
elif grade >=75:
    print('B')
elif grade >=70:
    print('B-')
elif grade>=65:
    print('C+')
else:
    print('D')

Note that it is a good idea for such multiple if...elif functions to end with an else 
condition since we know exactly what the result is if none of those conditions are met.

Data manipulation
There are many different types of data, such as integer, real number, or string. The 
following table offers a list of those data types:

Data types Description
Bool Boolean (TRUE or FALSE) stored as a byte
Int Platform integer (normally either int32 or int64)
int8 Byte (-128 to 127)
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Data types Description
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (9223372036854775808 to 9223372036854775807)
unit8 Unsigned integer (0 to 255)
unit16 Unsigned integer (0 to 65535)
unit32 Unsigned integer (0 to 4294967295)
unit64 Unsigned integer (0 to 18446744073709551615)
float Short and for float6
float32 Single precision float: sign bit23 bits mantissa; 8 bits exponent
float64 52 bits mantissa
complex Shorthand for complex128
complex64 Complex number; represented by two 32-bit floats (real and 

imaginary components) 
complex128 Complex number; represented by two 64-bit floats (real and 

imaginary components)

Table 1.1 List of different data types

In the following examples, we assign a value to r, which is a scalar, and several values 
to pv, which is an array (vector).The type() function is used to show their types:

>>> import numpy as np
>>> r=0.023
>>>pv=np.array([100,300,500])
>>>type(r)
<class'float'>
>>>type(pv)
<class'numpy.ndarray'>

To choose the appropriate decision, we use the round()function; see the following 
example:

>>> 7/3
2.3333333333333335
>>>round(7/3,5)
2.33333
>>>

For data manipulation, let's look at some simple operations:

>>>import numpy as np
>>>a=np.zeros(10)                      # array with 10 zeros 
>>>b=np.zeros((3,2),dtype=float)       # 3 by 2 with zeros 
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>>>c=np.ones((4,3),float)              # 4 by 3 with all ones 
>>>d=np.array(range(10),float)         # 0,1, 2,3 .. up to 9 
>>>e1=np.identity(4)                   # identity 4 by 4 matrix 
>>>e2=np.eye(4)                        # same as above 
>>>e3=np.eye(4,k=1)                    # 1 start from k 
>>>f=np.arange(1,20,3,float)           # from 1 to 19 interval 3 
>>>g=np.array([[2,2,2],[3,3,3]])       # 2 by 3 
>>>h=np.zeros_like(g)                  # all zeros 
>>>i=np.ones_like(g)                   # all ones

Some so-called dot functions are quite handy and useful:

>>> import numpy as np
>>> x=np.array([10,20,30])
>>>x.sum()
60

Anything after the number sign of # will be a comment. Arrays are another 
important data type:

>>>import numpy as np
>>>x=np.array([[1,2],[5,6],[7,9]])      # a 3 by 2 array
>>>y=x.flatten()
>>>x2=np.reshape(y,[2,3]              ) # a 2 by 3 array

We could assign a string to a variable:

>>> t="This is great"
>>>t.upper()
'THIS IS GREAT'
>>>

To find out all string-related functions, we use dir(''); see the following code:

>>>dir('')
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', 
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', 
'__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', 
'__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', 
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', 
'__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', 
'__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 
'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_
map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 
'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 
'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 
'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 
'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 
'swapcase', 'title', 'translate', 'upper', 'zfill']
>>>
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For example, from the preceding list we see a function called split. After 
typinghelp(''.split), we will have related help information:

>>>help(''.split)
Help on built-in function split:

split(...) method of builtins.str instance
S.split(sep=None, maxsplit=-1) -> list of strings

    Return a list of the words in S, using sep as the
delimiter string. If maxsplit is given, at most maxsplit
splits are done. If sep is not specified or is None, any
whitespace string is a separator and empty strings are
removed from the result.
>>>

We could try the following example:

>>> x="this is great"
>>>x.split()
['this', 'is', 'great']
>>>

Matrix manipulation is important when we deal with various matrices:

The condition for equation (3) is that matrices A and B should have the same 
dimensions. For the product of two matrices, we have the following equation:

Here,A is an n by k matrix (n rows and k columns), while B is a k by m matrix. 
Remember that the second dimension of the first matrix should be the same as 
the first dimension of the second matrix. In this case, it is k. If we assume that the 
individual data items in C, A, and B are Ci,j (the ith row and the jth column), Ai,j,  
and Bi,j, we have the following relationship between them:



Chapter 1

[ 23 ]

The dot() function from the NumPy module could be used to carry the preceding 
matrix multiplication:

>>>a=np.array([[1,2,3],[4,5,6]],float)    # 2 by 3
>>>b=np.array([[1,2],[3,3],[4,5]],float)  # 3 by 2
>>>np.dot(a,b)                            # 2 by 2
>>>print(np.dot(a,b))
array([[ 19.,  23.],
[ 43.,  53.]])
>>>

We could manually calculate c(1,1): 1*1 + 2*3 + 3*4=19.

After retrieving data or downloading data from the internet, we need to process it. 
Such a skill to process various types of raw data is vital to finance students and to 
professionals working in the finance industry. Here we will see how to download 
price data and then estimate returns.

Assume that we have n values of x1, x2, … and xn. There exist two types of means: 
arithmetic mean and geometric mean; see their genetic definitions here:

Assume that there exist three values of 2,3, and 4. Their arithmetic and geometric 
means are calculated here:

>>>(2+3+4)/3.
>>>3.0
>>>geo_mean=(2*3*4)**(1./3)
>>>round(geo_mean,4) 
2.8845

For returns, the arithmetic mean's definition remains the same, while the geometric 
mean of returns is defined differently; see the following equations:
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In Chapter 3, Time Value of Money, we will discuss both means again.

We could say that NumPy is a basic module while SciPy is a more advanced one. 
NumPy tries to retain all features supported by either of its predecessors, while most 
new features belong in SciPy rather than NumPy. On the other hand, NumPy and 
SciPy have many overlapping features in terms of functions for finance. For those 
two types of definitions, see the following example:

>>> import scipy as sp
>>> ret=sp.array([0.1,0.05,-0.02])
>>>sp.mean(ret)
0.043333333333333342
>>>pow(sp.prod(ret+1),1./len(ret))-1 
0.042163887067679262

Our second example is related to processing theFama-French 3 factor time series. 
Since this example is more complex than the previous one, if a user feels it is difficult 
to understand, he/she could simply skip this example. First, a ZIP file called F-F_
Research_Data_Factor_TXT.zip could be downloaded from Prof. French's Data 
Library. After unzipping and removing the first fewlines and annual datasets, we 
will have a monthly Fama-French factor time series. The first few lines and last few 
lines are shown here:

DATE    MKT_RFSMBHMLRF
192607    2.96   -2.30   -2.87    0.22
192608    2.64   -1.40    4.19    0.25
192609    0.36   -1.32    0.01    0.23

201607    3.95    2.90   -0.98    0.02
201608    0.49    0.94    3.18    0.02
201609    0.25    2.00   -1.34    0.02

Assume that the final file is called ffMonthly.txt under c:/temp/. The following 
program is used to retrieve and process the data:

import numpy as np
import pandas as pd
file=open("c:/temp/ffMonthly.txt","r")
data=file.readlines()
f=[]
index=[]
for i in range(1,np.size(data)):
    t=data[i].split()
    index.append(int(t[0]))
    for j in range(1,5):
        k=float(t[j])
        f.append(k/100)



Chapter 1

[ 25 ]

n=len(f) 
f1=np.reshape(f,[n/4,4])
ff=pd.DataFrame(f1,index=index,columns=['Mkt_Rf','SMB','HML','Rf'])

To view the first and last few observations for the dataset called ff, the functions of 
.head() and .tail() can be used:

Data output
The simplest example is given here:

>>>f=open("c:/temp/out.txt","w")
>>>x="This is great"
>>>f.write(x)
>>>f.close()

For the next example, we download historical stock price data first, then write data 
to an output file:

import re
from matplotlib.finance import quotes_historical_yahoo_ochl
ticker='dell'
outfile=open("c:/temp/dell.txt","w")
begdate=(2013,1,1)
enddate=(2016,11,9)
p=quotes_historical_yahoo_ochl
(ticker,begdate,enddate,asobject=True,adjusted=True)
outfile.write(str(p))
outfile.close()
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To retrieve the file, we have the following code:

>>>infile=open("c:/temp/dell.txt","r")
>>>x=infile.read()

One issue is that the preceding saved text file contains many unnecessary characters, 
such as [ and]. We could apply a substitution function called sub() contained in the 
Python module;see the simplest example given here:

>>> import re
>>>re.sub("a","9","abc")
>>>
'9bc'
>>>

In the preceding example, we will replace the letter a with9. Interested readers could 
try the following two lines of code for the preceding program:

p2= re.sub('[\(\)\{\}\.<>a-zA-Z]','', p)
outfile.write(p2)

It is a good idea to generate Python datasets with an extension of .pickle since we 
can retrieve such data quite efficiently. The following is the complete Python code to 
generate ffMonthly.pickle. Here, we show how to download price data and then 
estimate returns:

import numpy as np
import pandas as pd
file=open("c:/temp/ffMonthly.txt","r")
data=file.readlines()
f=[]
index=[]
for i in range(1,np.size(data)):
    t=data[i].split()
    index.append(int(t[0]))
    for j in range(1,5):
        k=float(t[j])
        f.append(k/100)
n=len(f)
f1=np.reshape(f,[n/4,4])
ff=pd.DataFrame(f1,index=index,columns=['Mkt_Rf','SMB','HML','Rf'])
ff.to_pickle("c:/temp/ffMonthly.pickle")



Chapter 1

[ 27 ]

Exercises
1. Where can you download and install Python?
2. Is Python case-sensitive?
3. How do you assign a set of values to pv in the format of a tuple. Could we 

change its values after the assignment?
4. Estimate the area of a circle if the diameter is 9.7 using Python.
5. How do you assign a value to a new variable?
6. How can you find some sample examples related to Python?
7. How do you launch Python's help function?
8. How can you find out more information about a specific function, such  

as print()?
9. What is the definition of built-in functions?
10. Is pow() a built-in function? How do we use it?
11. How do we find all built-in functions? How many built-in functions are 

present?
12. When we estimate the square root of 3, which Python function should  

we use?
13. Assume that the present value of a perpetuity is $124 and the annual cash flow 

is $50; what is the corresponding discount rate? The formula is given here:

14. Based on the solution of the previous question, what is the corresponding 
quarterly rate?

15. For a perpetuity, the same cash flow happens at the same interval forever. A 
growing perpetuity is defined as follows: the future cash flow is increased at 
a constant growth rate forever. If the first cash flow happens at the end of the 
first period, we have the following formula:
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Here PV is the present value, C is the cash flow of the next period, g is a 
growth rate, and R is the discount rate. If the first cash flow is $12.50, the 
constant growth rate is 2.5 percent, and the discount rate is 8.5 percent. What 
is the present value of this growing perpetuity?

16. For an n-day variance, we have the following formula:

Here  is the daily variance and is  is the daily standard deviation 
(volatility). If the volatility (daily standard deviation) of a stock is 0.2, what is 
its 10-day volatility?

17. We expect to have $25,000 in 5 years. If the annual deposit rate is 4.5 percent, 
how much do we have to deposit today?

18. The substitution function called sub() is from a Python module. Find out 
how many functions are contained in that module.

19. Write a Python program to convert the standard deviation estimated based on 
daily data or monthly data to an annual one by using the following formulas:

20. The Sharpe ratio is a measure of trade-off between benefit (excess return) and 
cost (total risk) for an investment such as a portfolio. Write a Python program 
to estimate the Sharpe ratio by applying the following formula:

Here  is the portfolio mean return,  is the mean risk-free rate and σ 
is the risk of the portfolio. Again, at this moment, it is perfectly fine that a 
reader does not understand the economic meaning of this ratio since the 
Sharpe ratio will be discussed in more detail in Chapter 7,Multifactor Models 
and Performance Measures.
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Summary
In this chapter, many basic concepts and several widely used functions related to 
Python werediscussed. In Chapter 2, Introduction to Python Modules, we will discuss a 
key component of the Python language: Python modules and theirrelated issues. A 
module is a set of programs written by experts, professionals, or any person around 
a specific topic. A module could be viewed as a toolbox for a specific task. The 
chapter willfocus on the five most important modules: NumPy, SciPy, matplotlib, 
statsmodels, and pandas.
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Introduction to  
Python Modules

In this chapter, we will discuss the most important issues related to Python modules, 
which are packages written by experts or any individual to serve a special purpose. 
In this book, we will use about a dozen modules in total. Thus, knowledge related to 
modules is critical in our understanding of Python and its application to finance. In 
particular, in this chapter, we will cover the following topics:

• Introduction to Python modules
• Introduction to NumPy
• Introduction to SciPy
• Introduction to matplotlib
• Introduction to statsmodels
• Introduction to pandas
• Python modules related to finance
• Introduction to the pandas_reader module
• Two financial calculators written in Python
• How to install a Python module
• Module dependency
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What is a Python module?
A module is a package or group of programs that is written by an expert, user, or even 
a beginner who is usually very good in a specific area, to serve a specific purpose.

For example, a Python module called quant is for quantitative financial analysis. 
quant combines two modules of SciPy and DomainModel. The module contains a 
domain model that has exchanges, symbols, markets, and historical prices, among 
other things. Modules are very important in Python. In this book, we will discuss 
about a dozen modules implicitly or explicitly. In particular, we will explain five 
modules in detail: NumPy, SciPy, matplotlib, statsmodels, and Pandas.

As of November 16, 2016, there are 92,872 Python modules 
(packages) with different areas available according to the 
Python Package Index.
For the financial and insurance industries, there are 384 
modules currently available.

Assume that we want to estimate the square root of 3 by using the sqrt()  
function. However, after issuing the following lines of code, we will encounter  
an error message:

>>>sqrt(3)
SyntaxError: invalid syntax
>>>

The reason is that the sqrt() function is not a built-in function. A built-in function 
could be viewed as an existing function when Python is launched. To use the sqrt() 
function, we need to import the math module first, as follows:

>>>import math
>>>x=math.sqrt(3)
>>>round(x,4)
1.7321

To use the sqrt() function, we have to type math.sqrt() if we use the import 
math command to import or upload the math module. In the preceding code, the 
round() function is used to control the number of decimal places. In addition, after 
issuing the command of dir(), we will see the existence of the math module, which 
is the last one in the output shown here:

>>>dir()
['__builtins__', '__doc__', '__name__', '__package__', 'math']



Chapter 2

[ 33 ]

In addition, when a module is preinstalled, we could use import x_module to 
upload it. For instance, the math module is preinstalled. Later in the chapter, we 
will see how to find all built-in modules. In the preceding output, after issuing 
the command dir(), we also observe __builtins__. There are two underscores, 
before and after builtin. This __builtins__ module is different from other built-in 
modules, such as the math module. It is for all built-in functions and other objects. 
Again, the command of dir(__builtins__) could be issued to list all built-in 
functions, as shown in the following code:

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError', 
'BaseException', 'BlockingIOError', 'BrokenPipeError', 'BufferError', 
'BytesWarning', 'ChildProcessError', 'ConnectionAbortedError', 
'ConnectionError', 'ConnectionRefusedError', 'ConnectionResetError', 
'DeprecationWarning', 'EOFError', 'Ellipsis', 'EnvironmentError', 
'Exception', 'False', 'FileExistsError', 'FileNotFoundError', 
'FloatingPointError', 'FutureWarning', 'GeneratorExit', 
'IOError', 'ImportError', 'ImportWarning', 'IndentationError', 
'IndexError', 'InterruptedError', 'IsADirectoryError', 'KeyError', 
'KeyboardInterrupt', 'LookupError', 'MemoryError', 'NameError', 
'None', 'NotADirectoryError', 'NotImplemented', 'NotImplementedError', 
'OSError', 'OverflowError', 'PendingDeprecationWarning', 
'PermissionError', 'ProcessLookupError', 'RecursionError', 
'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning', 
'StopAsyncIteration', 'StopIteration', 'SyntaxError', 'SyntaxWarning', 
'SystemError', 'SystemExit', 'TabError', 'TimeoutError', 
'True', 'TypeError', 'UnboundLocalError', 'UnicodeDecodeError', 
'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError', 
'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning', 
'WindowsError', 'ZeroDivisionError', '_', '__build_class__', '__
debug__', '__doc__', '__import__', '__loader__', '__name__', '__
package__', '__spec__', 'abs', 'all', 'any', 'ascii', 'bin', 'bool', 
'bytearray', 'bytes', 'callable', 'chr', 'classmethod', 'compile', 
'complex', 'copyright', 'credits', 'debugfile', 'delattr', 'dict', 
'dir', 'divmod', 'enumerate', 'eval', 'evalsc', 'exec', 'exit', 
'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 
'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 
'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'map', 
'max', 'memoryview', 'min', 'next', 'object', 'oct', 'open', 'open_in_
spyder', 'ord', 'pow', 'print', 'property', 'quit', 'range', 'repr', 
'reversed', 'round', 'runfile', 'set', 'setattr', 'slice', 'sorted', 
'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip']
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From the preceding output, we find a function called pow(). The command of 
help(pow) could be used to find more information about this specific function;  
see the following:

>>> help(pow)
Help on built-in function pow in module builtins:
pow(x, y, z=None, /)
Equivalent to x**y (with two arguments) or x**y % z 
(with three arguments) 
Some types, such as ints, are able to use a more 
efficient algorithm when invoked using the three argument form.
>> > 

For convenience, it is a good idea to adopt a short name for an imported module. To 
save some typing effort when programming, we could use the command import x_
module as short_name as shown in the following lines of code:

>>>import sys as s
>>>import time as tt
>>>import numpy as np
>>>import matplotlib as mp

When calling a specific function contained in an imported module, we use the 
module's short name, as shown in the following lines of code:

>>> import time as tt
>>> tt.localtime()
time.struct_time(tm_year=2016, tm_mon=11, tm_mday=21, tm_hour=10, tm_
min=58, tm_sec=33, tm_wday=0, tm_yday=326, tm_isdst=0)
>>>

Although users are free to choose any short names for an imported module, it is 
a great idea to respect some conventions, such as using np for NumPy and sp for 
SciPy. One added advantage of using such commonly used short names is to make 
our programs more readable to others. To show all functions in an imported module, 
the dir(module) command could be used, as shown in the following lines of code:

>>>import math
>>>dir(math)
['__doc__', '__loader__', '__name__', '__package__', 'acos', 'acosh',
'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos',
'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs',
'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'hypot',
'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 
'log1p', 'log2', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 
'sqrt', 'tan', 'tanh', 'trunc']
>>>
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Recall that in Chapter 1, Python Basics, import math and from math import * are 
compared. Generally speaking, to make your programs simpler, you could use from 
math import *. This is especially true for a beginner who has just started to learn 
Python programming. Let's take a look at the following lines of code:

>>>from math import *
>>>sqrt(3)
   1.7320508075688772

Now, all functions contained in the module will be available directly. On the other 
hand, if we use import math, we have to add the module name as a prefix, such as 
math.sqrt() instead of sqrt(). After getting more familiar with Python, it is a good 
idea to use the import module format instead of using from module import *. 
There are two reasons behind such a preference:

• First, users know exactly from which module the function comes from.
• Second, we might have written our own function with the same name as the 

function contained in another module. A module name ahead of a function 
will distinguish it from our own function, as shown in the following lines of 
code:

>>>import math
>>>math.sqrt(3)
    1.7320508075688772

The del() function is used to remove an imported/uploaded module which is 
deemed unnecessary, as shown in the following lines of code:

>>>import math
>>>dir()
['__builtins__', '__doc__', '__loader__', '__name__', '__package__', 
'math']
>>>del math
>>>dir()
['__builtins__', '__doc__', '__loader__', '__name__', '__package__']

On the other hand, if we use from math import *, we cannot remove all functions, 
just issue del math. We have to remove those individual functions separately. The 
following two commands demonstrate such an effect:

>>>from math import *
>>>del math
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
del math NameError: name 'math' is not defined
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For convenience, we could import only a few needed functions. To price a European 
call option, several functions are needed, such as log(), exp(), sqrt() and cdf(). 
cdf() is the function for cumulative standard normal distribution. To make those four 
functions available, we specify their names, as shown in the following lines of code:

From scipy import log,exp,sqrt,stats

The complete codes for pricing Black-Scholes-Merton call options are given here:

def bsCall(S,X,T,r,sigma):
    from scipy import log,exp,sqrt,stats
    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))
    d2 = d1-sigma*sqrt(T)
    return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2) 

One example of calling the bsCall function is given here:

>>> bsCall(40,40,0.1,0.05,0.2)
1.1094616585675574

To find all available modules, a help window should be activated first. After that, 
issue modules. The result is shown here:

>>> help()
>>> 
Welcome to Python 3.5's help utility!

If this is your first time using Python, you should definitely check out the tutorial on 
the internet at http://docs.python.org/3.5/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing Python 
programs and using Python modules. To quit this help utility and return to the 
interpreter, just type quit.

To get a list of available modules, keywords, symbols, or topics, type modules, 
keywords, symbols, or topics. Each module also comes with a one-line summary of 
what it does; to list the modules whose name or summary contain a given string such 
as spam, type modules spam:

help>

Then, we issue modules under the Python help> prompt as shown in the following 
screenshot (to save space, only the first part of it is shown):

http://docs.python.org/3.5/tutorial/
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To find a specific module, we just type modules followed by the module's name. 
Assume that we are interested in the module called cmd. Then, we issue modules 
cmd in the help window; see the following screenshot:

To get more information on modules, navigate to All Programs | Python 3.5 | 
Python 3.5 Module Docs, as shown in the following screenshot:

After clicking Python 3.5 Module Docs (32-bit), we will get more information.
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Introduction to NumPy
In the following examples, the np.size() function from NumPy shows the  
number of data items of an array, and the np.std() function is used to calculate 
standard deviation:

>>>import numpy as np
>>>x= np.array([[1,2,3],[3,4,6]])     # 2 by 3 matrix
>>>np.size(x)                         # number of data items
6
>>>np.size(x,1)                       # show number of columns
3
>>>np.std(x)
1.5723301886761005
>>>np.std(x,1)
Array([ 0.81649658, 1.24721913]
>>>total=x.sum()                      # attention to the format
>>>z=np.random.rand(50)               #50 random obs from [0.0, 1)
>>>y=np.random.normal(size=100)       # from standard normal
>>>r=np.array(range(0,100),float)/100 # from 0, .01,to .99

Compared with a Python array, a NumPy array is a contiguous piece of memory 
that is passed directly to LAPACK, which is a software library for numerical linear 
algebra under the hood, so that matrix manipulation is very fast in Python. An 
array in NumPy is like a matrix in MATLAB. Unlike lists in Python, an array should 
contain the same data type, as shown in the following line of code:

>>>np.array([100,0.1,2],float)

The real data type is float64, and the default for numerical values is also float64.

In the preceding example, we could view that the np.array() function converts a 
list with the same data type, an integer in this case, to an array. To change the data 
type, it should be specified with the second input value, dtype, as shown in the 
following lines of code:

>>>x=[1,2,3,20]
>>>y=np.array(x1,dtype=float)
>>>y
array([ 1., 2., 3., 20.])
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In the previous example, dtype is the keyword specifying the data type. For a list, 
different data types could coexist without causing any problems. However, when 
converting a list containing different data types into an array, an error message will 
appear, as shown in the following lines of code:

>>>x2=[1,2,3,"good"]
>>>x2
[1, 2, 3, 'good']
>>>y3=np.array(x2,float)
Traceback (most recent call last):
File "<pyshell#25>", line 1, in <module>
y3=np.array(x2,float)
ValueError: could not convert string to float: 'good'
. ]])

To show all functions contained in Numpy, dir(np) is used after the Numpy 
module is imported.

The following shows the first few lines:

>>> import numpy as np
>>> dir(np)
['ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'ComplexWarning', 'DataSource', 
'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG', 'ERR_PRINT', 
'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT', 'FPE_DIVIDEBYZERO', 
'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'False_', 'Inf', 
'Infinity', 'MAXDIMS', 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 
'MachAr', 'ModuleDeprecationWarning', 'NAN', 'NINF', 'NZERO', 'NaN', 
'PINF', 'PZERO', 'PackageLoader', 'RAISE', 'RankWarning', 'SHIFT_
DIVIDEBYZERO', 'SHIFT_INVALID', 'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 
'ScalarType', 'Tester', 'TooHardError', 'True_', 'UFUNC_BUFSIZE_
DEFAULT', 'UFUNC_PYVALS_NAME', 'VisibleDeprecationWarning', 'WRAP', '_
NoValue', '__NUMPY_SETUP__', '__all__', '__builtins__', '__cached__', 
'__config__', '__doc__', '__file__', '__git_revision__', '__loader__', 
'__mkl_version__', '__name__', '__package__', '__path__', '__spec__', 
'__version__', '_import_tools', '_mat', 'abs', 'absolute', 'absolute_
import', 'add', 'add_docstring', 'add_newdoc', 'add_newdoc_ufunc', 
'add_newdocs', 'alen', 'all', 'allclose', 'alltrue', 'alterdot', 
'amax', 'amin', 'angle', 'any', 'append', 'apply_along_axis', 'apply_
over_axes', 'arange', 'arccos', 'arccosh', 'arcsin', 'arcsinh', 
'arctan', 'arctan2', 'arctanh', 'argmax', 'argmin', 'argpartition', 
'argsort', 'argwhere', 'around', 'array', 'array2string', 'array_
equal', 'array_equiv', 'array_repr', 'array_split', 'array_str', 
'asanyarray',
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Actually, a better way is to generate an array containing all functions as follows:

>>> x=np.array(dir(np))
>>> len(x)
598

To show the functions from 200 to 250, x[200:250] is typed; see the following code:

>>> x[200:250]
array(['disp', 'divide', 'division', 'dot', 'double', 'dsplit', 
'dstack',
       'dtype', 'e', 'ediff1d', 'einsum', 'emath', 'empty', 'empty_
like',
       'equal', 'errstate', 'euler_gamma', 'exp', 'exp2', 'expand_
dims',
       'expm1', 'extract', 'eye', 'fabs', 'fastCopyAndTranspose', 
'fft',
       'fill_diagonal', 'find_common_type', 'finfo', 'fix', 
'flatiter',
       'flatnonzero', 'flexible', 'fliplr', 'flipud', 'float', 
'float16',
       'float32', 'float64', 'float_', 'floating', 'floor', 'floor_
divide',
       'fmax', 'fmin', 'fmod', 'format_parser', 'frexp', 'frombuffer',
       'fromfile'], 
      dtype='<U25')
>> > 

It is easy to find out more information about a specific function. After issuing 
dir(np), the std() function appears, among others. To seek more information about 
this function, help(np.std) is used. The following shows only a few lines of code 
for brevity:

>>>import numpy as np
>>>help(np.std)
Help on function std in module numpy.core.fromnumeric:

std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
    Compute the standard deviation along the specified axis.
    

The function returns the standard deviation, a measure of the spread of a 
distribution, of the array elements. The standard deviation is computed for the 
flattened array by default, otherwise over the specified axis:

    
    Parameters
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    ----------
   a : array_like
      Calculate the standard deviation of these values.
   axis : None or int or tuple of ints, optional
Axis or axes along which the standard deviation is computed. The
default is to compute the standard deviation of the flattened array.

        .. versionadded: 1.7.0

Introduction to SciPy
The following are a few examples based on the functions enclosed in the SciPy 
module. The sp.npv() function estimates the present values for a given set of cash 
flows with the first cash flow happening at time zero. The first input value is the 
discount rate, and the second input is an array of all cash flows.

The following is one example. Note that the sp.npv() function is different from the 
Excel npv() function. We will explain why this is so in Chapter 3, Time Value of Money:

>>>import scipy as sp
>>>cashflows=[-100,50,40,20,10,50]
>>>x=sp.npv(0.1,cashflows)
>>>round(x,2)
>>>31.41

The sp.pmt() function is used to answer the following question.

What is the monthly cash flow to pay off a mortgage of $250,000 over 30 years 
with an annual percentage rate (APR) of 4.5 percent, compounded monthly? The 
following code shows the answer:

>>>payment=sp.pmt(0.045/12,30*12,250000)
>>>round(payment,2)
-1266.71

Based on the preceding result, the monthly payment will be $1,266.71. It might be 
quite strange that we have a negative value. Actually, this sp.pmt() function mimics 
the equivalent function in Excel, as we will see in the following screenshot:
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The input values are: the effective period rate, the number of the period, and the 
present value. By the way, the number in a pair of parentheses means a negative one.

At the moment, just ignore the negative sign. In Chapter 3, Time Value of Money, this 
so-called Excel convention will be discussed in more detail.

Similarly, the sp.pv() function replicates the Excel PV() function. For the sp.pv() 
function, its input format is sp.pv(rate, nper, pmt, fv=0.0, when='end'), 
where rate is the discount rate, nper is the number of periods, pmt is the period 
payment, and fv is the future value with a default value of zero. The last input 
variable specifies whether the cash flows are at the end of each time period or at the 
beginning of each period. By default, it is at the end of each period. The following 
commands show how to call this function:

>>>pv1=sp.pv(0.1,5,0,100) # pv of one future cash flow
>>>round(pv1,2)
-92.09
>>>pv2=sp.pv(0.1,5,100)   # pv of annuity
>>>round(pv2,2)
-379.08

The sp.fv() function has a setting similar to that of sp.pv(). In finance, we estimate 
both arithmetic and geometric means, which are defined in the following formulas.

For n numbers of x, that is, x1, x2, x3, and xn, we have the following:

Here,  and . Assume that we have  
three numbers of a, b, and c. Then their arithmetic mean is (a+b+c)/3, while their 
geometric mean is (a*b*c)^(1/3). For three values of 2, 3, and 4, we have the  
following two means:

>>>(2+3+4)/3.
>>>3.0
>>>geo_mean=(2*3*4)**(1./3)
>>>round(geo_mean,4)
2.8845
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If n returns are given, the formula to estimate their arithmetic mean remains the 
same. However, the geometric mean formula for returns is different, as shown here:

G

To estimate a geometric mean, the sp.prod() function would be applied. The 
function gives us the products of all data items; see the following code:

>>>import scipy as sp
>>>ret=sp.array([0.1,0.05,-0.02])
>>>sp.mean(ret)                      # arithmetic mean
0.04333
>>>pow(sp.prod(ret+1),1./len(ret))-1 # geometric mean
0.04216

Actually, a simple Python function could be written with just two lines to calculate a 
geometric mean for a set of given returns; see the following code:

def geoMeanReturn(ret):
    return pow(sp.prod(ret+1),1./len(ret))-1

It is easy to call the preceding function; see the following code:

>>> import scipy as sp
>>> ret=sp.array([0.1,0.05,-0.02])
>>> geoMeanReturn(ret)
0.042163887067679262

Two other useful functions are sp.unique() and sp.median(), as shown in the 
following code:

>>>sp.unique([2,3,4,6,6,4,4])
Array([2,3,4,6])
>>>sp.median([1,2,3,4,5])
3.0

Python's sp.pv(), sp.fv(), and sp.pmt() functions behave like Excel's pv(), fv(), 
and pmt() functions, respectively. They have the same sign convention: the sign of 
the present value is the opposite of the future value.
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In the following example, to estimate a present value if we enter a positive future 
value, we will end up with a negative present value:

>>>import scipy as sp
>>>round(sp.pv(0.1,5,0,100),2)
>>>-62.09
>>>round(sp.pv(0.1,5,0,-100),2)
>>>62.09

There are several ways to find out all the functions contained in the SciPy module.

Firstly, we can read related manuals. Secondly, we can issue the following lines  
of code:

>>>import numpy as np
>>>dir(np)

To save space, only a few lines of the output are shown in the following code:

>>> import scipy as sp
>>> dir(sp)
['ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'ComplexWarning', 'DataSource', 
'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG', 'ERR_PRINT', 
'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT', 'FPE_DIVIDEBYZERO', 
'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'False_', 'Inf', 
'Infinity', 'MAXDIMS', 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 
'MachAr', 'ModuleDeprecationWarning', 'NAN', 'NINF', 'NZERO', 'NaN', 
'PINF', 'PZERO', 'PackageLoader', 'RAISE', 'RankWarning', 'SHIFT_
DIVIDEBYZERO', 'SHIFT_INVALID', 'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 
'ScalarType', 'Tester', 'TooHardError', 'True_', 'UFUNC_BUFSIZE_
DEFAULT', 'UFUNC_PYVALS_NAME', 'VisibleDeprecationWarning', 'WRAP', 
'__SCIPY_SETUP__', '__all__', '__builtins__', '__cached__', '__
config__', '__doc__', '__file__', '__loader__', '__name__', '__numpy_
version__', '__package__', '__path__', '__spec__', '__version__', 
'_lib', 'absolute', 'absolute_import', 'add', 'add_docstring', 'add_
newdoc', 'add_newdoc_ufunc', 'add_newdocs', 'alen', 'all', 'allclose', 
'alltrue', 'alterdot', 'amax', 'amin', 'angle', 'any', 'append', 
'apply_along_axis', 'apply_over_axes', 'arange', 'arccos', 'arccosh', 
'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh', 'argmax', 
'argmin', 'argpartition', 'argsort', 'argwhere', 'around', 'array', 
'array2string', 'array_equal', 'array_equiv', 'array_repr', 'array_
split', 'array_str', 'asanyarray', 'asarray', 'asarray_chkfinite', 
'ascontiguousarray', 'asfarray', 'asfortranarray', 'asmatrix', 
'asscalar', 'atleast_1d', 'atleast_2d', 'atleast_3d', 'average', 
'bartlett',
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Similarly, we could save all the functions to a vector (array); see the following code:

>>>import scipy as sp
>>> x=dir(sp)
>>> len(x)
588
>>>

Introduction to matplotlib
Graphs and other visual representations have become more important in explaining 
many complex financial concepts, trading strategies, and formulas.

In this section, we discuss the matplotlib module, which is used to create various 
types of graphs. In addition, the module will be used intensively in Chapter 10, 
Options and Futures, when we discuss the famous Black-Scholes-Merton option model 
and various trading strategies. The matplotlib module is designed to produce 
publication-quality figures and graphs. The matplotlib module depends on NumPy 
and SciPy, which were discussed in the previous sections. To save generated graphs, 
there are several output formats available, such as PDF, Postscript, SVG, and PNG.

How to install matplotlib
If Python was installed by using the Anaconda super package, then matplotlib is 
preinstalled already. After launching Spyder, type the following line to test. If there 
is no error, it means that we have imported/uploaded the module successfully. This 
is the beauty of using a super package such as Anaconda:

>>> import matplotlib

To install the matplotlib module or other modules independently, see the Module 
dependency – how to install a module section.

Several graphical presentations using 
matplotlib
The best way to understand the usage of the matplotlib module is through 
examples. The following example could be the simplest one since it has just 
three lines of Python code. The objective is to link several points. By default, the 
matplotlib module assumes that the x axis starts at zero and moves by one on every 
element of the array.
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The following screenshot of command lines illustrates this situation:

After typing the last command of show() and hitting the Enter key, the above-right 
graph will appear. At the top of the graph, a set of icons (functions) are available. 
By clicking them, we could adjust our image or save our image. After closing the 
preceding figure, we could return to the Python prompt. On the other hand, if we 
issue show() a second time, nothing will happen. To show the preceding graph 
again, we have to issue both plot([1,2,3,9]) and show(). Two labels could be 
added for both the x axis and y axis as follows.

The corresponding graph is shown in the following screenshot on the right:
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The next example presents two cosine functions:

In the preceding code, the linspace() function has four input values: start, stop, 
num, and endpoint. In the preceding example, we will start from -3.1415916 and stop 
at 3.1415926, with 256 values between. In addition, the endpoints will be included. 
By the way, the default value of num is 50. The following example shows the scatter 
pattern. First, the np.random.normal() function is used to generate two sets of 
random numbers. Since n is 1024, we have 1,024 observations for both X and Y 
variables. The key function is scatter(X,Y), as follows:

Here is a more complex graph showing the stock movement. Let's look at the  
code first:

import datetime
import matplotlib.pyplot as plt
from matplotlib.finance import quotes_historical_yahoo_ochl
from matplotlib.dates import MonthLocator,DateFormatter
ticker='AAPL'
begdate= datetime.date( 2012, 1, 2 )
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enddate = datetime.date( 2013, 12,5)
months = MonthLocator(range(1,13), bymonthday=1, interval=3) # every 
3rd month
monthsFmt = DateFormatter("%b '%Y")
x = quotes_historical_yahoo_ochl(ticker, begdate, enddate)
if len(x) == 0:
    print ('Found no quotes')
    raise SystemExit
dates = [q[0] for q in x]
closes = [q[4] for q in x]
fig, ax = plt.subplots()
ax.plot_date(dates, closes, '-')
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(monthsFmt)
ax.xaxis.set_minor_locator(mondays)
ax.autoscale_view()
ax.grid(True)
fig.autofmt_xdate()

The corresponding graph is shown here:
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Introduction to statsmodels
statsmodels is a powerful Python package for many types of statistical analysis. 
Again, if Python was installed via Anaconda, then the module was installed at the 
same time. In statistics, ordinary least square (OLS) regression is a method for 
estimating the unknown parameters in a linear regression model. It minimizes the sum 
of squared vertical distances between the observed values and the values predicted 
by the linear approximation. The OLS method is used extensively in finance. Assume 
that we have the following equation, where y is an n by 1 vector (array), and x is an n 
by (m+1) matrix, a return matrix (n by m), plus a vector that contains 1 only. n is the 
number of observations, and m is the number of independent variables:

In the following program, after generating the x and y vectors, we run an OLS 
regression (a linear regression). The x and y are artificial data. The last line prints the 
parameters only (the intercept is 1.28571420 and the slope is 0.35714286):

>>> import numpy as np
>>> import statsmodels.api as sm
>>> y=[1,2,3,4,2,3,4]
>>> x=range(1,8)
>>> x=sm.add_constant(x)
>>> results=sm.OLS(y,x).fit()
>>> print(results.params)
     [ 1.28571429  0.35714286]

To find out more information about this module, the dir() function could be used:

>>> import statsmodels as sm
>>> dir(sm)
['CacheWriteWarning', 'ConvergenceWarning', 'InvalidTestWarning', 
'IterationLimitWarning', 'NoseWrapper', 'Tester', '__builtins__', 
'__cached__', '__doc__', '__docformat__', '__file__', '__init__', 
'__loader__', '__name__', '__package__', '__path__', '__spec__', 
'__version__', 'api', 'base', 'compat', 'datasets', 'discrete', 
'distributions', 'duration', 'emplike', 'errstate', 'formula', 
'genmod', 'graphics', 'info', 'iolib', 'nonparametric', 'print_
function', 'regression', 'robust', 'sandbox', 'simplefilter', 'stats', 
'test', 'tools', 'tsa', 'version']
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For various submodules, dir() could be used as well; see the example shown here:

>>> import statsmodels.api as api
>>> dir(api)               
['Categorical', 'CategoricalIndex', 'DataFrame', 'DateOffset', 
'DatetimeIndex', 'ExcelFile', 'ExcelWriter', 'Expr', 'Float64Index', 
'Grouper', 'HDFStore', 'Index', 'IndexSlice', 'Int64Index', 
'MultiIndex', 'NaT', 'Panel', 'Panel4D', 'Period', 'PeriodIndex', 
'RangeIndex', 'Series', 'SparseArray', 'SparseDataFrame', 
'SparseList', 'SparsePanel', 'SparseSeries', 'SparseTimeSeries', 
'Term', 'TimeGrouper', 'TimeSeries', 'Timedelta', 'TimedeltaIndex', 
'Timestamp', 'WidePanel', '__builtins__', '__cached__', '__doc__', 
'__docformat__', '__file__', '__loader__', '__name__', '__package__', 
'__path__', '__spec__', '__version__', '_np_version_under1p10', 
'_np_version_under1p11', '_np_version_under1p12', '_np_version_
under1p8', '_np_version_under1p9', '_period', '_sparse', '_testing', 
'_version', 'algos', 'bdate_range', 'compat', 'computation', 'concat', 
'core', 'crosstab', 'cut', 'date_range', 'datetime', 'datetools', 
'dependency', 'describe_option', 'eval', 'ewma', 'ewmcorr', 'ewmcov', 
'ewmstd', 'ewmvar', 'ewmvol', 'expanding_apply', 'expanding_corr', 
'expanding_count', 'expanding_cov', 'expanding_kurt', 'expanding_max', 
'expanding_mean', 'expanding_median', 'expanding_min', 'expanding_
quantile', 'expanding_skew', 'expanding_std', 'expanding_sum', 
'expanding_var', 'factorize', 'fama_macbeth', 'formats', 'get_
dummies', 'get_option', 'get_store', 'groupby', 'hard_dependencies', 
'hashtable', 'index', 'indexes', 'infer_freq', 'info', 'io', 
'isnull', 'json', 'lib', 'lreshape', 'match', 'melt', 'merge', 
'missing_dependencies', 'msgpack', 'notnull', 'np', 'offsets', 'ols', 
'option_context', 'options', 'ordered_merge', 'pandas', 'parser', 
'period_range', 'pivot', 'pivot_table', 'plot_params', 'pnow', 'qcut', 
'read_clipboard', 'read_csv', 'read_excel', 'read_fwf', 'read_gbq', 
'read_hdf', 'read_html', 'read_json', 'read_msgpack', 'read_pickle', 
'read_sas', 'read_sql', 'read_sql_query', 'read_sql_table', 'read_
stata', 'read_table', 'reset_option', 'rolling_apply', 'rolling_
corr', 'rolling_count', 'rolling_cov', 'rolling_kurt', 'rolling_max', 
'rolling_mean', 'rolling_median', 'rolling_min', 'rolling_quantile', 
'rolling_skew', 'rolling_std', 'rolling_sum', 'rolling_var', 'rolling_
window', 'scatter_matrix', 'set_eng_float_format', 'set_option', 
'show_versions', 'sparse', 'stats', 'test', 'timedelta_range', 'to_
datetime', 'to_msgpack', 'to_numeric', 'to_pickle', 'to_timedelta', 
'tools', 'tseries', 'tslib', 'types', 'unique', 'util', 'value_
counts', 'wide_to_long']
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From the preceding output, it can be seen that 16 functions start with the word read; 
see the following table:

Name Description
read_clipboard Input data from a clipboard
read_csv Input data from a csv (comma separated value)
read_excel Input data from an Excel file
read_fwf Input data with a fixed width
read_gbq Load data from Google BigQuery
read_hdf Read HDF5 format data
read_html Input data from a web page
read_json Read JSON (JavaScript Object Notation) data
read_msgpack MessagePack is a fast, compact binary serialization format, 

suitable for similar data to JSON
read_pickle Input a Python dataset called pickle
read_sas Input data from a SAS dataset
read_sql Input data from SQL database
read_sql_query Input data from a query 
read_sql_table Read SQL database table into a DataFrame
read_stata Input data from a Stata dataset
read_table Input data from a text file

Table 2.1 A list of functions used to input data

Introduction to pandas
The pandas module is a powerful tool used to process various types of data, including 
economics, financial, and accounting data. If Python was installed on your machine via 
Anaconda, then the pandas module was installed already. If you issue the following 
command without any error, it indicates that the pandas module was installed:

>>>import pandas as pd

In the following example, we generate two time series starting from January 1, 2013. 
The names of those two time series (columns) are A and B:

import numpy as np
import pandas as pd
dates=pd.date_range('20160101',periods=5)
np.random.seed(12345)
x=pd.DataFrame(np.random.rand(5,2),index=dates,columns=('A','B'))
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First, we import both NumPy and pandas modules. The pd.date_range() function 
is used to generate an index array. The x variable is a pandas DataFrame with dates 
as its index. Later in this chapter, we will discuss the pd.DataFrame() function. 
The columns() function defines the names of those columns. Because the seed() 
function is used in the program, anyone can generate the same random values. The 
describe() function offers the properties of those two columns, such as mean and 
standard deviation. Again, we call such a function, as shown in the following code:

>>> x
                   A         B
2016-01-01  0.929616  0.316376
2016-01-02  0.183919  0.204560
2016-01-03  0.567725  0.595545
2016-01-04  0.964515  0.653177
2016-01-05  0.748907  0.653570
>>>
>>> x.describe()
              A         B
count  5.000000  5.000000
mean   0.678936  0.484646
std    0.318866  0.209761
min    0.183919  0.204560
25%    0.567725  0.316376
50%    0.748907  0.595545
75%    0.929616  0.653177
max    0.964515  0.653570
>>>

To show all functions contained in the pandas module, the command of dir(pd) is 
used after importing the module; see the following code and the corresponding output:

>>> import pandas as pd
>>> dir(pd)
['Categorical', 'CategoricalIndex', 'DataFrame', 'DateOffset', 
'DatetimeIndex', 'ExcelFile', 'ExcelWriter', 'Expr', 'Float64Index', 
'Grouper', 'HDFStore', 'Index', 'IndexSlice', 'Int64Index', 
'MultiIndex', 'NaT', 'Panel', 'Panel4D', 'Period', 'PeriodIndex', 
'RangeIndex', 'Series', 'SparseArray', 'SparseDataFrame', 
'SparseList', 'SparsePanel', 'SparseSeries', 'SparseTimeSeries', 
'Term', 'TimeGrouper', 'TimeSeries', 'Timedelta', 'TimedeltaIndex', 
'Timestamp', 'WidePanel', '__builtins__', '__cached__', '__doc__', 
'__docformat__', '__file__', '__loader__', '__name__', '__package__', 
'__path__', '__spec__', '__version__', '_np_version_under1p10', 
'_np_version_under1p11', '_np_version_under1p12', '_np_version_
under1p8', '_np_version_under1p9', '_period', '_sparse', '_testing', 
'_version', 'algos', 'bdate_range', 'compat', 'computation', 'concat', 
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'core', 'crosstab', 'cut', 'date_range', 'datetime', 'datetools', 
'dependency', 'describe_option', 'eval', 'ewma', 'ewmcorr', 'ewmcov', 
'ewmstd', 'ewmvar', 'ewmvol', 'expanding_apply', 'expanding_corr', 
'expanding_count', 'expanding_cov', 'expanding_kurt', 'expanding_max', 
'expanding_mean', 'expanding_median', 'expanding_min', 'expanding_
quantile', 'expanding_skew', 'expanding_std', 'expanding_sum', 
'expanding_var', 'factorize', 'fama_macbeth', 'formats', 'get_
dummies', 'get_option', 'get_store', 'groupby', 'hard_dependencies', 
'hashtable', 'index', 'indexes', 'infer_freq', 'info', 'io', 
'isnull', 'json', 'lib', 'lreshape', 'match', 'melt', 'merge', 
'missing_dependencies', 'msgpack', 'notnull', 'np', 'offsets', 'ols', 
'option_context', 'options', 'ordered_merge', 'pandas', 'parser', 
'period_range', 'pivot', 'pivot_table', 'plot_params', 'pnow', 'qcut', 
'read_clipboard', 'read_csv', 'read_excel', 'read_fwf', 'read_gbq', 
'read_hdf', 'read_html', 'read_json', 'read_msgpack', 'read_pickle', 
'read_sas', 'read_sql', 'read_sql_query', 'read_sql_table', 'read_
stata', 'read_table', 'reset_option', 'rolling_apply', 'rolling_
corr', 'rolling_count', 'rolling_cov', 'rolling_kurt', 'rolling_max', 
'rolling_mean', 'rolling_median', 'rolling_min', 'rolling_quantile', 
'rolling_skew', 'rolling_std', 'rolling_sum', 'rolling_var', 'rolling_
window', 'scatter_matrix', 'set_eng_float_format', 'set_option', 
'show_versions', 'sparse', 'stats', 'test', 'timedelta_range', 'to_
datetime', 'to_msgpack', 'to_numeric', 'to_pickle', 'to_timedelta', 
'tools', 'tseries', 'tslib', 'types', 'unique', 'util', 'value_
counts', 'wide_to_long']

If going through the preceding list carefully, we will see the same functions starting 
with read_, shown in Table 2.1, as those contained in the statsmodels module. This 
type of duplication makes our program job a little bit easier. Assume that we plan 
to replace missing values (NaN) with the mean of the time series. The two functions 
used are mean() and fillna():

>>> import pandas as pd
>>> import numpy as np
>>> x=pd.Series([1,4,-3,np.nan,5])
>>> x
0    1.0
1    4.0
2   -3.0
3    NaN
4    5.0
dtype: float64
>>> m=np.mean(x)
>>> m
1.75
>>> x.fillna(m)
0    1.00
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1    4.00
2   -3.00
3    1.75
4    5.00
dtype: float64>> >

From the output on the right-hand side, the fourth observation of NaN is replaced 
with a mean of 1.75. In the following code, we generate a DataFrame by using the 
dataFrame() function contained in the pandas module:

import pandas as pd
import numpy as np
np.random.seed(123)
df = pd.DataFrame(np.random.randn(10, 4))

Since, in the program, the numpy.random.seed() function is used, different users 
will get the same random numbers:

>>> df
>>> 
          0         1         2         3
0 -1.085631  0.997345  0.282978 -1.506295
1 -0.578600  1.651437 -2.426679 -0.428913
2  1.265936 -0.866740 -0.678886 -0.094709
3  1.491390 -0.638902 -0.443982 -0.434351
4  2.205930  2.186786  1.004054  0.386186
5  0.737369  1.490732 -0.935834  1.175829
6 -1.253881 -0.637752  0.907105 -1.428681
7 -0.140069 -0.861755 -0.255619 -2.798589
8 -1.771533 -0.699877  0.927462 -0.173636
9  0.002846  0.688223 -0.879536  0.283627
>>>

At the moment, readers might be confused why we would get the same random 
values while trying to get a set of random numbers. This topic will be discussed and 
explained in more detail in Chapter 12, Monte Carlo Simulation. In the following code, 
how to use different ways to interpolate is presented:

import pandas as pd
import numpy as np
np.random.seed(123)                   # fix the random numbers 
x=np.arange(1, 10.1, .25)**2      
n=np.size(x)
y = pd.Series(x + np.random.randn(n))
bad=np.array([4,13,14,15,16,20,30])   # generate a few missing values
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x[bad] = np.nan                       # missing code is np.nan
methods = ['linear', 'quadratic', 'cubic']
df = pd.DataFrame({m: x.interpolate(method=m) for m in methods})
df.plot()

The corresponding graph is shown in the following screenshot:

Usually, different languages have their own types of datasets.

For example, SAS has its datasets with an extension of .sas7bdat.

For R, its extensions could be .RData, .rda, or .rds. This is true for Python to have 
its own datasets. One type of dataset is with an extension of .pickle or .pkl. Let's 
generate a pickle dataset; see the following code:

import numpy as np
import pandas as pd
np.random.seed(123)
df=pd.Series(np.random.randn(100))
df.to_pickle('test.pkl')

The last command saves the variable to a pickle dataset called test.pkl under 
the current working directory. To save the pickle dataset to a file under a specific 
address, that is, an absolute address, we have the following code:

df.to_pickle('test.pkl')



Introduction to Python Modules

[ 56 ]

To read a pickle dataset, the pd.read_pickle() function is used:

>>>import pandas as pd
>>>x=pd.read_pickle("c:/temp/test.pkl")
>>>x[:5]
>>> 
>>> 
0   -1.085631
1    0.997345
2    0.282978
3   -1.506295
4   -0.578600
dtype: float64
>>>

Merging two different sets is one of the common procedures researchers are 
routinely doing. The objective of the following program is to merge two datasets 
based on their common variable called key:

import numpy as np
import pandas as pd
x = pd.DataFrame({'key':['A','B','C','D'],'value': [0.1,0.2,-
0.5,0.9]})
y = pd.DataFrame({'key':['B','D','D','E'],'value': [2, 3, 4, 6]})
z=pd.merge(x, y, on='key')

The initial values for x and y, plus the merged dataset, called z, are shown in the 
following code:

>>> x
  key  value
0   A    0.1
1   B    0.2
2   C   -0.5
3   D    0.9
>>> y
  key  value
0   B      2
1   D      3
2   D      4
3   E      6numpy as np
>>>z
  key  value_x  value_y
0   B      0.2        2
1   D      0.9        3
2   D      0.9        4
>>>
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For finance, time series occupy a unique position since many datasets are in the form 
of time series, such as stock prices and returns. Thus, knowing how to define a date 
variable and study related functions is essential for processing economics, financial, 
and accounting data. Let's look at a few examples:

>>> date1=pd.datetime(2010,2,3)
>>> date1
datetime.datetime(2010, 2, 3, 0, 0)

The difference between two dates can be easily estimated; see the following code:

>>>date1=pd.datetime(2010,2,3)
>>>date2=pd.datetime(2010,3,31)
>>> date2-date1
datetime.timedelta(56)

From the pandas module, one submodule called datetools is quite useful; see the 
list of functions contained in it:

>>> dir(pd.datetools)
>>> 
['ABCDataFrame', 'ABCIndexClass', 'ABCSeries', 'AmbiguousTimeError', 
'BDay', 'BMonthBegin', 'BMonthEnd', 'BQuarterBegin', 'BQuarterEnd', 
'BYearBegin', 'BYearEnd', 'BusinessDay', 'BusinessHour', 
'CBMonthBegin', 'CBMonthEnd', 'CDay', 'CustomBusinessDay', 
'CustomBusinessHour', 'DAYS', 'D_RESO', 'DateOffset', 
'DateParseError', 'Day', 'Easter', 'FY5253', 'FY5253Quarter', 
'FreqGroup', 'H_RESO', 'Hour', 'LastWeekOfMonth', 'MONTHS', 'MS_
RESO', 'Micro', 'Milli', 'Minute', 'MonthBegin', 'MonthEnd', 
'MutableMapping', 'Nano', 'OLE_TIME_ZERO', 'QuarterBegin', 
'QuarterEnd', 'Resolution', 'S_RESO', 'Second', 'T_RESO', 
'Timedelta', 'US_RESO', 'Week', 'WeekOfMonth', 'YearBegin', 
'YearEnd', '__builtins__', '__cached__', '__doc__', '__file__', 
'__loader__', '__name__', '__package__', '__spec__', 'algos', 
'bday', 'bmonthBegin', 'bmonthEnd', 'bquarterEnd', 'businessDay', 
'byearEnd', 'cache_readonly', 'cbmonthBegin', 'cbmonthEnd', 'cday', 
'com', 'compat', 'customBusinessDay', 'customBusinessMonthBegin', 
'customBusinessMonthEnd', 'datetime', 'day', 'deprecate_kwarg', 
'format', 'getOffset', 'get_base_alias', 'get_freq', 'get_freq_code', 
'get_freq_group', 'get_legacy_offset_name', 'get_offset', 'get_offset_
name', 'get_period_alias', 'get_standard_freq', 'get_to_timestamp_
base', 'infer_freq', 'isBMonthEnd', 'isBusinessDay', 'isMonthEnd', 
'is_subperiod', 'is_superperiod', 'lib', 'long', 'monthEnd', 
'need_suffix', 'normalize_date', 'np', 'offsets', 'ole2datetime', 
'opattern', 'parse_time_string', 'prefix_mapping', 'quarterEnd', 
'range', 're', 'thisBMonthEnd', 'thisBQuarterEnd', 'thisMonthEnd', 
'thisQuarterEnd', 'thisYearBegin', 'thisYearEnd', 'time', 'timedelta', 
'to_datetime', 'to_offset', 'to_time', 'tslib', 'unique', 'warnings', 
'week', 'yearBegin', 'yearEnd', 'zip']
>>>
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Here is one example to use the weekday() function contained in the pandas 
module. This function will be essential when tests are conducted to test the so-called 
Weekday-Effect. This test will be explained in detail in Chapter 4, Sources of Data. So 
let's see the following code:

>>import pandas as pd
>>>date1=pd.datetime(2010,10,10)
>>>date1.weekday()
6

Under certain situations, users might want to stack data together or the other way 
around; see the following code:

import pandas as pd
import numpy as np
np.random.seed(1256)
df=pd.DataFrame(np.random.randn(4,2),columns=['Stock A','Stock B'])
df2=df.stack()

The comparison of the original dataset and the stacked datasets is given here. The 
left-hand side is the original dataset:

>>> df
    Stock A   Stock B
0  0.452820 -0.892822
1 -0.476880  0.393239
2  0.961438 -1.797336
3 -1.168289  0.187016
>>>
>>> df2
>>> 
0  Stock A    0.452820
   Stock B   -0.892822
1  Stock A   -0.476880
   Stock B    0.393239
2  Stock A    0.961438
   Stock B   -1.797336
3  Stock A   -1.168289
   Stock B    0.187016
dtype: float64>> >

The opposite operation of stock is to apply the unstack() function; see the  
following code:

>>> k=df2.unstack()
>>> k
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    Stock A   Stock B
0  0.452820 -0.892822
1 -0.476880  0.393239
2  0.961438 -1.797336
3 -1.168289  0.187016

This operation could be applied to generate a return matrix if the input dataset is 
sorted by stock ID and date, that is, a dataset viewed as stacked one stock after another.

Python modules related to finance
Since this book is applying Python to finance, the modules (packages) related to 
finance will be our first priority.

The following table presents about a dozen Python modules or submodules related 
to finance:

Name Description
Numpy.lib.
financial

Many functions for corporate finance and financial management.

pandas_datareader Retrieves data from Google, Yahoo! Finance, FRED, Fama-French 
factors.

googlefinance Python module to get real-time (no delay) stock data from Google 
Finance API.

yahoo-finance Python module to get stock data from Yahoo! Finance.
Python_finance Download and analyze Yahoo! Finance data and develop trading 

strategies.
tstockquote Retrieves stock quote data from Yahoo! Finance. 
finance Financial risk calculations. Optimized for ease of use through 

class construction and operator overload.
quant Enterprise architecture for quantitative analysis in finance.
tradingmachine A backtester for financial algorithms.
economics Functions and data manipulation for economics data. Check the 

following link for better understanding:
https://github.com/tryggvib/economics.

FinDates Deals with dates in finance.

Table 2.2 A list of modules or submodules related to finance

https://github.com/tryggvib/economics
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To find out more information about economics, finance or accounting, go to the 
following web pages:

Name Location 
Python Module Index (v3.5) https://docs.python.org/3/py-modindex.html

PyPI – the Python Package 
Index

https://pypi.python.org/pypi

Python Module Index (v2.7) https://docs.python.org/2/py-modindex.html

Table 2.3 Websites related to Python modules (packages)

Introduction to the pandas_reader 
module
Via this module, users can download various economics and financial via  
Yahoo! Finance, Google Finance, Federal Reserve Economics Data (FRED),  
and Fama-French factors.

Assume that the pandas_reader module is installed. For detail on how to install this 
module, see the How to install a Python module section. First, let's look at the simplest 
example, just two lines to get IBM's trading data; see the following:

import pandas_datareader.data as web
df=web.get_data_google("ibm")

We could use a dot head and dot tail to show part of the results; see the following code:

>>> df.head()
>>> 
                  Open        High         Low       Close   Volume  
Date                                                                  
2010-01-04  131.179993  132.970001  130.850006  132.449997  6155300   
2010-01-05  131.679993  131.850006  130.100006  130.850006  6841400   
2010-01-06  130.679993  131.490005  129.809998  130.000000  5605300   
2010-01-07  129.869995  130.250000  128.910004  129.550003  5840600   
2010-01-08  129.070007  130.919998  129.050003  130.850006  4197200   

             Adj Close  
Date                    
2010-01-04  112.285875  
2010-01-05  110.929466  
2010-01-06  110.208865  
2010-01-07  109.827375  

https://docs.python.org/3/py-modindex.html
https://pypi.python.org/pypi
https://docs.python.org/2/py-modindex.html
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2010-01-08  110.929466 
 >> >df.tail()
>>> 
                  Open        High         Low       Close   Volume  
Date                                                                  
2016-11-16  158.460007  159.550003  158.029999  159.289993  2244100   
2016-11-17  159.220001  159.929993  158.850006  159.800003  2256400   
2016-11-18  159.800003  160.720001  159.210007  160.389999  2958700   
2016-11-21  160.690002  163.000000  160.369995  162.770004  4601900   
2016-11-22  163.000000  163.000000  161.949997  162.669998  2707900   

             Adj Close  
Date                    
2016-11-16  159.289993  
2016-11-17  159.800003  
2016-11-18  160.389999  
2016-11-21  162.770004  
2016-11-22  162.669998  
>>>

This module will be explained again in more detail in Chapter 4, Sources of Data.

Two financial calculators
In the next chapter, many basic financial concepts and formulas will be introduced 
and discussed. Usually, when taking corporate finance or financial management, 
students rely on either Excel or a financial calculator to conduct their estimations. 
Since Python is the computational tool, a financial calculator written in Python 
would definitely enhance our understanding of both finance and Python.

Here is the first financial calculator, written in Python, from Numpy.lib.financial; 
see the following code:

>>> import numpy.lib.financial as fin
>>> dir(fin)
['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__
loader__', '__name__', '__package__', '__spec__', '_convert_when', 
'_g_div_gp', '_rbl', '_when_to_num', 'absolute_import', 'division', 
'fv', 'ipmt', 'irr', 'mirr', 'np', 'nper', 'npv', 'pmt', 'ppmt', 
'print_function', 'pv', 'rate']
>>>
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The functions that will be used and discussed in Chapter 3, Time Value of Money, 
include fv(), irr(), nper(), npv(), pmt(), pv(), and rate(). One example of using 
pv() is shown in the following code:

>>> import numpy.lib.financial as fin
>>> fin.pv(0.1,1,0,100)
-90.909090909090907
>>>

The second financial calculator is supplied by the author. There are many advantages 
of using this second financial calculator. First, all its functions possess the same 
format of the formulas from textbooks.

In other words, there is no Excel sign convention.

For example, the pv_f() function will depend on the following formula:

The function called pvAnnuity() is based on the following formula:

Second, the formula of estimating the present value of one future cash flow is 
separated from the formula to estimate the present value of an annuity. This would 
help students, especially beginners, avoid unnecessary confusions.

For a comparison, the numpy.lib.financial.pv() function actually combines 
both equations (6) and (7). We will discuss this in more detail in Chapter 3, Time 
Value of Money. Third, for each function, many examples are offered. It means users 
spend less time trying to figure out the meaning of individual functions. Fourth, this 
second financial calculator offers more functions than the numpy.lib.financial 
submodule can offer. Last but not least, users eventually learn to how to write their 
own financial calculator in Python. For more detail, see the last section in Chapter 3, 
Time Value of Money.

To use such a financial calculator, users should download a file called fincal.
cpython-35.syc at the author's website (http://canisius.edu/~yany/fincal.
cpython-35.pyc). Assume that the executable file is saved under c:/temp/. To add 
c:/temp/ to the Python path, click the rightmost Python logo on the menu bar; see 
the following screenshot:

http://canisius.edu/~yany/fincal.cpython-35.pyc
http://canisius.edu/~yany/fincal.cpython-35.pyc
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After clicking the logo shown in the preceding screenshot, users will see the screen 
shown on the left in the following screenshot:

After clicking Add path, type c:/temp/; see the screen shown on the right in the 
preceding screenshot. Now, we could use import fincal to use all functions 
contained inside the module. In Chapter 3, Time Value of Money, we show how to 
produce such a fincal module:

>>>import fincal
>>>dir(fincal)
['CND', 'EBITDA_value', 'IRR_f', 'IRRs_f', 'NPER', 'PMT', 'Rc_f', 
'Rm_f', '__builtins__', '__cached__', '__doc__', '__file__', '__
loader__', '__name__', '__package__', '__request', '__spec__', 
'bondPrice', 'bsCall', 'convert_B_M', 'duration', 'exp', 'fincalHelp', 
'fvAnnuity', 'fv_f', 'get_200day_moving_avg', 'get_50day_moving_
avg', 'get_52week_high', 'get_52week_low', 'get_EBITDA', 'get_all', 
'get_avg_daily_volume', 'get_book_value', 'get_change', 'get_
dividend_per_share', 'get_dividend_yield', 'get_earnings_per_share', 
'get_historical_prices', 'get_market_cap', 'get_price', 'get_price_
book_ratio', 'get_price_earnings_growth_ratio', 'get_price_earnings_
ratio', 'get_price_sales_ratio', 'get_short_ratio', 'get_stock_
exchange', 'get_volume', 'log', 'market_cap', 'mean', 'modified_
duration', 'n_annuity', 'npv_f', 'payback_', 'payback_period', 'pi', 
'pvAnnuity', 'pvAnnuity_k_period_from_today', 'pvGrowPerpetuity', 
'pvGrowingAnnuity', 'pvPerpetuity', 'pvPerpetuityDue', 'pv_excel', 
'pv_f', 'r_continuous', 're', 'sign', 'sqrt', 'urllib']
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To find the usage of each function, use the help() function; see the following 
example:

>>> import fincal
>>> help(fincal.pv_f)
Help on function pv_f in module fincal:

pv_f(fv, r, n)
    Objective: estimate present value
           fv: fture value
           r : discount period rate
           n : number of periods
     formula : fv/(1+r)**n      
         e.g.,
         >>>pv_f(100,0.1,1)
         90.9090909090909
         >>>pv_f(r=0.1,fv=100,n=1)
         90.9090909090909
         >>>pv_f(n=1,fv=100,r=0.1)
         90.9090909090909
>>>

From the preceding information, users know the objective of the function, the 
definitions of three input values, the formula used, plus a few examples.

How to install a Python module
If Python was installed via Anaconda, there is a good chance that many of the 
modules discussed in this book have been installed together with Python. If Python 
was installed independently, users could use PyPi to install or update.

For example, we are interested in installing NumPy. On Windows, we have the 
following code:

python -m pip install -U pip numpy

If Python.exe is on the path, we could open a DOS window first, then issue the 
preceding line. If Python.exe is not on the path, we open a DOS window, then move 
to the location of the Python.exe file; for an example, see the following screenshot:
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For a Mac, we have the following codes. Sometimes, after running the preceding 
command, you might receive the following message asking for an update of PiP:

The command line to update pip is given here:

python –m pip install –upgrade pip

See the result shown in the following screenshot:

To install NumPy independently, on Linux or OS X, we issue the following 
command:

pip install -U pip numpy

To install a new Python module for Anaconda, we have the following list. See the 
link at http://conda.pydata.org/docs/using/pkgs.html as well:

Command Description
conda list Lists all of your packages in the active environment
conda list -n 
snowflakes

Lists all of your packages installed into a non-active 
environment named snowflakes

conda search 
beautiful-soup

Installs a package such as Beautiful Soup into the 
current environment, using conda install as follows

conda install --name 
bunnies quant

Installs Python module (package) called quant

conda info Gets more information

Table 2.4 A list of commands using conda to install a new package

http://conda.pydata.org/docs/using/pkgs.html
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The following screenshot shows what you will see after the command of conda info 
is issued:

The following example is related to the installation of the Python module called 
pandas_datareader:
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After answering y, the following result will appear after the module is completed:

To get the versions of various modules, we have the following code:

>>>import numpy as np
>>> np.__version__
'1.11.1'
>>> import scipy as sp
>>> sp.__version__
'0.18.1'
>>>import pandas as pd
>>> pd.__version__
'0.18.1'

Module dependency
At the very beginning of this book, we argued that one of the advantages of using 
Python is that it is a rich source of hundreds of special packages called modules.

To avoid duplicated efforts and to save time in developing new modules, later 
modules choose to use functions developed on early modules; that is, they depend 
on early modules.

The advantage is obvious because developers can save lots of time and effort when 
building and testing a new module. However, one disadvantage is that installation 
becomes difficult.

There are two competing approaches:

• The first approach is to bundle everything together and make sure that all 
parts play together nicely, thus avoiding the pain of installing n packages 
independently. This is wonderful, assuming that it works. A potential issue  
is that the updating of individual modules might not be reflected in the  
super package.
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• The second approach is to use minimal dependencies. It causes fewer 
headaches for the package maintainer, but for users who have to install 
several components, it can be more of a hassle. Linux has a better way: using 
the package installer. The publishers of the package can declare dependencies 
and the system tracks them down, assuming they are in the Linux repository. 
SciPy, NumPy, and quant are all set up like that, and it works great.

Exercises
1. Do we have to install NumPy independently if our Python was installed via 

Anaconda?
2. What are the advantages of using a super package to install many modules 

simultaneously?
3. How do you find all the functions contained in NumPy or SciPy?
4. How many ways are there to import a specific function contained in SciPy?
5. What is wrong with the following operation?

>>>x=[1,2,3]
>>>x.sum()

6. How can we print all the data items for a given array?
7. What is wrong with the following lines of code?

>>>import np
>>>x=np.array([True,false,true,false],bool)

8. Find out the meaning of skewtest included in the stats submodule (SciPy), 
and give an example of using this function.

9. What is the difference between an arithmetic mean and a geometric mean?
10. Debug the following lines of code, which are used to estimate a geometric 

mean for a given set of returns:
>>>import scipy as sp
>>>ret=np.array([0.05,0.11,-0.03])
>>>pow(np.prod(ret+1),1/len(ret))-1

11. Write a Python program to estimate both arithmetic and geometric means for 
a given set of returns.

12. Find out the meaning of zscore() included in the stats submodule (SciPy), 
and offer a simple example of using this function.
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13. What is wrong with the following lines of code?
>>>c=20
>>>npv=np.npv(0.1,c)

14. What is module dependency and how do you deal with it?
15. What are the advantages and disadvantages of writing a module that 

depends on other modules?
16. How do you use the financial functions contained in NumPy; for example, 

the pv() or fv() functions?
17. For functions contained in numpy.lib.financial, are there similar functions 

contained in SciPy?
18. How do you use the functions contained in the fincal module, generated by 

the author?
19. Where can you find a list of all Python modules?
20. How do you find more information about Python modules related to finance?

Summary
In this chapter, we have discussed one of the most important properties of Python: 
modules. A module is a package written by an expert or any individual to serve a 
special purpose. The knowledge related to modules is essential in our understanding 
of Python and its application to finance. In particular, we have introduced and 
discussed the most important modules, such as NumPy, SciPy, matplotlib, 
statsmodels, pandas, and pandas_reader. In addition, we have briefly mentioned 
module dependency and other issues. Two financial calculators written in Python 
were also presented. In Chapter 3, Time Value of Money, we will discuss many basic 
concepts associated with finance, such as the present value of one future cash flow, 
present value of perpetuity, present value of growing perpetuity, present value 
of annuity, and formulas related to future values. In addition, we will discuss 
definitions of Net Present Value (NPV), Internal Rate of Return (IRR), and Payback 
period. After that, several investment decision rules will be explained.
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Time Value of Money
In terms of finance per se, this chapter does not depend on the first two chapters. 
Since, in this book, Python is used as a computational tool to solve various finance 
problems, the minimum requirement is that readers should have installed Python 
plus NumPy and SciPy. In a sense, if a reader has installed Python via Anaconda, 
he/she will be fine without reading the first two chapters. Alternatively, readers 
could read Appendix A on how to install Python.

In this chapter, various concepts and formulae associated with finance will be 
introduced and discussed in detail. Since those concepts and formulae are so basic, 
readers who have taken one finance course, or professionals with a few years' working 
experience in the financial industry, could go through this chapter quickly. Again, one 
feature of this book, quite different from a typical finance textbook, is that Python is 
used as the computational tool. In particular, the following topics will be covered:

• Present value of one future cash flow and the present value of perpetuity
• Present value of growing perpetuity
• Present and future value of annuity
• Perpetuity versus perpetuity due, annuity versus annuity due
• Relevant functions contained in SciPy and the numpy.lib.financial 

submodule
• A free financial calculator, written in Python, called fincal
• Definition of NPV and NPV rule
• Definition of IRR and IRR rule
• Python graphical presentation of time value of money, and NPV profile
• Definition of payback period and payback period rule
• How to write your own financial calculator using Python
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Introduction to time value of money
Let's use a very simple example to illustrate. Assume that $100 is deposited in a bank 
today with an annual interest rate of 10%. What is the value of the deposit one year 
later? Here is the timeline with the dates and cash flows:

Obviously, our annual interest payment will be $10, that is, 100*0.1=10. Thus, the 
total value will be 110, that is, 100 + 10. The original $100 is principal. Alternatively, 
we have the following result:

Assume that $100 will be kept in the bank for two years with the same 10% annual 
interest rate for two years. What will be the future value at the end of year two?

Since at the end of the first year, we have $110 and by applying the same logic, the 
future value at the end of year two should be:

Since 110 = 100*(1+0.1), then we have the following expression:

If $100 is deposited for five years with an annual interest rate of 10%, what is the 
future value at the end of year five? Based on the preceding logic, we could have the 
following formula:



Chapter 3

[ 73 ]

Generalization leads to our first formula to estimate the future value for one given 
present value:

Here, FV is the future value, PV is the present value, R is the period rate and n is 
the number of periods. In the preceding example, R is the annual interest rate and n 
is the number of years. The frequencies of R and n should be the same. This means 
that if R is the annual (monthly/quarterly/daily) rate then n must be number of 
years (months/quarters/days). The corresponding function, called fv() in the 
SciPy module, could be used to estimate the future value; see the following code. To 
estimate the future value at the end of year two with a 10% annual interest rate, we 
have the following code:

>>>import scipy as sp
>>> sp.fv(0.1,2,0,100)
-121.00000000000001

For the function, the input format is sp.fv(rate,nper,pmt,pv=0,when='end'). 
At the moment, just ignore the last variable called when. For Equation (1), there is 
no pmt, thus the third input should be zero. Please pay attention to the negative 
sign of the previous result. The reason is that scipy.fv() function follows the Excel 
sign convention: a positive future value leads to a negative present value, and vice 
versa. To find more information about this function, we type help(sp.fv), see the 
following first several lines:

>>> help(sp.fv)

Help on function fv in module numpy.lib.financial:

fv(rate, nper, pmt, pv, when='end')

Compute the future value.

If we accidentally enter sp.fv(0.1,2,100,0), the result and corresponding cash 
flows are shown here:

>>>import scipy as sp
>>> sp.fv(0.1,2,100,0) 
    -210.0000000000002
       >>>
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Later in this chapter, it will be shown that sp.fv(0.1,2,100,0) corresponds to the 
present value of two equal $100 occur at the end of the first and second years. From 
Equation (1), we could easily derive our second formula:

The notations of PV, FV, R, and n remain the same as those in Equation (1). If we 
plan to have $234 at the end of year five and the interest rate is 1.45% per year, how 
much we have to deposit today? The result is shown here on the left after applying 
Equation (2) manually:

>>> 234/(1+0.0145)**5
     217.74871488824184
>>> sp.pv(0.0145,5,0,234)
     -217.74871488824184

Alternatively, the sp.pv() function could be used, see the following right result. To 
find out more information about the sp.pv() function, we use help(sp.pv), see the 
part of the following output:

>>>import scipy as sp
>>> help(sp.pv)
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Note that for the fourth input variable of a set of inputs, the scipy.fv() and scipy.
pv() functions behave differently: spicy.fv(0.1,1,100) would give us an error 
message while scipy.pv(0.1,1,100) would work perfectly. The reason is that the 
default value of the fourth input variable in scipy.pv() function is zero while there 
is no default value for the fourth input variable in the scipy.fv() function. This is 
one type of inconsistency in terms of Python programming.

In finance, it is well known that $100 received today is more valuable than $100 
received one year later, which in turn is more valuable than $100 received in year 
two. If different sizes are used to represent relative values, we will get the following 
figure. The first blue circle is the present value of $100 today, while the second one is 
the present value of $100 at the end of the first year and so on. The Python program 
to generate such an image is given in Appendix B:

The next concept is perpetuity, which is defined as the same constant cash flows, at the 
same intervals forever. Here is the timeline and those constant cash flows:
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Note that in the previous case, the first cash flow happens at the end of the first 
period. We could have other perpetuity with its first cash flow at the end of other 
period. Let's study this case first, and later in the chapter, we will have a simple 
extension. What is the present value of such perpetuity when the period discount 
rate is R?

First, Equation (2) could be applied to each of those future cash flows. Thus, the 
summation of all those present values will be the solution:

To make our derivation simpler, PV(Perpetuity) is replaced by PV. Let's call it 
Equation (I):

To derive the formula, both sides of Equation (I) are multiplied by 1/(1+R); see the 
following equation. Let's call it Equation (II):

Equation (I) minus Equation (II) leads to the next equation:

Both sides time (1+R), we have:

Reorganizing the preceding result, finally we have the formula to estimate the 
present value of perpetuity:
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Here is one example. John plans to donate $3,000 per year to his alma mater to have 
a welcoming party for the forthcoming MBA students at the end of the year forever. 
If the annual discount rate is 2.5% and the first party will occur at the end of the first 
year, how much he should donate today? By applying the preceding formula, the 
answer is $120,000:

>>> 3000/0.025
   120000.0

Assume that the first cash flow is C and the following cash flows enjoy a constant 
growth rate of g; see the following timeline and cash flows:

If the discount rate is R, then the formula to estimate the present value of a growing 
perpetuity has the following form:

Again, the frequencies of C, R, and g should be consistent, that is, have the same 
frequencies. One of the end-of-chapter problems asks readers to prove Equation 
(4). For the previous example of John's MBA welcoming party donation, the cost of 
$3,000 needed every year is based on zero inflation. Assume that the annual inflation 
is 1%, how much does he have to denote today? The amount needed each year is 
shown here:

The following result indicates that he needs $200,000 today:

>>> 3000/(0.025-0.01)
199999.99999999997
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For perpetuity, if the first cash flow happens at the end of kth period, we have the 
following formula:

Obviously, when the first cash flow happens at the end of the first period, Equation 
(5) collapses to Equation (3). An annuity is defined as the same cash flows at the same 
intervals for n periods. If the first cash flow occurs at the end of the first period, the 
present value of an annuity is estimated by the following formula:

Here, C is a recursive cash flow that happens at the end of each period, R is the 
period discount rate, and n is the number of periods. Equation (5) is quite complex 
than other equations. However, with a little bit imagination, Equation (6) could be 
derived by combining Equations (2) and (3); see Appendix C for more detail.

To estimate the future value of annuity, we have the following formula:

Conceptually, we could view Equation (7) as the combination of Equations (6) and 
(1). In the previous formulae related to perpetuity or annuity, all cash flows are 
assumed to happen at the end of periods. For annuity or perpetuity, when the cash 
flows happen at the beginning of each time period, they are called annuity due or 
perpetuity due. There are three ways to calculate their present values.

For the first method, the last input value in scipy.pv() or numpy.lib.financial.
pv() will take a value of one.

Assume that the discount rate is 1% per year. The annual cash flow is $20 for the next 
10 years. The first cash flow will be paid today. What is the present value of those 
cash flows? The result is shown here:

>>>import numpy.lib.financial as fin
>>> fin.pv(0.01,10,20,0,1)
-191.32035152017377
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Note that the input format for the numpy.lib.financial.pv() function is rate, 
nper, pmt, fv, and when. The default value of the last variable called when is zero, 
that is, at the end of the period. When the variable called when takes a value of one, it 
means it is annuity due.

For the second method , the following formulae could be applied:

Here is the methodology: treat annuity due as normal annuity, then multiply the 
result by (1+R). The application is shown here:

>>>import numpy.lib.financial as fin
>>> fin.pv(0.01,10,20,0)*(1+0.01)
-191.3203515201738

For the third method , we use the function called fincal.pvAnnuityDue() 
contained in the fincal package, a financial calculator written in Python; see the 
following result:

>>> import fincal
>>> fincal.pvAnnuityDue(0.01,10,20)
191.32035152017383

For how to download this fincal module, see Appendix D – how to download a free 
financial calculator written in Python. To get more information about this function, the 
help() function is applied; see the following code:

>>>import fincal
>>>help(fincal.pvAnnuityDue)
Help on function pvAnnuityDue in module __main__:

pvAnnuityDue(r, n, c)
     Objective : estimate present value of annuity due
          r    : period rate 
          n    : number of periods    
          c    : constant cash flow 
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Example 1: >>>pvAnnuityDue(0.1,10,20)
                     135.1804763255031
    
    Example #2:>>> pvAnnuityDue(c=20,n=10,r=0.1)
                     135.1804763255031
>>>

For more detail about such a financial calculator called fincal, see the next section. 
If cash flows will increase at a constant rate of g, we have the following formulae for 
a growing annuity:

There are no corresponding functions from SciPy nor from numpy.lib.
financial. Fortunately, we have the functions called pvGrowingAnnuity() and 
fvGrowingAnnuity() functions from the financial calculator called fincal; for more 
detail, see the following code:

>>> import fincal
>>> fincal.pvGrowingAnnuity(0.1,10,20,0.03)
137.67487382555464
>>>

To find more information about this function, issue help(fincal.
pvGrowingAnnuity); see the following code:

>>> import fincal
>>> help(fincal.pvGrowingAnnuity)
Help on function pvGrowingAnnuity in module fincal:
pvGrowingAnnuity(r, n, c, g)
     Objective: estimate present value of a growting annuity    
         r    : period discount rate
         n    : number of periods 
         c    : period payment
         g    : period growth rate  (g<r)
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Example #1 >>>pvGrowingAnnuity(0.1,30,10000,0.05)
                    150463.14700582038
                      
    Example #2: >>> pvGrowingAnnuity(g=0.05,r=0.1,c=10000,n=30)
                      150463.14700582038
>> >

Writing a financial calculator in Python
When discussing the various concepts of the time value of money, learners need a 
financial calculator or Excel to solve various related problems.

From the preceding illustrations, it is clear that several functions, such as scipy.
pv(), could be used to estimate the present value of one future cash flow or present 
value of annuity. Actually, the functions related to finance contained in the SciPy 
module came from the numpy.lib.financial submodule:

>>> import numpy.lib.financial as fin
>>> dir(fin)
['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__
loader__', '__name__', '__package__', '__spec__', '_convert_when', 
'_g_div_gp', '_rbl', '_when_to_num', 'absolute_import', 'division', 
'fv', 'ipmt', 'irr', 'mirr', 'np', 'nper', 'npv', 'pmt', 'ppmt', 
'print_function', 'pv', 'rate']
>>>
Below are a few examples, below. 
>>>import numpy.lib.financial as fin
>>> fin.pv(0.1,3,0,100)      # pv of one future cash flow
-75.131480090157751
>>> fin.pv(0.1,5,100)        # pv of annuity
-379.07867694084507
>>> fin.pv(0.1,3,100,100)    # pv of annuity plus pv of one fv
-323.81667918858022
>>>

First, we import two modules related to various finance functions.

>>>import scipy as sp
>>>import numpy.lib.financial as fin
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The following table summarizes those functions:

Function Input format
sp.fv() fin.fv() fv(rate, nper, pmt, pv, when='end')

sp.pv() fin.pv() pv(rate, nper, pmt, fv=0.0, when='end')

sp.pmt() fin.pmt() pmt(rate, nper, pv, fv=0, when='end')

sp.npv() fin.npv() npv(rate, values)

sp.rate() fin.rate() rate(nper, pmt, pv, fv, when='end', 
guess=0.1, tol=1e-06, maxiter=100)

sp.nper() fin.nper() nper(rate, pmt, pv, fv=0, when='end')

sp.irr() fin.irr() irr(values)

sp.mirr() fin.mirr() mirr(values, finance_rate, reinvest_rate)

sp.ipmt() fin.ipmt() ipmt(rate, per, nper, pv, fv=0.0, 
when='end')

sp.ppmt() fin.ppmt() ppmt(rate, per, nper, pv, fv=0.0, 
when='end')

Table 3.1 A list of functions contained in Scipy and numpy.lib.financial

The other  financial calculator was written by the author of this book. Appendix B 
shows how to download it. Here is a list of functions:

>>> import fincal
>>> dir(fincal)
 ['CND', 'EBITDA_value', 'IRR_f', 'IRRs_f', 'NPER', 'PMT', 'Rc_f', 
'Rm_f', '__builtins__', '__cached__', '__doc__', '__file__', '__
loader__', '__name__', '__package__', '__request', '__spec__', 
'bondPrice', 'bsCall', 'convert_B_M', 'duration', 'exp', 'fincalHelp', 
'fvAnnuity', 'fv_f', 'get_200day_moving_avg', 'get_50day_moving_avg', 
'get_52week_high', 'get_52week_low', 'get_EBITDA', 'get_all', 'get_
avg_daily_volume', 'get_book_value', 'get_change', 'get_dividend_
per_share', 'get_dividend_yield', 'get_earnings_per_share', 'get_
historical_prices', 'get_market_cap', 'get_price', 'get_price_book_
ratio', 'get_price_earnings_growth_ratio', 'get_price_earnings_ratio', 
'get_price_sales_ratio', 'get_short_ratio', 'get_stock_exchange', 
'get_volume', 'log', 'market_cap', 'mean', 'modified_duration', 'n_
annuity', 'npv_f', 'payback_', 'payback_period', 'pi', 'pvAnnuity', 
'pvAnnuityDue', 'pvAnnuity_k_period_from_today', 'pvGrowingAnnuity', 
'pvGrowingPerpetuity', 'pvPerpetuity', 'pvPerpetuityDue', 'pv_excel', 
'pv_f', 'r_continuous', 're', 'sign', 'sqrt', 'urllib']
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There are several advantages of using this financial calculator over the functions 
contained in both the SciPy module and numpy.lib.financial submodule. First, 
for three present values, pv(one cash flow), pv(annuity), and pv(annuity 
due), there exist three corresponding functions called pv_f(), pvAnnuity() and 
pvAnnuityDue(). Thus, a new learner who has little knowledge about finance would 
have a much smaller chance to get confused. Second, for each function such as 
present value of one future cash flow, the output is exactly the same as the formula 
shown on a typical textbook; see the following formula:

In other words, there is no Excel sign convention. For fv=100, r=0.1, and n=1, from 
the preceding formula, we are supposed to get a value of 90.91. With the following 
code, we show the results without and with the sign convention:

>>>import fincal 
>>> fincal.pv_f(0.1,1100)
90.9090909090909
>>> import scipy as sp
>>> sp.pv(0.1,1,0,100)
    -90.909090909090907

Third, for each function contained in fincal, we could find out which formula is 
used plus a few examples:

>>>import fincal
>>> help(fincal.pv_f)
Help on function pv_f in module __main__:

pv_f(r, n, fv)
    Objective: estimate present value
           r : period rate
           n : number of periods
          fv : future value
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Example 1: >>>pv_f(0.1,1,100)        # meanings of input variables 
                 90.9090909090909        # based on their input order
    
    Example #2 >>>pv_f(r=0.1,fv=100,n=1) # meanings based on keywords
                 90.9090909090909
>>>

Last but not least, a new learner could write his/her own financial calculator! For 
more detail, see the Writing your own financial calculator written in Python section and 
Appendix H.

From the preceding discussion, it is known that for the present value of annuity, the 
following formula could be used:

In the preceding formula, we have four variables of pv, c, R, and n. To estimate a 
present value, we are given c, R, and n. Actually, for any set of three values, we could 
estimate the number 4. Let's use the same notations in SciPy and NumPy:

The four corresponding functions are: sp.pv(), sp.pmt(), sp.rate(), and 
sp.nper(). Here is an example. John is planning to buy a used car with a price tag of 
$5,000. Assume that he would pay $1,000 as the download payment and borrow the 
rest. The annual interest rate for a car load is 1.9% compounded monthly. What is his 
monthly payment if he plans to retire his load in three years? We could calculate the 
monthly payment manually; see the following code:

>>> r=0.019/12
>>> pv=4000
>>> n=3*12
>>> pv*r/(1-1/(1+r)**n)
114.39577546409993
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Since the annual interest rate is compounded monthly, the effective monthly rate is 
0.019/12. In Chapter 5, Bond and Stock Valuation, how to convert different effective 
rates will be discussed in more detail. Based on the preceding result, John's monthly 
payment is $114.40. Alternatively, we could use the scipy.pmt() function; see the 
following code:

>>import scipy as sp
>>> sp.pmt(0.019/12,3*12,4000)
-114.39577546409993

Similarly, for the rate in the preceding function, the scipy.rate() and numpy.lib.
rate() functions could be applied. Here is one example. A company plans to lease a 
limousine for its CEO. If the monthly payment is $2,000 for the next three years and 
the present value of the car is $50,000, what is the implied annual rate?

>>>import scipy as sp
>>>r=sp.rate(3*12,2000,-50000,0)   # monthly effective rate
>>>r
  0.021211141641636025
>>> r*12
  0.2545336996996323               # annual percentage rate

The monthly effective rate is 2.12% while the annual rate is 25.45%.

With the same logic, for the nper in the preceding function, the scipy.nper() and 
numpy.lib.financial.nper() functions could be applied.

Here is one example. Peter borrows $5,000 to pay the cost to get a Python certificate. 
If the monthly rate is 0.25% and he plans to pay back $200 per month, how many 
months will he need to repay his loan?

>>>import scipy as sp
>>> sp.nper(0.012,200,-5000,0)
29.900894915842475

Based on the preceding result, he needs about 30 months to repay his whole loan. In 
the preceding two examples, the future value is zero. Following the same logic, for a 
future value annuity, we have the following function:
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If using the same notations as SciPy and numpy.lib.financial, we have the 
following formula:

The scipy.pmt(), scipy.rate(), scipy.nper(), numy.lib.financial.pmt(), 
numpy.lib.financial.rate(), and numpy.lib.financial.nper() functions could 
be used to estimate those values. We will discuss those formulae further in the The 
general formulae for many functions section used in Scipy and numpy.lib.financial.

Definition of NPV and NPV rule
The Net Present Value (NPV) is defined by the following formula:

Here is an example. The initial investment is $100. The cash inflows in the next five 
years are $50, $60, $70, $100, and $20, starting from year one. If the discount rate is 
11.2%, what is the project's NPV value? Since only six cash flows are involved, we 
could do the calculation manually:

>>> r=0.112
>>> -100+50/(1+r)+60/(1+r)**2+70/(1+r)**3+100/(1+r)**4+20/(1+r)**5
121.55722687966407
Using the scipy.npv() function, the estimation process could be 
simplified dramatically:
>>> import scipy as sp
>>> cashflows=[-100,50,60,70,100,20]
>>> sp.npv(0.112,cashflows)
121.55722687966407

Based on the preceding result, the NPV of this project is $121.56. A normal project is 
defined as follows: cash outflows first, then cash inflows. Anything else is an abnormal 
project. For a normal project, its NPV is negatively correlated with the discount rate; 
see the following graph. The reason is that when the discount rate increases, the 
present value of the future cash flows (most of times benefits) will decrease more 
than the current or the earliest cash flows (most of times costs). The NPV profile 
describes the relationship between NPV and discount rate as shown in the following 
graph. See Appendix E for the Python program to generate the graph. The y-axis is 
NPV while the x-axis is the discount rate:
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To estimate the NPV of a project, we could call the npv() function contained either 
in SciPy or numpy.lib.financial; see the following code:

>>>import scipy as sp
>>>cashflows=[-100,50,60,70]
>>>rate=0.1
>>>npv=sp.npv(rate,cashflows)
>>>round(npv,2)
47.62

The scipy.npv() function estimates the present values for a given set of cash flows. 
The first input variable is the discount rate, while the second input is an array of 
cash flows. Note that the first cash flow in this cash flow array happens at time zero. 
This scipy.npv() function is different from the Excel's NPV function, which is not a 
true NPV function. Actually, the Excel NPV is a PV function. It estimates the present 
value of future cash flows by assuming the first cash flow happens at the end of the 
first period. An example of using an Excel npv() function is as follows:
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While using just one future cash flow, the meaning of the scipy.npv() function is 
clearer as shown in the following lines of code:

>>>c=[100]
>>>x=np.npv(0.1,c)
>>>round(x,2)
>>>100.0

The related Excel function and its output is shown here:

For just one future cash flow, the result based on Excel's npv() function is shown in 
the preceding right image. For the numpy.lib.financial.npv() function, the only 
cash flows of $100 would happen today, while for the Excel npv() function, the only 
cash flow of $100 would happen one period later. Thus, 100/(1+0.1) leads to 90.91.

The NPV rule is given here:

Definition of IRR and IRR rule
The Internal Rate of Return (IRR) is defined as the discount rate that makes NPV 
equal zero. Assume that we invest $100 today and the future cash flows will be $30, 
$40, $40, and $50 for the next four years. Assuming that all cash flows happen at the 
end of the year, what is the IRR for this investment? In the following program, the 
scipy.irr() function is applied:

>>>import scipy as sp
>>> cashflows=[-100,30,40,40,50]
>>> sp.irr(cashflows)
       0.2001879105140867
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We could verify whether such a rate does make NPV equal zero. Since the NPV is 
zero, 20.02% is indeed an IRR:

>>> r=sp.irr(cashflows)
>>> sp.npv(r,cashflows)
    1.7763568394002505e-14
>>>

For a normal project, the IRR rule is given here:

Here, Rc is the cost of capital. This IRR rule holds only for a normal project. Let's 
look at the following investment opportunity. The initial investment is $100 today 
and $50 next year. The cash inflows for the next five years will be $50, $70, $100, $90, 
and $20. If the cost of capital is 10%, should we take the project? The time line and 
corresponding cash flows are shown here:

The Python codes are given here:

>>>import scipy as sp
>>> cashflows=[-100,-50,50,70,100,90,20] 
>>> sp.irr(cashflows)
0.25949919326073245

Since the IRR is 25.9%, which is higher than the cost of capital of 10%, we should 
accept the project based on the IRR rule. In the preceding example, it is a normal 
project. For abnormal projects or projects with multiple IRRs, we could not apply 
the IRR rule. When the cash flows change direction more than once, we might have 
multiple IRRs. Assume that our cash flows will be 504, -432,-432, -432, and 843, 
starting today:

>>>import scipy as sp
>>> cashflows=[504, -432,-432, -432,843]
>>> sp.irr(cashflows)
    0.14277225152187745
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The related graph is shown here:

Since the direction of our cash flows changes twice, the project might have two 
different IRRs. The preceding right image shows that this is the case. For the Python 
program to draw the preceding NPV profile, see Appendix F. Using the spicy.npv() 
function, we only got one IRR. From the fincal.IRRs_f() function, we could get 
both IRRs; see the following code:

>>>import fincal
>>> cashflows=[504, -432,-432, -432,843]
>>> fincal.IRRs_f(cashflows)
 [0.143, 0.192]

Definition of payback period and payback 
period rule
A payback period is defined as the number of years needed to recover the initial 
investment. Assume that the initial investment is $100. If every year the firm could 
recover $30, then the payback period is 3.3 years:

>>import fincal
>>>cashflows=[-100,30,30,30,30,30]
>>> fincal.payback_period(cashflows)
    3.3333333333333335
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The decision rule for the payback rule is given here:

Here, T is the payback period for a project while Tc is the maximum number of years 
required to recover the initial investment. Thus, if Tc is four, the preceding project 
with a payback period of 3.3 should be accepted.

The major advantage of the payback period rule is its simplicity. However, there 
are many shortcomings for such a rule. First, it does not consider the time value of 
money. In the previous case, $30 received at the end of the first year is the same as 
$30 received today. Second, any cash flows after the payback period is ignored. This 
bias would be against the project with a long period of future cash flows. Last but not 
least, there is no theoretical foundation to define a good cut-off point of Tc. In other 
words, there is no viable reason to argue why a cut-off of four years is better than five.

Writing your own financial calculator in 
Python
It could be viewed as a great achievement when a new Python learner could 
write his/her own financial calculator. The basic knowledge to do so includes the 
following:

• Knowledge on how to write a function
• What are the related finance formulae?

For the latter, we have learnt from the preceding sections, such as the formula to 
calculate the present value of one future cash flow. Let's write the simplest Python 
function to double an input value:

def dd(x):
    return 2*x

Here, def is the keyword for writing a function, dd is the function name, and x in 
the parentheses is an input variable. For Python, the indentation is critical. The 
preceding indentation indicates that the second line is the part of the dd function. 
Calling this function is the same as calling other built-in Python functions:

>>>dd(5)
 10
>>>dd(3.42)
 6.84
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Now, let's write our simplest financial calculator. First, launch Python and use its 
editor to enter the following codes:

def pvFunction(fv,r,n):
    return fv/(1+r)**n
def pvPerpetuity(c,r):
    return c/r
def pvPerpetuityDue(c,r):
    return c/r*(1+r)

For simplicity, each function of the preceding three functions has just two lines. After 
activating those functions by running the whole program, the dir() function could 
be used to show their existence:

>>> dir()
['__builtins__', '__doc__', '__loader__', '__name__', '__package__', 
'__spec__', 'pvFunction', 'pvPerpetuity','pvPerpetuityDue']
>>>

Calling this self-generated financial calculator is trivial; see the following code:

>>> pvFunction(100,0.1,1)
90.9090909090909
>>> pvFunction(n=1,r=0.1,fv=100)
90.9090909090909
>>> pvFunction(n=1,fv=100,r=0.1)
90.9090909090909
>>>

Again, when entering input values, two methods could be used: the meaning of 
input variables depend on their order, see the first call, and with a keyword, see the 
last two preceding examples.

A more elegant method to write one's own financial calculator is shown in  
Appendix G.

Two general formulae for many functions
This section is optional since it is quite complex in terms of mathematical expression. 
Skipping this section would not have any impact on the understanding of the other 
chapters. Thus, this section is for advanced learners. Up to now in this chapter, we 
have learnt the usage of several functions, such as pv(), fv(), nper(), pmt(), and 
rate() included in the SciPy module or numpy.lib.financial submodule. The first 
general formula is related to the present value:
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On the right-hand side of the preceding equation, the first one is the present value 
of one future cash flow, while the second part is the present value of annuity. The 
variable type takes a value of zero (default value); it is the present value of a normal 
annuity, while it is an annuity due if type takes a value of 1. The negative sign is 
for the sign convention. If using the same notation as that used for the functions 
contained in SciPy and numpy.lib.financial, we have the following formula:

Here are several examples using both Equation (14) and the pv() function from 
SciPy. James intends to invest x dollars today for the next 10 years. His annual rate 
of return is 5%. During the next 10 years, he will withdraw $5,000 at the beginning of 
each year. In addition, he hopes that he will have $7,000 at the end of his investment 
horizon. How much must he invest today, that is, what is the value of x? By applying 
the preceding equation manually, we have the following result. Please pay attention 
to the negative sign:

>>> -(7000/(1+0.05)**10 + 5000/0.05*(1-1/(1+0.05)**10)*(1+0.05))
-44836.501153005614 

The result is the same as when the scipy.pv() function is called; see the  
following code:

>>> import scipy as sp

>>> sp.pv(0.05,10,5000,7000,1)
-44836.5011530056

To separate normal annuity from annuity due, we have the following two equations. 
For a normal annuity, we have the following equation:
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For annuity due, we have the following equation:

Similarly, for the future value, we have the following general formula:

If using the same notations used in SciPy and numpy.lib.financial, we have the 
following formula:

Similarly, we could separate annuity from annuity due. For a normal annuity, we 
have the following formula:

For an annuity due, we have the following formula:

In the following equations, present value (pv) appears twice. However, they have 
quite different meanings. Similarly, future value appears twice with different 
meanings as well:
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Let's use a simple example to explain the links between those two equations. First, 
let's simplify our functions by dropping the sign convention and assume normal 
annuity, that is, it is not annuity due:

Actually, we would have three pv (present value) and three fv (future value). We 
invest $100 for three years. In addition, at the end of each year for the next three 
years, we invest $20. If the rate of return is 4% per year, what is the future value of 
our investment?

Obviously, we could apply the last equation to get our answer:

>>> 100*(1+0.04)**3+20/0.04*((1+0.04)**3-1)
     174.91840000000005
>>> import scipy as sp
>>> sp.fv(0.04,3,20,100)
     -174.91840000000005

Actually, we have three future values. Let's call them FV(total), FV( annuity) and 
FV(one PV). The relationship between them is given here:

The following code shows how to calculate the future value of annuity and the 
future value of one present value:

>>> fv_annuity=20/0.04*((1+0.04)**3-1)
>>> fv_annuity
62.432000000000045
>>>fv_one_PV=100*(1+0.04)**3
>>> fv_one_PV
112.4864
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The total future value is the summation of those two future values: 62.4320+ 
112.4864=174.92. Now, let's see how to get three corresponding present values. Let's 
call them PV(total), PV( annuity), and PV(one PV). The relationship between them 
will be as follows:

Let's use the same cash flows shown previously. Obviously, the first $100 is itself the 
present value. The present value of three $20s could be calculated manually; see the 
following code:

>>>20/0.04*(1-1/(1+0.04)**3)
55.501820664542564

Thus, the total present value will be 100 + 55.51=155.51. Alternatively, we could 
apply scipy.pv() to estimate the present value of annuity; see the following code:

>>>import scipy as sp
>>> sp.pv(0.04,3,20)
   -55.501820664542592
>>>import fincal
>>> fincal.pvAnnuity(0.04,3,20)
    55.501820664542564

The relationship between total future value (174.92) and total present value 
(155.51), has the following relationship:

>>>174.92/(1+0.04)**3
155.5032430587164

In summary, when calling the scipy.pv() and scipy.fv() functions, the meaning 
of fv in the scipy.pv() function is different from the final value of scipy.fv(). 
Readers have to understand the difference between a total future, the future value of 
one present value, and the future value of annuity. This is true for the pv variable in 
the scipy.fv() function and the final result after calling the scipy.pv() function.

Appendix A – Installation of Python, NumPy, 
and SciPy
To install Python via Anaconda, we have the following steps:

1. Go to http://continuum.io/downloads.

http://continuum.io/downloads
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2. Find an appropriate package; see the following screenshot:

For Python, different versions coexist. From the preceding screenshot, we see 
that there exist two versions of 3.5 and 2.7. For this book, the version is not that 
critical. The old version has fewer problems while the new one usually has new 
improvements. After Python is installed via Anaconda, NumPy and SciPy will 
be installed at the same time. After launching Python through Spyder, issue the 
following two lines. If there is no error, then those two modules were pre-installed:

>>> import numpy as np
>>> import scipy as sp

The other method is to install Python directly.

Go to http://www.python.org/download. Depending on your computer, choose 
the appropriate package, for example, Python 3.5.2 version. In terms of installing a 
module, find the Python documentation. The following command will install the latest 
version of a module and its dependencies from the Python Packaging Index (PIP):

python -m pip install SomePackage

For POSIX users (including Mac OS X and Linux users), the examples in this guide 
assume the use of a virtual environment. To install a specific version, see the 
following code:

python -m pip install SomePackage==1.0.4    # specific version

python -m pip install "SomePackage>=1.0.4"  # minimum version

http://www.python.org/download
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Normally, if a suitable module is already installed, attempting to install it again will 
have no effect. Upgrading existing modules must be requested explicitly:

python -m pip install --upgrade SomePackage

Appendix B – visual presentation of time 
value of money
If a reader has difficulty understanding the following code, she/he could just ignore 
this part. In finance, we know that $100 received today is more valuable than $100 
received one year later. If we use size to represent the difference, we could have the 
following Python program to represent the same concept:

from matplotlib.pyplot import *
fig1 = figure(facecolor='white')
ax1 = axes(frameon=False)
ax1.set_frame_on(False)
ax1.get_xaxis().tick_bottom()
ax1.axes.get_yaxis().set_visible(False)
x=range(0,11,2) 
x1=range(len(x),0,-1)
y = [0]*len(x);
name="Today's value of $100 received today"
annotate(name,xy=(0,0),xytext=(2,0.001),arrowprops=dict(facecolor='bla
ck',shrink=0.02))
s = [50*2.5**n for n in x1];
title("Time value of money ")
xlabel("Time (number of years)")
scatter(x,y,s=s);
show()

The graph is shown here. The first blue circle is the present value, while the second 
one is the present value of the same $100 at the end of the second year:
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Appendix C – Derivation of present value of 
annuity from present value of one future cash 
flow and present value of perpetuity
First, we have the following two formulae:

Here, FV is the future value, R is the discount period rate, n is the number of periods, 
and C is the same cash flow happening at the end of each period with the first cash 
flow happening at the end of the first period.
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An annuity is defined as a set of equivalent cash flows occurring in the future. If the first 
cash flow occurs at the end of the first period, the present value of an annuity is by 
the following formula:

Here, C is a recursive cash flow happening at the end of each period, R is period 
discount rate, and n is the number of periods. Equation (3) is quite complex. However, 
with a little bit of imagination, we could combine equations (1) and (2) to derive 
Equation (3). This can be done by decomposing an annuity into two perpetuities:

This is equivalent to the following two perpetuities:

Conceptually, we could think this way: Mary would receive $20 per year for the 
next 10 years. This is equivalent to two perpetuities: she would receive $20 every 
year forever and at the same time PAY $20 every year forever, starting at year 11. 
Thus, the present value of her annuity will be the present value of the first perpetuity 
minus the present value of her second perpetuity:

If the same cash flow happens at the same interval forever, it is called perpetuity. If 
the discount rate is a constant and the first cash flows happens at the end of the first 
period, its present value has the following.
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Appendix D – How to download a free 
financial calculator written in Python
Download an executable file at http://canisius.edu/~yany/fincal.pyc. Assume 
that it was saved under c:/temp/. Change your path; see the following screenshot:

Here is an example:

>>>import fincal 
>>> fincal.pv_f(0.1,1,100)
90.9090909090909

To find out all contained functions, the dir() function is used; see the following 
code:

>>> import fincal
>>> dir(fincal)
['CND', 'EBITDA_value', 'IRR_f', 'IRRs_f', 'NPER', 'PMT', 'Rc_f', 
'Rm_f', '__builtins__', '__cached__', '__doc__', '__file__', '__
loader__', '__name__', '__package__', '__request', '__spec__', 
'bondPrice', 'bsCall', 'convert_B_M', 'duration', 'exp', 'fincalHelp', 
'fvAnnuity', 'fvAnnuityDue', 'fv_f', 'get_200day_moving_avg', 
'get_50day_moving_avg', 'get_52week_high', 'get_52week_low', 'get_
EBITDA', 'get_all', 'get_avg_daily_volume', 'get_book_value', 
'get_change', 'get_dividend_per_share', 'get_dividend_yield', 'get_
earnings_per_share', 'get_historical_prices', 'get_market_cap', 
'get_price', 'get_price_book_ratio', 'get_price_earnings_growth_
ratio', 'get_price_earnings_ratio', 'get_price_sales_ratio', 'get_
short_ratio', 'get_stock_exchange', 'get_volume', 'log', 'market_
cap', 'mean', 'modified_duration', 'n_annuity', 'npv_f', 'payback_', 
'payback_period', 'pi', 'pvAnnuity', 'pvAnnuityDue', 'pvAnnuity_k_
period_from_today', 'pvGrowingAnnuity', 'pvGrowingPerpetuity', 
'pvPerpetuity', 'pvPerpetuityDue', 'pv_excel', 'pv_f', 'r_continuous', 
're', 'sign', 'sqrt', 'urllib']

http://canisius.edu/~yany/fincal.pyc
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To find out the usage of each function, the help() function could be used:

>>> help(fincal.pv_f)
Help on function pv_f in module fincal:
pv_f(r, n, fv)
    Objective: estimate present value
           r : period rate
           n : number of periods
          fv : future value

Example 1: >>>pv_f(0.1,1,100)        # meanings of input variables 
                 90.9090909090909        # based on their input order
    
    Example #2 >>>pv_f(r=0.1,fv=100,n=1) # meanings based on keywords
                 90.9090909090909
>> >

Appendix E – The graphical presentation of 
the relationship between NPV and R
An NPV profile is the relationship between a project's NPV and its discount rate (cost 
of capital). For a normal project, where cash outflows first then cash inflows, its NPV 
will be a decreasing function of the discount rate; see the following code:

import scipy as sp
from matplotlib.pyplot import *
cashflows=[-120,50,60,70]
rate=[]
npv =[]
for i in range(1,70):
    rate.append(0.01*i)
    npv.append(sp.npv(0.01*i,cashflows))

plot(rate,npv)
show()
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The associated graph is shown here:

To make our graph better, we could add a title, both labels, and one horizon line; see 
the following code:

import scipy as sp
from matplotlib.pyplot import *
cashflows=[-120,50,60,70]
rate=[]
npv=[]
x=(0,0.7)
y=(0,0)
for i in range(1,70):
    rate.append(0.01*i)
    npv.append(sp.npv(0.01*i,cashflows))
    
title("NPV profile")
xlabel("Discount Rate")
ylabel("NPV (Net Present Value)")
plot(rate,npv)
plot(x,y)
show()
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The output is shown here:

Appendix F – graphical presentation of NPV 
profile with two IRRs
Since the direction of cash flow changes twice, we might have two IRRs:

import scipy as sp
import matplotlib.pyplot as plt
cashflows=[504,-432,-432,-432,832]
rate=[]
npv=[]
x=[0,0.3]
y=[0,0]
for i in range(1,30): 
    rate.append(0.01*i)
    npv.append(sp.npv(0.01*i,cashflows))
    
plt.plot(x,y),plt.plot(rate,npv)
plt.show()
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The corresponding graph is shown here:

Appendix G – Writing your own financial 
calculator in Python
Now, let's write our simplest financial calculator. First, launch Python and use the 
editor to enter the following codes. For simplicity, each function of preceding 10 
functions has just two lines. Again, a proper indentation is critical. Thus, the second 
line of each function should be indented:

def pvFunction(fv,r,n):
    return fv/(1+r)**n
def pvPerpetuity(c,r):
    return c/r
def pvPerpetuityDue(c,r):
    return c/r*(1+r)
def pvAnnuity(c,r,n):
    return c/r*(1-1/(1+r)**n)
def pvAnnuityDue(c,r,n):
    return c/r*(1-1/(1+r)**n)*(1+r)
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def pvGrowingAnnuity(c,r,n,g):
    return c/(r-g)*(1-(1+g)**n/(1+r)**n)
def fvFunction(pv,r,n):
    return pv*(1+r)**n
def fvAnnuity(cv,r,n):
    return c/r*((1+r)**n-1)
def fvAnnuityDue(cv,r,n):
    return c/r*((1+r)**n-1)*(1+r)
def fvGrowingAnnuity(cv,r,n):
    return c/(r-g)*((1+r)**n-(1+g)*n)

Assume that the preceding program is called myCalculator.

The following program would generate an executable filed called myCalculator.
cpython-35.pyc:

>>> import py_compile
>>> py_compile.compile('myCalculator.py')
'__pycache__\\myCalculator.cpython-35.pyc'
>>> __pycache__
py_compile.compile('c:/temp/myCalculator.py')

Exercises
1. What is the present value of $206 received in 10 years with an annual 

discount rate of 2.5%?
2. What is the future value of perpetuity with a periodic annual payment of $1 

and a 2.4% annual discount rate?
3. For a normal project, its NPV is negatively correlated with the discount rate. 

Why?
4. John deposits $5,000 in the bank for 25 years. If the annual rate is 0.25% per 

year, what is the future value?
5. If the annual payment is $55 with 20 years remaining, what is the present 

value if the annual discount rate is 5.41%, compounded semi-annually?
6. If Mary plans to have $2,400 by the end of year 5, how much does she have to 

save each year if the corresponding annual rate is 3.12%?
7. Why have we got a negative number of periods in the following code?

>>>import scipy as sp
>>> sp.nper(0.012,200,5000,0)
-21.99461003591637
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8. If a firm's earnings per share grows from $2 to $4 over a 9-year period (the 
total growth is 100%), what is its annual growth rate?

9. In this chapter, while writing a present value function, we use pv_f(). Why 
not use pv(), the same as the following formula?

Here PV is the present value, FV is the future value, R is the periodic 
discount rate, and n is the number of periods.

10. A project contributes cash inflows of $5,000 and $8,000 at the end of the first 
and second years. The initial cost is $3,000. The appropriate discount rates 
are 10% and 12% for the first and the second years respectively. What is the 
NPV of the project?

11. Firm A will issue new bonds with annual coupon payment of $80 and a face 
value of $1,000. Interest payments are made semi-annually, and the bond 
matures in 2 years. The spot interest rate for the first year is 10%. At the end 
of the first year, the 1-year spot rate is expected to be 12%:

 ° What is the present value of the bond?
 ° What is the lump sum you are willing to accept at the end of the 

second year?

12. Peter's rich uncle has promised him a payment of $4,000 if he completes 
college in four years. Richard has just finished a very difficult sophomore 
(second) year, including taking several finance courses. Richard would very 
much like to take a long vacation. The appropriate discount rate is 10% 
compounded semi-annually. What is value that Peter would be giving up 
today if he took his vacation?

13. Today, you have $5,000 to invest and your investment horizon is 25 years. 
You are offered an investment plan that will pay you 6 percent per year for 
the next 10 years and 9 percent per year for the last 15 years. How much will 
you have at the end of the 25 years? What is your average annual percentage 
return?

14. What are the advantages and disadvantages of using a default input value or 
values?
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15. We know that the present value of growing perpetuity has the following 
formula:

Prove it.

16. Today, Jane is 32 years old. She plans to retire at the age of 65 with $2.5 
million savings. If she could get a 3.41%, compounded monthly, return every 
year, what will be her monthly contribution?

17. Assume that we have a set of small programs put together called fin101.py. 
What is the difference between the two Python commands, import fin101 
and from fin101 import *?

18. How can you prevent erroneous inputs such as negative interest rate?
19. Write a Python program to estimate payback period. For example, the initial 

investment is $256, and the expected future cash inflows in the next 7 years 
will be $34, $44, $55, $67, $92, $70, and $50. What is the project's payback 
period in years?

20. In the preceding exercise, if the discount rate is 7.7 percent per year, what is 
the discounted payback period? Note: The discount payback period looks at 
how to recover our initial investment by checking the summation of present 
values of future cash flows.

Summary
In this chapter, many basic concepts related to finance were introduced, such as 
present value of one future cash flow, present value of perpetuity, present value 
of annuity, future value of one cash flow/annuity, and the concept of present of 
annuity due. The several decision rules were discussed in detail, such as the NPV 
rule, IRR rule, and payback period rule. For the next chapter, we will discuss how 
to retrieve data associated with economics, finance, and accounting from several 
open sources such as Yahoo!Finance, Google finance, Prof. French's data library, and 
Federal Research's economic data library.
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Sources of Data
Since our society entered a so-called information era, we have been engulfed by 
a huge amount of information or data. For this very reason, there is an increasing 
demand for persons armed with data handling skills, such as data scientists or 
graduates from business analytics programs. Kane (2006) proposed an opensource 
finance concept which consists of three components:

• The use of open source software in testing hypotheses and implementing 
investment strategies

• Cheap access to financial data
• Replication to confirm published research results

In this book, these three components are simply called: open software, open data, 
and open codes. Python is one of the best-known pieces of open source software. At 
the moment, usage of public data is quite inconsistent with the current environment. 
In this book, we use a huge amount of data, especially public data. In this chapter, 
the following topics will be covered:

• Open source finance
• Source of macro-economic data
• Source of accounting data
• Source of finance data
• Other data sources
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Diving into deeper concepts
The focus of this chapter will be on how to retrieve economic, finance, and 
accounting related data, especially public data. For example, Yahoo Finance offers 
rich data, such as historical trading price, current price, option data, annual and 
quarterly financial statements, and bond data. Such publicly available data could be 
used to estimate β (market risk), volatility (total risk), Sharpe ratio, Jensen's alpha, 
Treynor ratio, liquidity, transaction costs, and conduct financial statement analysis 
(ratio analysis) and performance evaluation. In future chapters, the topics mentioned 
would be discussed in more detail. For the public data related to economics, finance, 
and accounting, many wonderful sources are available, see the following table:

Name Data types
Yahoo Finance Historical price, annual and quarterly financial 

statements, and so on
Google Finance Current, historical trading prices
Federal Reserve Economic Data Interest rates, rates for AAA, AA rated bonds
Prof. French's Data Library Fama-French factor time series, market index returns, 

risk-free rate, industry classification 
Census Bureau Census data
US. Department of Treasury US. Treasure yield
Bureau of Labor Statistics Inflation, employment, unemployment, pay and 

benefits
Bureau of Economic Analysis Gross Domestic Product (GDP) and so on
National Bureau of Economic 
Research

Business cycles, vital statistics, report of presidents

Table 4.1: A list of open data sources
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Usually, there are two ways to retrieve data:

• Manually download data from a specific location and then write a Python 
program to retrieve and process it

• Use the functions contained in various Python modules, such as the function 
called quotes_historical_yahoo_ohlc() in the matplotlib.finance 
submodule

For both methods, there are some advantages and disadvantages. The main 
advantage of the first method is that we know where to get our data. In addition, 
since we write our own programs to download and process data, the logic of those 
programs is clearer. The advantage of the second method is that it is quick and 
convenient to retrieve data. In a sense, users don't even have to know from where to 
retrievethe data and the structure of the original datasets. The disadvantage is that the 
functions used might change. This might cause certain problems. For example, the old 
version of quotes_historical_yahoo_ohlc() is quotes_historical_yahoo().

In order to retrieve useful information from the preceding sources, two submodules 
could be used: pandas_datareader.data and matplotlib.financial. To find out 
functions included in pandas_datareader.data, the dir() function is applied:

From the preceding output, it seems that we have eight functions related 
to YahooFinance, such as YahooDailyReader(), YahooActionReader(), 
YahooOptions(), YahooQuotesReader(), get_components_yahoo(), get_data_
yahoo(), get_data_yahoo_actions(), and get_quote_yahoo(). Actually, we 
could use theDataReader() function as well.Similarly, a few functions are available 
for retrieving data from Google, FRED, and from Prof. French's Data Library.
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To find the usage of individual functions, the help() function could be applied. In 
the following, the first function called DataReader() from the preceding output, is 
used as an example:

From the output, it can be seen that the function could be used to retrieve data 
from YahooFinance, Google Finance, St. Louis FED (FRED), and Prof. French's 
data library. To find out all the functions contained in the matplotlib.finance 
submodules, see the following codes:

A careful reader would find some inconsistency for the definitions of those names; 
see the last four letters of some functions, that is, ochl, ohlc, and oclh.



Chapter 4

[ 113 ]

Retrieving data from Yahoo!Finance
Yahoo!Finance offers historical market data, recent, several years' financial 
statements, current quotes, analyst recommendations, options data, and more. The 
historical trading data include daily, weekly, monthly, and dividends. The historical 
data has several variables: open price, high price achieved, lowest price achieved, 
trading volume, close price, and adjusted-close price (which is adjusted for splits and 
dividends). Historical quotes typically do not go back further than 1960.Here, we 
show how to manually retrieve the monthly data for IBM:

1. Go to http://finance.yahoo.com/.
2. Enter IBM in the search box.
3. Click on Historical Price in the middle.
4. Choose the monthly data, then click Apply.
5. Click Download data under Apply.

A few lines at the beginning and at the end are shown here:

Assume that the above downloaded data is saved under c:/temp, the following 
codes could be used to retrieve it:

>>>import pandas as pd
>>>x=pd.read_csv("c:/temp/ibm.csv")

http://finance.yahoo.com/
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To view the first and the last few observations, the .head() and .tail() functions 
could be used. The default values of those two functions are 5. In the following, the 
command of x.head() will output the first five lines, while x.tail(2)will output 
the last two lines:

A better way is to use certain functions contained in various modules or submodules. 
Here is one of the simplest examples, just two lines to get IBM's trading data, see the 
following code:

>>>import pandas_datareader.data as getData
df = getData.get_data_google("IBM")

Again, the .head() and .tail() functions could be used to show the part of the 
result, see the following code:

>>>df.head(2)
>>>
                  Open        High         Low       Close   Volume  \
Date                                                                  
2010-01-04  131.179993  132.970001  130.850006  132.449997  6155300   
2010-01-05  131.679993  131.850006  130.100006  130.850006  6841400   
Adj Close  
Date                    
2010-01-04  112.285875
2010-01-05  110.929466
>>>df.tail(2)
                  Open        High         Low       Close   Volume  \
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Date                                                                  
2016-12-08  164.869995  166.000000  164.220001  165.360001  3259700   
2016-12-09  165.179993  166.720001  164.600006  166.520004  3143900   
Adj Close  
Date                    
2016-12-08  165.360001
2016-12-09  166.520004
>>>

If a longer time period is desired, the start and ending input variables should be 
specified, see the following code:

>>>import pandas_datareader.data as getData
>>>import datetime
>>>begdate = datetime.datetime(1962, 11, 1)
>>>enddate = datetime.datetime(2016, 11, 7)
df = getData.get_data_google("IBM",begdate, enddate)

In the preceding code, the function called datetime.datetime() defines a true date 
variable. Later in the chapter, it is shown how to retrieve year and month from such 
a variable. The first two observations are given here:

>>>df[0:2]
                Open        High         Low       Close   Volume  
AdjClose
Date                                                                          
1962-11-01  345.999992  351.999986  341.999996  351.999986  1992000   
1.391752
1962-11-02 351.999986369.875014 346.999991 357.249999  3131200   
1.412510
>>>

A careful reader should find that the order of data is different. When downloading 
data manually, the order is from the latest (such as yesterday) going back in history. 
However, when retrieving data via a function, we would have the oldest date first. 
Most financial databases adopt the same sorting order: from the oldest to the latest.

The following program uses another function called quotes_historical_yahoo_
ochl. The program is the simplest one with just two lines:

>>>from matplotlib.finance import quotes_historical_yahoo_ochl as 
getData
>>>p=getData("IBM", (2015,1,1),(2015,12,31),asobject=True,adjusted=Tr
ue)
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In the preceding program, the first line imports a function called quotes_
historical_yahoo_ochl() contained in the matplotlib.finance. In addition, to 
make our typing easier, the long function name is renamed getData. Users could use 
other more convenient names. The second line retrieves data from the Yahoo!Finance 
web page with a specific ticker symbol over a fixed period defined by beginning and 
ending dates. To show the first several lines, we type p[0:4]:

>>>p[0:4]
rec.array([ (datetime.date(2015, 1, 2), 2015, 1, 2, 735600.0, 
150.47501253708967, 151.174636, 152.34067510485053, 150.1858367047493, 
5525500.0, 151.174636),
 (datetime.date(2015, 1, 5), 2015, 1, 5, 735603.0, 150.43770546142676, 
148.795914, 150.43770546142676, 148.497414517829, 4880400.0, 
148.795914),
 (datetime.date(2015, 1, 6), 2015, 1, 6, 735604.0, 148.9451702494383, 
145.586986, 149.215699719094, 144.7474294432884, 6146700.0, 
145.586986),
 (datetime.date(2015, 1, 7), 2015, 1, 7, 735605.0, 146.64107567217212, 
144.635494, 146.64107567217212, 143.68400235493388, 4701800.0, 
144.635494),
dtype=[('date', 'O'), ('year', '<i2'), ('month', 'i1'), ('day', 'i1'), 
('d', '<f8'), ('open', '<f8'), ('close', '<f8'), ('high', '<f8'), 
('low', '<f8'), ('volume', '<f8'), ('aclose', '<f8')])>>>

The last several lines indicate the structure of the dataset. For example, O is for 
Python objects, i2 is for integer, and f8 is for floating. At the moment, it is not that 
critical to fully understand the meanings of those data types.

To understand how to estimate returns from a price array, let's look at a simple 
illustration. Assume that we have five prices and their time line is t, t+1, t+2, t+3 
and t+4:

>>> import numpy as np
>>>price=np.array([10,10.2,10.1,10.22,9])
>>>price[1:]
array([ 10.2 ,  10.1 ,  10.22,   9.  ])
>>>price[:-1]
array([ 10.  ,  10.2 ,  10.1 ,  10.22])
>>> (price[1:]-price[:-1])/price[:-1]
array([ 0.02      , -0.00980392,  0.01188119, -0.11937378])
>>>
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For a NumPy array, defined by np.array(), such as price defined previously, we 
use price[1:] for the second item to the last one, that is, all the data items except the 
first one. Recall that the subscript of a NumPy array starts from 0. For price[:-1], it 
represents all data items except the last one. We could manually verify those return 
numbers; see the following code for the first two returns:

>>> (10.2-10)/10
0.019999999999999928
>>>
>>> (10.1-10.2)/10.2
-0.009803921568627416

Here is another example:

>>>import scipy as sp
>>>sp.random.seed(123)
>>>price=sp.random.random_sample(10)*15
>>>price
array([ 10.44703778,   4.29209002,   3.4027718 ,   8.26972154,
        10.79203455,   6.3465969 ,  14.71146298,  10.27244608,
         7.21397852,   5.88176277])
>>>price[1:]/price[:-1]-1
array([-0.58915722, -0.20719934,  1.43028978,  0.3050058 , -0.4119184 
,
        1.31800809, -0.30173864, -0.29773508, -0.18467143])
>>>

Note that if the price array is sorted the other way around: from the newest to the 
oldest, then the return estimation should be price[:-1]/price[1:]-1. With the 
preceding logic, the following program calculates returns:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
ticker='IBM'
begdate=(2015,1,1) 
enddate=(2015,11,9)
p = getData(ticker, begdate, enddate,asobject=True, adjusted=True)
ret = p.aclose[1:]/p.aclose[:-1]-1

To make our programs more general, in the preceding program, three new variables 
called begdate, enddate, and tickerare added. Please pay attention to the last line 
of commands. For a given pair of two prices, p1 and p2, assume that p2 is after p1. 
We could use two ways to estimate a return: (p2-p1)/p1 or p2/p1-1. The former is 
conceptually clearer while the latter makes our program less prone to error. Again, 
we could verify a few returns manually:

>>>p.aclose[0:4]
array([ 151.174636,  148.795914,  145.586986,  144.635494])>>>
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>>>ret[0:3]
array([-0.01573493, -0.02122663, -0.00629399])
>>> (p.aclose[1]-p.aclose[0])/p.aclose[0]
-0.01573492791475934

For the following example, daily price data for IBM from January 1, 2011 to 
December 31, 2015 is downloaded first. Then, daily returns are calculated. The  
mean daily return is 0.011%:

from scipy import stats
import numpy as np
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
ticker='ibm'
begdate=(2011,1,1)
enddate=(2015,12,31)
p=getData(ticker,begdate,enddate,asobject=True, adjusted=True)
ret=p.aclose[1:]/p.aclose[:-1]-1
mean=np.mean(ret)
print('   Mean '  )
print(round(mean,5))
>>>
   Mean 
>>>
0.00011

To answer the question whether this mean daily return of 0.00011 is statistically 
different from zero, the function called ttest_1samp() contained in the stats module 
could be applied:

0.00011
print(' T-test result: T-value and P-value'  )
print(stats.ttest_1samp(ret,0))
>>>
 T-test result: T-value and P-value
>>>
Ttest_1sampResult(statistic=0.3082333300938474, 
pvalue=0.75795590301241988)
>>>
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Since the T-value is 0.31 and the P-value is 0.76, we accept the null hypothesis. In 
other words, the daily mean return for IBM from 2011 to 2015 is statistically the same 
as zero. To get more information about this function, the help() function would be 
applied. To save space, only the first several lines are shown here:

>>>import scipy.stats
>>>help(stats.ttest_1samp)
Help on function ttest_1samp in module scipy.stats.stats:

ttest_1samp(a, popmean, axis=0, nan_policy='propagate')

It calculates the T-test for the mean of ONE group of scores.

This is a two-sided test for the null hypothesis that the expected value (mean) of a 
sample of independent observations, a, is equal to the given population mean, popmean.

The following program tests the equal means for two stocks: IBM vs. MSFT:

import scipy.stats as stats
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
begdate=(2013,1,1)
enddate=(2016,12,9)

def ret_f(ticker,begdate,enddate):
    p = getData(ticker,begdate,
enddate,asobject=True,adjusted=True)
    ret=p.aclose[1:]/p.aclose[:-1]-1
    return(ret)

a=ret_f('IBM',begdate,enddate)
b=ret_f('MSFT',begdate,enddate)

The means of those two returns are shown here:

>>>a.mean()*100
0.0022164073263915601
>>>b.mean()*100
0.10399096829827408
>>>

Note that in the preceding code, the .mean() is used instead of scipy.mean(). To 
conduct a T-test for equal means, the function called ttest_ind() is called; see  
the following code:

>>>print(stats.ttest_ind(a,b))
Ttest_indResult(statistic=-1.652826053660396, 
pvalue=0.09852448906883747)
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Assume that two prices exist, p1 and p2. The following equation defines a percentage 
return (R) and a log return:

……..(1)

……..(2)

The relation between those two are shown here:

……..(3)

……..(4)

One of the beauties of a log return is that the return of a longer period is the 
summation of a short period. This means that annual log return is the summation of 
log quarterly returns. A log quarterly return is the summation of log monthly returns. 
This property makes our programming better. Here is a more general formula:

……..(5)

For a log annual return, we could apply the following formula:

……..(6)

The following code is used to convert daily returns into monthly ones:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np
import pandas as pd
ticker='IBM'
begdate=(2015,1,1)
enddate=(2015,12,31)
x = getData(ticker, begdate, enddate,asobject=True, adjusted=True)
logret = np.log(x.aclose[1:]/x.aclose[:-1])

date=[]
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d0=x.date
for i in range(0,np.size(logret)):
    date.append(''.join([d0[i].strftime("%Y"),d0[i].strftime("%m")]))

y=pd.DataFrame(logret,date,columns=['retMonthly'])
retMonthly=y.groupby(y.index).sum()

In the preceding program, the command of strftime("%Y") is used to extract the 
string of a year, such as 2016.A much simpler example is shown here:

>>>import pandas as pd
>>> x=pd.datetime(2016,1,1)
>>>x
datetime.datetime(2016, 1, 1, 0, 0)
>>>x.strftime("%Y")
'2016'

Similarly, the command of strftime("%m") would extract the string for a month. To 
find the first and last two monthly returns, the .head()and .tail()functions could 
be used; see the following code:

>>>retMonthly.head(2)
>>>
retMonthly
201501   -0.046737
201502    0.043930
>>>
>>>retMonthly.tail(2)
>>>
retMonthly
201511    0.015798
201512   -0.026248
>>>

Along the same line, the following code converts daily returns into annual ones:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np
import pandas as pd
ticker='IBM'
begdate=(1980,1,1)
enddate=(2012,12,31)
x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
logret = np.log(x.aclose[1:]/x.aclose[:-1])

date=[]
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d0=x.date
for i in range(0,np.size(logret)):
      date.append(d0[i].strftime("%Y"))
#
y=pd.DataFrame(logret,date,columns=['retAnnual'])
ret_annual=exp(y.groupby(y.index).sum())-1

A few annual returns are shown here:

>>>ret_annual[0:5]
retAnnual
1980  0.167561
1981 -0.105577
1982  0.679136
1983  0.352488
1984  0.028644
>>>
>>>ret_annual.tail(2)
>>>
retAnnual
2011   0.284586
2012   0.045489
>>>

In finance, standard deviation and variance are used to measure risk. To tell which 
stock is riskier, their variances or standard deviations could be compared. The 
following program tests whether IBM and Microsoft have equal variances:

import scipy as sp
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
begdate=(2013,1,1)
enddate=(2015,12,31)
def ret_f(ticker,begdate,enddate):
    p = getData(ticker,begdate,
enddate,asobject=True,adjusted=True)
    return(p.aclose[1:]/p.aclose[:-1]-1)
y=ret_f('IBM',begdate,enddate)
x=ret_f('MSFT',begdate,enddate)

The function called bartlett() contained in scipy.stats is used. The following 
output shown suggests that those two companies have different variance since the 
F-value is 44.39 while the P-value is almost zero:

>>>print(sp.stats.bartlett(x,y))
BartlettResult(statistic=44.392308291526497, 
pvalue=2.6874090005526671e-11)
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To find out more information about this function, the help() function could be used.

To save space, only the first few lines are shown here:

1. Help on function bartlett in module scipy.stats.morestats:
bartlett(*args)

2. Perform Bartlett's test for equal variances.

Bartlett's test tests the null hypothesis that all input samples 
are from populations with equal variances.
For samples from significantly non-normal populations, 
Levene's test, levene, is more robust.

For finance, we have a very important assumption: stock returns follow a normal 
distribution. Thus, it is a good idea to graphically show how the stock returns are 
distributed; see the following image. The code in Appendix A is relatively complex. 
In this chapter, it is not required to understand the program. This is true for the 
several programs described as well.

The following graph shows how IBM's returns distributed plus a normal 
distribution. The price moment is shown on the right and its Python program is 
included in Appendix A:
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The so-called candle-stick picture could be used to vividly present a stock price or 
trading volume, as shown in the following screenshot. The corresponding Python 
program is in Appendix C:

The upper-right picture is extremely sophisticated. Since beginners don't need  
to understand it, the program is not included in this book. If a reader is interested, 
the complete program can be found at two locations. Here are the links:  
http://matplotlib.org/examples/pylab_examples/finance_work2.html  
and http://canisius.edu/~yany/python/finance_work2.txt.

The following is another example to retrieve IBM daily data from Yahoo!  
Financeby calling the DataReader() function contained in the pandas_datareader.
datasubmodule:

>>>import pandas_datareader.data as getData
>>>x = getData.DataReader('IBM', data_source='yahoo', 
start='2004/1/30')
>>>x[1:5]
                  Open        High        Low       Close   Volume  
Adj Close
Date                                                                         
2004-02-02   99.150002   99.940002  98.500000   99.389999  6200000  
77.666352
2004-02-03   99.000000  100.000000  98.949997  100.000000  5604300  
78.143024
2004-02-04   99.379997  100.430000  99.300003  100.190002  8387500  
78.291498
2004-02-05  100.000000  100.089996  98.260002   98.860001  5975000  
77.252194
>>>

http://matplotlib.org/examples/pylab_examples/finance_work2.html
http://canisius.edu/~yany/python/finance_work2.txt
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Retrieving data from Google Finance
Like Yahoo Finance, Google Finance offers a significant amount of public information, 
such as news, option chains, related companies (good for competitor and industry 
analysis), historical prices, and financials (income statement, balance sheet, and cash 
flow statements). We could manually download data by going to Google Finance 
directly. Alternatively, to retrieve data from Google finance, the DataReader() 
function contained in thepandas_datareadersubmodule could be applied:

>>>import pandas_datareader.data as getData
>>>aapl =getData.DataReader("AAPL", "google") 
>>>aapl.head(2)
>>>
             Open   High    Low  Close     Volume
Date                                             
2010-01-04  30.49  30.64  30.34  30.57  123432050
2010-01-05  30.66  30.80  30.46  30.63  150476004
>>>aapl.tail(2)
              Open    High     Low   Close    Volume
Date                                                
2016-12-08  110.86  112.43  110.60  112.12  27068316
2016-12-09  112.31  114.70  112.31  113.95  34402627
>>>

The following screenshot shows a stock's intraday moment. The related Python 
program is included in Appendix C:
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Retrieving data from FRED
The Federal Reserve has many datasets related to current economics and historical 
time series. For instance, they have data related to interest rates, such as Euro-dollar 
deposit rates. There are two ways to retrieve such interest rate data. First, we could 
use their Data Download Program, as seen in the following steps:

1. Go to the Federal Reserve Bank's web link at https://www.
federalreserve.gov/econresdata/default.html.

2. Click the Data Download Program at https://www.federalreserve.gov/
data.htm.

3. Choose an appropriate data item.
4. Click Go to download.

For example, we choose Fed fund rate. The first couple of lines are given here:

"Series Description","Federal funds effective rate"
"Unit:","Percent:_Per_Year"
"Multiplier:","1"
"Currency:","NA"
"Unique Identifier: ","H15/H15/RIFSPFF_N.D"
"Time Period","RIFSPFF_N.D"
1954-07-01,1.13
1954-07-02,1.25
1954-07-03,1.25
1954-07-04,1.25
1954-07-05,0.88
1954-07-06,0.25
1954-07-07,1.00
1954-07-08,1.25

The following program could be used to retrieve the downloaded data. Here the 
dataset is assumed to be saved under the c:/temp/ directory:

import pandas as pd
importnumpy as np
file=open("c:/temp/fedFundRate.csv","r")
data=pd.read_csv(file,skiprows=6)

https://www.federalreserve.gov/econresdata/default.html
https://www.federalreserve.gov/econresdata/default.html
https://www.federalreserve.gov/data.htm
https://www.federalreserve.gov/data.htm
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Alternatively, the function called DataReader() contained in thepandas_datareader 
module could be used. One example is given here:

>>>import pandas_datareader.data as getData
>>>vix = DataReader("VIXCLS", "fred")
>>>vis.head()
VIXCLS
DATE              
2010-01-01     NaN
2010-01-04   20.04
2010-01-05   19.35
2010-01-06   19.16
2010-01-07   19.06
>>>

Retrieving data from Prof. French's  
data library
Prof. French has a very good and widely used data library.You can visit this link at 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.
html for more information. It contains the daily, weekly, and monthly Fama-French 
factors and other useful datasets. After clicking Fama-French Factors, a ZIPfile called 
F-F_Research_Data_Factors.zip can be downloaded. Unzip it, and we will have a 
text file called F_F_Research_Data_Factors.txt which includes both monthly and 
annual Fama-French factors starting from July 1926 onward. The first several lines 
are shown here. For more detail, see Chapter 7, Multifactor Models and Performance 
Measures, Sharpe ratio, Treynor ratio, and Jensen's α.

This file was created by CMPT_ME_BEME_RETS using the 201012 CRSP database:

The 1-month TBill return is from Ibbotson and Associates, Inc.
Mkt-RFSMBHMLRF
192607    2.62   -2.16   -2.92    0.22
192608    2.56   -1.49    4.88    0.25
192609    0.36   -1.38   -0.01    0.23
192610   -3.43    0.04    0.71    0.32
192611    2.44   -0.24   -0.31    0.31

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Assume that the data is saved under C:/temp/. Remember to remove the annual 
data at the bottom of the file before running the following code:

>>>import pandas as pd
>>>file=open("c:/temp/ffMonthly.txt","r")
>>>data=file.readlines()

The first 10 observations are shown here:

>>>data[0:10]
['DATE    MKT_RFSMBHMLRF\n', '192607    2.96   -2.30   -2.87    
0.22\n', '192608    2.64   -1.40    4.19    0.25\n', '192609    0.36   
-1.32    0.01    0.23\n', '192610   -3.24    0.04    0.51    0.32\n', 
'192611    2.53   -0.20   -0.35    0.31\n', '192612    2.62   -0.04   
-0.02    0.28\n', '192701   -0.06   -0.56    4.83    0.25\n', '192702    
4.18   -0.10    3.17    0.26\n', '192703    0.13   -1.60   -2.67    
0.30\n']
>>>

Alternatively, we could write a Python program to retrieve the monthly Fama-
French time series:

import pandas_datareader.data as getData
ff =getData.DataReader("F-F_Research_Data_Factors", "famafrench")

Again, the beauty of using the pandas_datareader() module is that we could use 
the .head() and .tail() function to view the retrieved datasets. Several more 
examples are given now:

import pandas_datareader.data as pdata
ff2=web.DataReader("F-F_Research_Data_Factors_weekly", "famafrench")
ff3 =web.DataReader("6_Portfolios_2x3", "famafrench")
ff4=web.DataReader("F-F_ST_Reversal_Factor", "famafrench")

Retrieving data from the Census Bureau, 
Treasury, and BLS
In this section, we briefly show how to retrieve data from the US Census Bureau.
You can learn more about it at http://www.census.gov/compendia/statab/
hist_stats.html. After we go to the census's historical data, the following window 
will pop up. This is the link: http://www.census.gov/econ/census/data/
historical_data.html. The following screenshot shows what kind of historical 
data we can download:

http://www.census.gov/compendia/statab/hist_stats.html
http://www.census.gov/compendia/statab/hist_stats.html
http://www.census.gov/econ/census/data/historical_data.html
http://www.census.gov/econ/census/data/historical_data.html
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Assume that we are interested in 61Educational Services. After clicking the link, we 
could choose one time series to download. After clicking the Download icon, a ZIP 
file which contains four files will be downloaded.

The next example shows how to get data from the Bureau of Labor Statistics web 
page. First, go to the related web page at http://www.bls.gov/ and click Data 
Tools on the menu bar:

Click Inflation & Prices, and CPI; we will be led to a location where we 
candownload related datasets, as you can see at this link: http://download.bls.
gov/pub/time.series/cu/

http://www.bls.gov/
http://download.bls.gov/pub/time.series/cu/
http://download.bls.gov/pub/time.series/cu/
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Generating two dozen datasets
To help readers of this book, many datasets are generated. First, let's look at a simple 
example of a download and load a Python dataset called ffMonthly.pkl. For more 
information on the mentioned dataset, visit the following link:http://canisius.
edu/~yany/python/ffMonthly.pkl.

This dataset was generated based on the monthly Fama-French 3 factor time series. 
Assuming that the dataset is saved under c:/temp/, then we could use the following 
Python program to load it:

>>>import pandas as pd
>>>ff=pd.read_pickle("c:/temp/ffMonthly.pkl")

We could view the first and last several lines:

>>>import pandas as pd
>>>ff=pd.read_pickle("c:/temp/ffMonthly.pkl")

A better way is to use the .head() and .tail() functions; see the following code:

>>>import pandas as pd
>>>ff=pd.read_pickle("c:/temp/ffMonthly.pkl")
>>>ff.head(5)
DATE  MKT_RFSMBHMLRF
1  1926-10-01 -0.0324  0.0004  0.0051  0.0032
2  1926-11-01  0.0253  -0.002 -0.0035  0.0031
3  1926-12-01  0.0262 -0.0004 -0.0002  0.0028
4  1927-01-01 -0.0006 -0.0056  0.0483  0.0025
5  1927-02-01  0.0418  -0.001  0.0317  0.0026
>>>ff.tail(3)
DATE  MKT_RFSMBHMLRF
1078  2016-07-01  0.0395   0.029 -0.0098  0.0002
1079  2016-08-01  0.0049  0.0094  0.0318  0.0002
1080  2016-09-01  0.0025    0.02 -0.0134  0.0002
>>>

The command of ff.head(5) would show the first five lines while ff.tail(3) 
would show the last three lines.The date variable is vitally important for time series. 
The major reason is that we are dealing with time series. When merging different 
datasets, one of the most common variables used to merge them is the date variable. 
The following example shows how to define such a date variable:

>>>import pandas as pd
>>>from datetime import timedelta
>>>a=pd.to_datetime('12/2/2016', format='%m/%d/%Y')

http://canisius.edu/~yany/python/ffMonthly.pkl
http://canisius.edu/~yany/python/ffMonthly.pkl
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>>>a+timedelta(40)
>>>
Timestamp('2017-01-11 00:00:00')
>>> b=a+timedelta(40)
>>>b.date()
datetime.date(2017, 1, 11)

To help readers of this book, the author has generated about two dozen Python 
datasets with an extension of .pkl. Those datasets are from the previously mentioned 
public sources, such as from the Prof. French data library, and Prof. Hasbrouck's 
TORQ, which contains transactions, quotes, order processing data, and audit trail data 
for a sample of 144 NYSE stocks for the 3 months, November 1990 through January 
1991. To facilitate an easy downloading, a Python program called loadYan.py is 
available. You will find more information on that at: http://caniisus.edu/~yany/
loadYan.py.

After you run the program, the help(loadYan) could be issued to find out all 
datasets generated; see the following code:

>>>help(loadYan)
Help on function loadYan in module __main__:

loadYan(i, loc='c:/temp/temp.pkl')
    Objective: download datasets with an extension of .pkl
i     : an integer 
loc   : a temporary location, such as c:/temp/temp.pkl

i  dataset           description 
     --- -------            ------------------
1  ffMonthlyFama-French 3 factors monthly 
2  ffDailyFama-French 3 factors daily 
3  ffMonthly5Fama-French 5 factors monthly 
4  ffDaily5Fama-French 5 factors daily 
5  sp500listsCurrent S&P 500 constituents 
6  tradingDaysMonthly trading days monthly 
7  tradingDaysDaily   trading days daily 
8  usGDPannual        US GDP annual 
9  usGDPmonthly       US GDP monthly 
10  usCPI              US Consumer Price Index
11  dollarIndex        US dollar index
12  goldPriceMonthly   gold price monthly 
13  goldPriceDaily     gold price daily 
14  spreadAAA          Moody's spread for AAA rated bonds

http://caniisus.edu/~yany/loadYan.py
http://caniisus.edu/~yany/loadYan.py
help(loadYan)
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15  spreadBBB          Moody's spread for BBB rated bonds
16  spreadCCC          Moody's spread for CCC rated bonds
17  TORQctTORQ Consolidated Trade 
18  TORQcqTORQ Consolidated Quote  
19  TORQcodTORQ Consolidated Order 
20  DTAQibmCTTAQ Consolidated Trade for IBM (one day)
21  DTAQibmCQDTAQ Consolidated Quote for IBM (one day)
22  DTAQ50CTDTAQ Consolidated Trade for 50  (one day)
23  DTAQ50CQDTAQ Consolidated Quote for 50  (one day)
24  spreadCredit   Spreads based on credit ratings
25journalRankings  A list of journals

    Example 1:
>>>x=loadYan(1)
>>>x.head(2)
DATE  MKT_RFSMBHMLRF
1  1926-10-01 -0.0324  0.0004  0.0051  0.0032
2  1926-11-01  0.0253  -0.002 -0.0035  0.0031

>>>x.tail(2)
DATE  MKT_RFSMBHMLRF
1079  2016-08-01  0.0049  0.0094  0.0318  0.0002
1080  2016-09-01  0.0025    0.02 -0.0134  0.0002
>>>

Several datasets related to CRSP and 
Compustat
The Center for Research in Security Prices (CRSP) contains all trading data, such as 
closing price, trading volume, shares outstanding, for all listed stocks in the US from 
1926 onward. Because of its quality and long history, it has been used extensively by 
academic researchers and practitioners. The database is generated and maintained 
by the University of Chicago, and is available at: http://www.crsp.com/. About 100 
Python datasets are generated; see the following table:

Name Description
crspInfo.pkl Contains PERMNO, header cusip, stock exchange, and 

starting and ending trading dates
stockMonthly.pkl Monthly stock file, contains PERMNO, date, return, 

price, trading volume, and shares outstanding
indexMonthly.pkl Index file with a monthly frequency

http://www.crsp.com/
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Name Description
indexDaily.pkl Index file with a monthly frequency
tradingDaysMonthly.
pkl

Trading days from 1926 to 12/31/2015 for monthly 
data

tradingDaysDaily.pkl Trading days from 1926 to 12/31/2015 for daily data
sp500add.pkl S&P500 constituents, that is, for each stock when it 

was added to the index and when it was removed 
from it

sp500daily.pkl S&P500 daily index level and return
sp500monthly.pkl S&P500 monthly index level and return
d1925.pkl Daily stock price file for 1925
d1926.pkl Daily stock price file for 1926
… [more here between 1926 and 2014]
d2014.pkl Daily stock price file for 2014
d2015.pkl Daily stock price file for 2015

Table 4.2: A list of Python datasets related CRSP

To load data is quite straightforward by using the pandas.read_pickle() function:

>>>import pandas as pd
>>>crspInfo=pd.read_pickle("c:/temp/crspInfo.pkl")

To view the first and last couple of observations, the .head() and .tail() functions 
could be applied:

>>>crspInfo.shape
     (31218, 8)
>>>crspInfo.head()
PERMNOPERMCOCUSIP                         NAME TICKER  EX   BEGDATE  \
0   10001    7953  6720410               AS NATURAL INCEGAS   2  
19860131   
1   10002    7954  5978R10ANCTRUST FINANCIAL GROUP IN   BTFG   3  
19860131   
2   10003    7957  9031810REAT COUNTRY BKASONIA CT   GCBK   3  
19860131   
3   10005    7961  5815510ESTERN ENERGY RESOURCES INCWERC   3  
19860131   
4   10006   22156  0080010           C F INDUSTRIES INCACF   1  
19251231   
ENDDATE
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0  20151231
1  20130228
2  19951229
3  19910731
4  19840629
>>>crspInfo.tail(3)
PERMNOPERMCOCUSIP                  NAME TICKER  EX   BEGDATE  \
31215   93434   53427  8513510& W SEED CO   SANW   3  20100630   
31216   93435   53452  2936G20INO CLEAN ENERGY INCSCEI   3  20100630   
31217   93436   53453  8160R10ESLA MOTORS INCTSLA   3  20100630   
ENDDATE
31215  20151231
31216  20120531
31217  20151231>>>

The PERMNO is the CRSP's stock ID, PERMCO is the firm ID, Name is the company's 
current name, Ticker is the header ticker, that is, the current ticker symbol, EX is the 
exchange code (1 for New York Stock Exchange, 2 for American Stock Exchange, 3 
for Nasdaq), BEGDATE is the first trading day while the ENDDATE is the last trading 
day for one given PERMNO. For the pandas module, column selection is done by 
passing a list of column names to our DataFrame.

For example, to choose just three columns of PERMNO, BEGDATE, and ENDDATE, we 
have the following code:

>>>myColumn=['PERMNO','BEGDATE','ENDDATE']
>>>crspInfo[myColumn].head(6)
>>>
PERMNOBEGDATEENDDATE
0   10001  19860131  20151231
1   10002  19860131  20130228
2   10003  19860131  19951229
3   10005  19860131  19910731
4   10006  19251231  19840629
5   10007  19860131  19901031
>>>
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The Compustat(CapitalIQ)database offers financial statements such as balance 
sheet, income statement, and cash flows for public firms in the US from 1960 to 
today. The database is generated by Standard &Poor's. You can find more about 
it at http://marketintelligence.spglobal.com/our-capabilities/our-
capabilities.html?product=compustat-research-insight. The following table 
lists a few related Python datasets:

Name Description
compInfo.pkl Key header file for all firms
varDefinitions.pkl Definitions of all variables used in the datasets
deletionCodes.pkl Shows when a firm was deleted from the database and why
acc1950.pkl Annual financial statements for 1950
acc1951.pkl Annual financial statements for 1951
acc2014.pkl Annual financial statements for 2014
acc2015.pkl Annual financial statements for 2015

Table 4.3: A list of Python datasets related Compustat

Note that since both CRSP and Compustat are proprietary databases, related datasets 
willnot be available on the author's website. If an instructor is interested in thatdata, 
please contact the author directly. A few datasets for high frequency data are listed 
in the following table:

Name Description
TORQct.pkl TORQ database for Consolidated Trade 
TORQcq.pkl TORQ database for Consolidated Quote 
TORQcod.pkl TORQ database for COD 
DTAQibmCT DTAQ stands for Daily Trade and Quote, millisecond-by-millisecond 

trading data, one-day data for IBM
DTAQibmCQ One-day data for IBM, Consolidated Quote 
DTAQ50CT One-day data for 50 stocks (Consolidated Trade)
DTAQ50CQ One-day data for 50 stocks (Consolidated Quote)

Table 4.4: A list of Python datasets related high-frequency trading data

http://marketintelligence.spglobal.com/our-capabilities/our-capabilities.html?product=compustat-research-insight
http://marketintelligence.spglobal.com/our-capabilities/our-capabilities.html?product=compustat-research-insight
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Assume that TORQcq.pkl is saved under c:/temp/. We could view its first and last 
several observations:

>>>import pandas as pd
>>>x=pd.read_pickle("c:/temp/TORQcq.pkl")
>>>x.head()
>>>
  SYMBOL      DATE      TIME     BID     OFRBIDSIZOFRSIZ  MODE  QSEQ 
EX
0     AC  19901101   9:30:44  12.875  13.125      32       5    10  
1586  N
1     AC  19901101   9:30:47  12.750  13.250       1       1    12     
0  M
2     AC  19901101   9:30:51  12.750  13.250       1       1    12     
0  B
3     AC  19901101   9:30:52  12.750  13.250       1       1    12     
0  X
4     AC  19901101  10:40:13  12.750  13.125       2       2    12     
0  
>>>x.tail()
        SYMBOL      DATE      TIME     BID     OFRBIDSIZOFRSIZ  MODE  
\
1111220    ZNT  19910131  13:31:06  12.375  12.875       1       1    
12   
1111221    ZNT  19910131  13:31:06  12.375  12.875       1       1    
12   
1111222    ZNT  19910131  16:08:44  12.500  12.750       1       1     
3   
1111223    ZNT  19910131  16:08:49  12.375  12.875       1       1    
12   
1111224    ZNT  19910131  16:16:54  12.375  12.875       1       1     
3   
QSEQ EX  
1111220       0  B
1111221       0  X
1111222  237893  N  
1111223       0  X
1111224       0  X
>>>M
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The following table shows a few examples of retrieving data for different formats, 
such as SAS, Matlab, and Excel:

Format Code
>>>import pandas as pd

CSV >>>a=pd.read_csv("c:/temp/ffMonthly.csv",skip=4)

Text >>>b=pd.read_table("c:/temp/ffMonthly.txt",skip=4)

Pickle >>>c=pd.read_pickle("c:/temp/ffMonthly.pkl")

SAS >>>d= sp.read_sas('c:/temp/ffMonthly.sas7bdat')

Matlab >>>import scipy.io as sio

>>>e= sio.loadmat('c:/temp/ffMonthly.mat')

Excel >>>infile=pd.ExcelFile("c:/temp/ffMonthly.xlsx")

>>>f=infile.parse("ffMonthly",header=T)

Table 4.5: Retrieving data with different formats

To help readers of this chapter, all input files for the preceding table are available. Please 
refer to this link for more information: http://canisius.edu/~yany/ffMonthly.zip.

Reference:
Kane, David, 2006, Open Source Finance, working paper, 
Harvard University, SSRN link is at http://papers.
ssrn.com/sol3/papers.cfm?abstract_id=966354

Appendix A – Python program for return 
distribution versus a normal distribution

from matplotlib.pyplot import *
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np
import matplotlib.mlab as mlab

ticker='IBM'
begdate=(2015,1,1) 
enddate=(2015,11,9)
p = getData(ticker, begdate, enddate,asobject=True, adjusted=True)
ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[:1] 
[n,bins,patches] = hist(ret, 100)
mu = np.mean(ret) 

http://canisius.edu/~yany/ffMonthly.zip
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=966354
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=966354
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sigma = np.std(ret)
x = mlab.normpdf(bins, mu, sigma) 
plot(bins, x, color='red', lw=2) 
title("IBM return distribution") 
xlabel("Returns") 
ylabel("Frequency")
show()

The corresponding graph is shown here:

Appendix B – Python program to a draw  
candle-stick picture

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter, WeekdayLocator
from matplotlib.dates import HourLocator,DayLocator, MONDAY
from matplotlib.finance import candlestick_ohlc,plot_day_summary_oclh
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
#
date1 = ( 2013, 10, 20)
date2 = ( 2013, 11, 10 )
ticker='IBM'
mondays = WeekdayLocator(MONDAY)       # major ticks on the mondays
alldays = DayLocator()                 # minor ticks on the days
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weekFormatter = DateFormatter('%b %d') # e.g., Jan 12
dayFormatter = DateFormatter('%d')     # e.g., 12
quotes = getData(ticker, date1, date2)
if len(quotes) == 0:
     raiseSystemExit
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)
ax.xaxis.set_major_locator(mondays)
ax.xaxis.set_minor_locator(alldays)
ax.xaxis.set_major_formatter(weekFormatter)
ax.xaxis.set_minor_formatter(dayFormatter)
plot_day_summary_oclh(ax, quotes, ticksize=3)
candlestick_ohlc(ax, quotes, width=0.6)
ax.xaxis_date()
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(), rotation=80,horizontalalignment
='right')
plt.figtext(0.35,0.45, '10/29: Open, High, Low, Close')
plt.figtext(0.35,0.42, ' 177.62, 182.32, 177.50, 182.12')
plt.figtext(0.35,0.32, 'Black ==> Close > Open ')
plt.figtext(0.35,0.28, 'Red ==> Close < Open ')
plt.title('Candlesticks for IBM from 10/20/2013 to 11/10/2013')
plt.ylabel('Price')
plt.xlabel('Date')
plt.show()

The picture is shown here:
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Appendix C – Python program for price 
movement

import datetime
import matplotlib.pyplot as plt
from matplotlib.finance import quotes_historical_yahoo_ochl
from matplotlib.dates import MonthLocator,DateFormatter
ticker='AAPL'
begdate= datetime.date( 2012, 1, 2 )
enddate = datetime.date( 2013, 12,4)

months= MonthLocator(range(1,13), bymonthday=1, interval=3)# 3rd month
monthsFmt = DateFormatter("%b '%Y")
x = quotes_historical_yahoo_ochl(ticker, begdate, enddate) 
if len(x) == 0:
     print ('Found no quotes')
     raiseSystemExit
dates = [q[0] for q in x] 
closes = [q[4] for q in x] 
fig, ax = plt.subplots()
ax.plot_date(dates, closes, '-') 
ax.xaxis.set_major_locator(months) 
ax.xaxis.set_major_formatter(monthsFmt)
ax.autoscale_view()
ax.grid(True)
fig.autofmt_xdate()
plt.show()

The corresponding graph is given here:
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Appendix D – Python program to show a 
picture of a stock's intra-day movement

import numpy as np
import pandas as pd
import datetime as datetime
import matplotlib.pyplot as plt
ticker='AAPL'
path='http://www.google.com/finance/getprices?q=ttt&i=60&p=1d&f=d,o,h
,l,c,v'
p=np.array(pd.read_csv(path.replace('ttt',ticker),skiprows=7,header=N
one))
#
date=[]
for i in np.arange(0,len(p)): 
    if p[i][0][0]=='a':
        t= datetime.datetime.fromtimestamp(int(p[i][0].
replace('a',''))) 
        date.append(t)
    else:
        date.append(t+datetime.timedelta(minutes =int(p[i][0])))
#
final=pd.DataFrame(p,index=date) 
final.columns=['a','Open','High','Low','Close','Vol'] 
del final['a']
#
x=final.index
y=final.Close
#
plt.title('Intraday price pattern for ttt'.replace('ttt',ticker)) 
plt.xlabel('Price of stock')
plt.ylabel('Intro-day price pattern') 
plt.plot(x,y) 
plt.show()
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The corresponding graph is shown here:

Appendix E –properties for a pandas 
DataFrame
First, let's download a Python dataset called ffMonthly.pickle from  
http://canisius.edu/~yany/python/ffMonthly.pickle. Assume that  
the dataset is saved under c:/temp:

>>>
>>>import pandas as pd
>>>ff=pd.read_pickle("c:/temp/ffMonthly.pickle")
>>>type(ff)
<class'pandas.core.frame.DataFrame'>
>>>

The last result shows that the type of ff dataset is a panda DataFrame. Because of 
this, it might be a good idea to get more information about this type of data. After we 
type ff., we cansee a drop-down list; see the following screenshot:

http://canisius.edu/~yany/python/ffMonthly.pickle


Chapter 4

[ 143 ]

We can find a function called hist(); see its usage in the following code:

>>>import pandas as pd
>>>infile=("c:/temp/ffMonthly.pickle")
>>>ff=pd.read_pickle(infile)
>>>ff.hist()

For more detail, see the related link at: http://pandas.pydata.org/pandas-docs/
stable/generated/pandas.DataFrame.html.

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
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Appendix F –how to generate a Python 
dataset with an extension of .pkl or .pickle
First, let look at the simplest dataset:

>>>import pandas as pd
>>>import numpy.ranom  as random
>>>x=random.randn(10)
>>>y=pd.DataFrame(x)
>>>y.to_pickle("c:/temp/test.pkl")

Reading a Python dataset with an extension of .pkl or .pickle, we use thepd.
read_pickle() function:

>>> import pandas as pd
>>>kk=pd.read_pickle("c:/temp/test.pkl")

Next, the Python program is shown to generate theffMonthly.pkl dataset:

import pandas as pd
import numpy as np
file=open("c:/temp/ffMonthly.txt","r")
data=file.readlines()
dd=mkt=smb=hml=rf=[]
n=len(data)
index=range(1,n-3)
#
for i in range(4,n):
     t=data[i].split()
     dd.append(pd.to_datetime(t[0]+'01', format='%Y%m%d').date())
     mkt.append(float(t[1])/100)
     smb.append(float(t[2])/100)
     hml.append(float(t[3])/100)
      rf.append(float(t[4])/100)
#
d=np.transpose([dd,mkt,smb,hml,rf])
ff=pd.DataFrame(d,index=index,columns=['DATE','MKT_
RF','SMB','HML','RF'])
ff.to_pickle("c:/temp/ffMonthly.pkl")

The first and last several observations are shown here:

>>>ff.head(2)
DATE  MKT_RFSMBHML
1  1926-10-01 -0.0324  0.0004  0.0051
2  1926-11-01  0.0253  -0.002 -0.0035
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>>>ff.tail(2)
DATE  MKT_RFSMBHML
1079  2016-08-01  0.0049  0.0094  0.0318
1080  2016-09-01  0.0025    0.02 -0.0134

Appendix G – data case #1 -generating 
several Python datasets
For this data case, students are required to generate about five Python datasets with 
an extension of .pkl:

>>import pandas as pd
>>>a = pd.Series(['12/1/2014', '1/1/2015'])
>>>b= pd.to_datetime(a, format='%m/%d/%Y')
>>>b
0   2014-12-01
1   2015-01-01
dtype: datetime64[ns]
>>>

Please generate the following datasets with a Python format of .pickle (.pkl  
or .pickle):

# Dataset name Description
1 ffDaily Daily Fama and French 3 factor time series

2 ffMonthly5 Monthly Fama and French 5 factor time series

3 usGDPannual US annual GDP (Gross Domestic Product)

4 usGDPquarterly US quarterly GDP (Gross Domestic Product)

5 dollarIndex US dollar index

6 goldPriceMonthly Monthly gold price

7 goldPriceDaily Daily Gold price

8 tradingDaysMonthly Trading days for monthly time series

9 tradingDaysDaily Trading days for daily data

10 spreadAAA Moody's AAA rated bond's spread

Exercises
1. From where could we get daily stock price data?
2. Could we download returns data directly?
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3. Manually download monthly and daily price data for CitiGroup.
4. Convert daily price data for the CitiGroup to daily returns.
5. Convert monthly prices to monthly returns and convert daily returns to 

monthly returns. Are they the same?
6. Are the following two lines equivalent?

>>>ret = p.aclose[1:]/p.aclose[:-1]-1     
>>>ret = (p.aclose[1:]-p.aclose[:-1]/p.aclose[1:]

7. What are advantages and disadvantages of using public stock data versus 
private stock data, for example, from some financial databases?

8. Find the annual cost of subscribing Compustat, related to accounting 
information and CRSP, related to trading data.

9. Download IBM monthly data from Yahoo Finance. Estimate its standard 
deviation and Sharpe ratio from January 2000 to December 2004.

10. What is the annual beta for IBM, DELL, and MSFT from 2001 to 2010?
11. What is the correlation between IBM and DELL from 2006 to 2010?
12. Estimate the mean weekday returns for IBM. Do you observe a  

weekday effect?
13. Does the volatility decline over the years? For example, you could select IBM, 

DELL, and MSFT to investigate this hypothesis.
14. What is the correlation between S&P500 and DJI (Dow Jones Industrial 

average)?Note: S&P500 Index ticker in Yahoo Finance is ^GSPC and for 
DJIit's^DJI.

15. How do you download data for n given tickers?
16. Write an R program to input n tickers from an input file.
17. What is the correlation coefficient between the US stock market (S&P500) and 

the Hong Kong market (Hang Seng Index)?
18. Is it true that the Singaporean equity market is more strongly correlated with 

the Japanese equitymarket than with the American equity market?
19. How would you download daily price data for 50 stocks and save to just one 

text file?
20. After downloading data from Yahoo!Finance,assume that p vector contains 

all the daily price data. What is the meaning of the following two lines of 
code? When should we apply them?
>>> ret = p.aclose[1:]/p.aclose[:-1]-1     
>>> ret = p.aclose[:-1]/p.aclose[1:]-1    
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Summary
In this chapter, we have discussed various public data sources for economics, 
finance and accounting. For economics, we could go to Federal Reserve Bank's data 
library, Prof. French's Data library to retrieve many useful time series. For finance, 
we could use Yahoo!Finance and Google finance to download historical price data.  
For accounting information, such as latest several years' balance sheets and income 
statements, we could use Yahoo!Finance, Google finance, and SEC filings. For the 
next chapter, we explain many concepts related to interest rate. After that, we explain 
how to price bonds and stocks.
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Bond and Stock Valuation
Bond or fixed income securities and stock are two widely used investment vehicles. 
Thus, they deserve a thorough discussion. Before touching upon bond or stock 
valuation, we have to discuss interest rate and its related concepts, such as Annual 
Percentage Rate (APR), Effective Annual Rate (EAR), compounding frequency, 
how to convert one effective rate to another one, the term structure of interest rate, 
how to estimate the selling price of a regular bond, how to use the so-called discount 
dividend model to estimate the price of a stock, and so on. In particular, this chapter 
will cover the following topics:

• Introduction to interest rates
• Conversion between various effective rates, APR
• The term structure of interest rates
• Bond evaluation and YTM
• Credit rating versus default spread
• Definition of duration and modified duration
• Stock evaluation, total returns, capital gain yield, and dividend yield
• A new data type – dictionary

Introduction to interest rates
There is no doubt that interest rates play an important role in our economy. When the 
economy is expanding, interest rates tend to go high since the high demand of capital 
would push up borrowing rates. In addition, inflation might go up as well. When this 
is happening, central banks will do their best to control the inflation at an appropriate 
level. One tool to fight the potential inflation hike is to increase banks' lending rates. 
On the other hand, the bond price is negatively correlated with interest rates.
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There is a good chance that many readers of this book are confused with the 
difference between simple interest and compound interest. Simple interest does 
not consider interest on interest while compound interest rate does. Assume that 
we borrow $1,000 today for 10 years. What are the future values at the end of each 
year if the annual rate is 8%? Assume that this annual rate is both the simple and 
compounded interest rates. Their corresponding formulae are shown here:

Here, PV is the loan today, R is the period rate, and n is the number of periods. The 
graphic representation of the principal, the future values with a simple interest rate, 
and the future values with a compound interest rate are shown in the diagram which 
follows. The related Python program is in Appendix A. The difference between the 
top red line (future values with a compounded interest rate) and the middle one 
(future values with a simple interest rate) is interest on interest:
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In Chapter 3, Time Value of Money we have learnt the time value of money. Let's use 
the same simple example to start.

Today, $100 is deposited in a bank with a 10% annual interest rate. How much is it at 
the end of one year? We know that it will be $110. $100 is our principal while $10 will 
be the interest payment. Alternatively, the following formula could be applied:

……….(3)

Here, FV is the future value, PV is the present value, R is the period effective rate 
and n is the number of periods. Here is the result: 100*(1+0.1)=110. Compared with 
Chapter 3,Time Value of Money, a careful reader would find that R is here defined 
as effective period rate instead of period rate. The keyword of effective was added. In 
previous chapters, there is an R in all formulae, such as in FV(of one PV), PV(one FV), 
PV(annuity), PV(annuity due), PV(growing annuity), FV(annuity), FV(annuity due) 
and FV(growing annuity). The R in those formulae is actually an effective rate. Here, 
we explain this important concept.

First, let's see the conversional way to estimate an effective rate for a given Annual 
Percentage Rate (APR) and a compounding frequency (m):

……(4)

Here,  is an effective period rate with respect to a certain period (identified 
by m), APR is Annual Percentage Rate and m is the compounding frequency. The 
values of m could be 1 for annual, 2 for semi-annual, 4 for quarterly, 12 for monthly, 
and 365 for daily. If APR is 10% compounded semi-annually, then the effective  
semi-annual rate is 5% (=0.10/2). On the other hand, if APR is 0.08 compounded 
quarterly, then the effective quarterly rate is 2% (=0.08/4).

Here is an example related to house mortgage. John Doe intends to buy a house in 
Buffalo, New York, with a price tag of $240,000. He plans to pay 20% of the price 
of the house as a down payment and borrow the rest from M&T Bank. For a 30-
year mortgage, the bank offers an annual rate of 4.25%. How much is his monthly 
mortgage payment? As discussed in Chapter 3,Time Value of Money, the scipy.pmt()
function could be applied here:

>>> import scipy as sp
>>>sp.pmt(0.045/12,30*12,240000*0.8)
-972.83579486570068
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In the preceding code, the effective monthly rate is 0.045/12. The reason behind this 
calculation is that the compounding frequency is assumed to be monthly since this is 
a mortgage with a regular monthly payment. Based on this result, every month John 
has to pay $972.84.

To compare two rates with different compounding frequencies, we have to convert 
them into the same rates before we could compare. One such effective rate is called 
Effective Annual Rate (EAR). For a given APR with a compounding frequency of m, 
its EAR is calculated here:

…….(5)

Assume that a company plans to borrow $10m for a long-term investment project. 
Bank A offers an annual rate of 8% compounded semi-annually, while bank B offers 
a rate of 7.9% compounded quarterly. For the company, which borrowing rate is 
cheaper? By applying the preceding formula, we have the following results. Since 
8.137% is lower than 8.160%, the offer from bank B is better:

>>> (1+0.08/2)**2-1
0.08160000000000012
>>> (1+0.079/4)**4-1
0.08137134208625363

Obviously, we could have other benchmarks. For example, we know that the 
effective semi-annual rate from bank A's offer is 4% (=0.08/2). Then we would ask: 
what is the equivalent effective quarterly rate from bank B? In other words, we 
compare two effective semi-annual rates. In order to convert one effective rate to 
another one, a so-called 2-Step Approach is introduced:

1. Which effective rate is given? To answer this question, we simply apply 
equation (4). There is no rationality behind this since it is quoted this way 
by financial institutions. Assume that the annual rate is 10%, compounded 
semi-annually. The effective semi-annual rate is given, and its value is 5%, 
that is, 0.1/2=0.05.If APR is 8%, compounded monthly, then it means that the 
effective monthly rate is 0.833%, that is,0.08/12=0.006666667.

2. How to convert one given effective rate to another target effective rate? If 
the given effective semi-annual rate is 5%, what is the equivalent effective 
quarterly rate? We draw a time line of one year, with two frequencies. On 
top, we have the given effective rate and its corresponding compounding 
frequency. In this case, 5% and 2 periods (Rsemi=5% and n1=2):
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On the bottom, we have the effective rate we intend to estimate and its corresponding 
frequency (R and n2=4). Then, we apply the future formula of by using 
PV=1 twice with different input values:

Set them equal, that is,  Solve for R, we have R=(1+0.05)**(2/4)-1. 
The result is shown here:

>>> (1+0.05)**(2/4)-1
  0.02469508

The effective quarterly rate is 2.469508%. The beauty of this approach is that we don't 
have to remember other formula except FV=PV(1+R)n. By the way, there is no link 
between this step and step 1.

Alternatively, we could apply certain formula directly. Here, we show how to derive 
two formula: from APR to Rm and from APR1 to APR2. For formula between two 
annual rates of APR1(m1)and APR2(m2)is given here:

……..(6)

Here, APR1 (APR2) is the first (second) APR Annual Percentage Rate, while m1 
(m2) is its corresponding compounding frequency per year. Based on the preceding 
equation, we have the following formula to calculate the effective rate with a 
new compounding frequency (m2) for a given APR (APR1) and its corresponding 
frequency (m1):

……(7)
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For the same example, a bank offers10% annual rate compounding semi-annually. 
What is its equivalent effective quarterly rate? By applying Equation (7) with a set of 
input values of APR1=0.10, m1=2, and m2=4, see the following code:

>>> (1+0.10/2)**(2/4)-1
>>>
0.02469507659595993

We have the same results as that from the 2-step approach. Actually, we could write 
a simple Python function based on equation (7), see the following code:

def APR2Rm(APR1,m1,m2):
        return (1+APR1/m1)**(m1/m2)-1

Calling the function is simple, as we can see in the following code:

>>> APR2Rm(0.1,2,4)
      0.02469507659595993
>>> APR2Rm(0.08,2,12)
0.008164846051901042

With a few comments, such as the definitions of those three inputs, a formula used to 
estimate our target effective rate, plus a few examples, could be added. The program 
should be clearer see the following code:

def APR2Rm(APR1,m1,m2):
"""

Objective: convert one APR to another effective rate Rm:

         APR1: annual percentage rate
           m1: compounding frequency for APR1
           m2: effective period rate of our target effective rate

Formula used: Rm=(1+APR1/m1)**(m1/m2)-1

    Example #1>>>APR2Rm(0.1,2,4)
                0.02469507659595993
"""
    return (1+APR1/m1)**(m1/m2)-1

To get the second APR(APR2) for a given APR and its corresponding frequency, we 
have the following formula:

……..(8)
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By applying equation (8), we have a result for APR2:

>>>Rs=(1+0.05/2)**(2/12)-1
>>>Rs*2
0.008247830930288469
>>>

The corresponding -line Python program is shown here. To save space, the program 
has no additional explanation or comments:

def APR2APR(APR1,m1,m2):
    return m2*((1+APR1/m1)**(m1/m2)-1)

For a continuously compounded interest rate, different ways could be used to 
explain this confusion concept. First, we apply the formula of Effective Annual Rate 
(EAR) by increasing the compounding frequency of m:

For example, if APR is 10% and compounded semi-annually, EAR will be 10.25%:

>>> (1+0.1/2)**2-1
>>>
0.10250000000000004

Since this function is quite simple, we could write a Python function instead, see the 
following program:

def EAR_f(APR,m):
    return (1+APR/m)**m-1

Next, assume that the APR is 10% and let's increase the compounding frequency, see 
the following program:

import numpy as np
d=365
h=d*24
m=h*60
s=m*60
ms=s*1000
x=np.array([1,2,4,12,d,h,m,s,ms])
APR=0.1
for i in x:
    print(EAR_f(APR,i))
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The following is the output image:

Actually, when the compounding frequency approaches an infinity, the limit will 
be our continuously compounded rate with a formula of EAR=exp(Rc)-1, see the 
following code:

>>>exp(0.1)-1
  0.10517091807564771

The second method to explain the formula of a continuously compounded rate, is to 
remember another way to calculate the future value of one present cash flow. Recall 
in Chapter 3,Time Value of Money, we have the following formula to calculate the 
future value for a given present value:

Here, FV is the future value, PV is the present value, R is the effective period rate and 
n is the number of periods. Another way to calculate the future value of one present 
value is using a continuously compounded rate, Rc. Its formula is given here:

……..(9)

Here, Rc is the continuously compounded rate, T is time when the future value is 
calculated (in years). If we choose one year as T and $1 as PV, equaling the preceding 
two equations would lead to the following one:
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Note that Rm=APR/m is from Equation (4). Then solve the preceding equation for Rc. 
Finally, for a given APR and m (compounding frequency), we have the following 
formula to estimate Rc:

……(10)

Here, log() is the natural logarithm function. Assume that the APR is 2.34% 
compounded semi-annually. What is its equivalent Rc?

>>>from math import log
>>>2*log(1+0.0234/2)
0.023264168459415393

Alternatively, we could write a 2-line Python function based on the preceding 
formula to convert an APR to Rc:

def APR2Rc(APR,m):
       return m*log(1+APR/m)

The output would be as follows:

>>> APR2Rc(0.0234,2)
0.023264168459415393

Similarly, for a given Rc, we have the following formula to calculate its 
corresponding APR:

……(11)

The related Python function is shown here:

def Rc2APR(Rc,m):
       return m*(exp(Rc/m)-1)

The output is as shown:

>>> Rc2APR(0.02,2)
0.020100334168335898

For an effective period rate, we have the following equation:

……….(12)
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The function and an example are shown in the following code:

def Rc2Rm(Rc,m):
       return exp(Rc/m)-1

The output can be seen here:

>>> Rc2Rm(0.02,2)
0.010050167084167949

Here, an analogy of withdrawing $100 from a bank is compared with the concept of 
effective rates. Assume that we go to a bank to withdraw $100. The following seven 
combinations are all equal:

Denomination of bills Number of bills
100 1
50 2
20 5
10 10
5 20
2 50
1 100

Table 5.1 Denominations and number of bills for withdrawing $100

Now, let's look at the similar situation related to effective rates with different 
combinations of APRs and compounding frequencies (m). APR is 10% and 
compounded semi-annually. The following 11 interest rates are all equal, where NA 
is not applicable:

Interest rate quotation M
APR is 10%, compounded semi-annually 2
APR is 10.25%, compounded annually 1
APR is 9.87803063838397%,compounded quarterly 4
APR is 9.79781526228125%,compounded monthly 12
APR is 9.75933732280154%. compounded daily 365

Effective annual rate is 0.1025 NA
Effective semi-annually rate is 0.05 NA
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Interest rate quotation M
Effective quarterly rate is 0.0246950765959599 NA
Effective monthly rate is 0.00816484605190104 NA
Effective daily rate is 0.000267379104734289 NA
Continuously compounded rate is 
0.0975803283388641

NA

Table 5.2 Even with different APRs and compounding frequencies, they are all equal

Let's look at another analogy. Mary's monthly salary is $5,000. Thus, her annual 
salary would be $60,000 (=50,000 * 12). This is our conventional way to calculate 
monthly salary versus the annual one. Now, let's make a simple twist. The company 
tells Mary that she would get just one lump sum at the end of the year. At the same 
time, she could borrow her original monthly salary from their company's accounting 
department and the company would cover the related cost. Literately, there is no 
difference between those two scenarios. Assume that the monthly effective rate is 
0.25%. This means that in January, Mary would borrow $5,000 for 11 months because 
she would pay it back at the end of the year. This is true for February and other 
months. Recall from Chapter 3,Time Value of Money, this represents the future value of 
an annuity. For this case, the scipy.fv() function could be used:

>>> import scipy as sp
>>>sp.fv(0.0025,12,5000,0)
>>>
-60831.913827013472

The result suggests that receiving $5,000 every month for 12 months is the same as 
receiving $60,831.91 at the end of the year just once. Obviously, compared with the 
original $60,000 annual salary, the extra money of $831.91 is for the interest payments.

Term structure of interest rates
The term structure of interest rates is defined as the relationship between risk-free 
rate and time.  A risk-free rate is usually defined as the default-free treasury rate. 
From many sources, we could get the current term structure of interest rates. For 
example, on 12/21/2016, from Yahoo!Finance at http://finance.yahoo.com/
bonds, we could get the following information.

http://finance.yahoo.com/bonds
http://finance.yahoo.com/bonds
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The plotted term structure of interest rates could be more eye catching; see the 
following image:

Based on the information supplied by the preceding image, we have the following 
code to draw a so-called yield curve:

from matplotlib.pyplot import *
time=[3/12,6/12,2,3,5,10,30]
rate=[0.47,0.6,1.18,1.53,2,2.53,3.12]
title("Term Structure of Interest Rate ")
xlabel("Time ")
ylabel("Risk-free rate (%)")
plot(time,rate)
show()
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The related graph is given in the following image:

The upward sloping's term structure means the long-term rates are higher than 
the short-term rates. Since the term structure of interest rates has many missing 
numbers, the function called .interpolate() from the pandas module could be 
used to interpolate those values, see the following example where we have two 
missing values between 2 and 6:

>>>import pandas as pd
>>>import numpy as np
>>>x=pd.Series([1,2,np.nan,np.nan,6])
>>>x.interpolate()

The related output is shown here:

>>>
01.000000
12.000000
23.333333
34.666667
46.000000
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We could manually calculate those missing values. First, a Δ is estimated:

……..(13)

Here, Δ is the incremental value between v2(the ending value) and v1 (the beginning 
value), and n is the number of internals between those two values. The Δfor the 
above case is (6-2)/3=1.33333. Thus, the next value will be v1+Δ=2+1.33333=3.33333.

For the preceding example, related to the term structure of interest rates, from years 
6 to 9, there is no data. The code and output are shown here:

>>> import pandas as pd
>>> import numpy as np
>>> nan=np.nan
>>> x=pd.Series([2,nan,nan,nan,nan,2.53])
>>>x.interpolate()

The output is shown here:

>>>
0    2.000
1    2.106
2    2.212
3    2.318
4    2.424
5    2.530
dtype: float64
>>>

The term structure of interest rates is very important since it serves as a benchmark 
to estimate Yield to Maturity (YTM) for corporate bonds. YTM is the period return 
if the bond holder holds until the bond expires. Technically speaking, YTM is the 
same as Internal Rate of Return (IRR). In the financial industry, the spread, defined 
as the difference between YTM of a corporate bond over the risk-free rate, is used to 
estimate the discount rate for corporate bonds. The spread is a measure of the default 
risk. Thus, it should be closely correlated with the credit rating of the company and 
of the bond.
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For this reason, a Python dataset called spreadBasedOnCreditRating.pkl is used 
to explain the relationship between the default spread and credit rating. The dataset 
could be downloaded from the author's web page at http://canisius.edu/~yany/
python/spreadBasedOnCreditRating.pkl. The following program retrieves and 
prints the data. The dataset is assumed to be in the c:/temp/ directory:

>>>import pandas as pd
>>>spread=pd.read_pickle("c:/temp/spreadBasedOnCreditRating.pkl")
>>> spread
                   1       2       3       5       7      10     30 
Rating                                                                
Aaa/AAA          5.00    8.00   12.00   18.00   28.00   42.00   65.00
Aa1/AA+         10.00   18.00   25.00   34.00   42.00   54.00   77.00
Aa2/AA          14.00   29.00   38.00   50.00   57.00   65.00   89.00
Aa3/AA-         19.00   34.00   43.00   54.00   61.00   69.00   92.00
A1/A+           23.00   39.00   47.00   58.00   65.00   72.00   95.00
A2/A            24.00   39.00   49.00   61.00   69.00   77.00  103.00
A3/A-           32.00   49.00   59.00   72.00   80.00   89.00  117.00
Baa1/BBB+       38.00   61.00   75.00   92.00  103.00  115.00  151.00
Baa2/BBB        47.00   75.00   89.00  107.00  119.00  132.00  170.00
Baa3/BBB-       83.00  108.00  122.00  140.00  152.00  165.00  204.00
Ba1/BB+        157.00  182.00  198.00  217.00  232.00  248.00  286.00
Ba2/BB         231.00  256.00  274.00  295.00  312.00  330.00  367.00
Ba3/BB-        305.00  330.00  350.00  372.00  392.00  413.00  449.00
B1/B+          378.00  404.00  426.00  450.00  472.00  495.00  530.00
B2/B           452.00  478.00  502.00  527.00  552.00  578.00  612.00
B3/B-          526.00  552.00  578.00  604.00  632.00  660.00  693.00
Caa/CCC+       600.00  626.00  653.00  682.00  712.00  743.00  775.00
Treasury-Yield  0.13    0.45    0.93    1.74    2.31    2.73  3.55
>>>

The index column is the credit rating based on both Moody's and Standard& Poor's 
credit rating scales. Except for the last row, US Treasury Yield, the values in the 
dataset have a unit of basis point which is worth one hundredth of 1%. In other 
words, each value should be divided by 100 twice. For example, for an AA rated 
bond, its spread on year 5 is 50 basis points, that is, 0.005 (=50/10000). If the risk-free 
rate for a 5-year zero-coupon bond is 2%, the corresponding rate for a corporate 
bond, rated as AA, would be 2.5% (2.5%+ 0.5%).

http://canisius.edu/~yany/python/spreadBasedOnCreditRating.pkl
http://canisius.edu/~yany/python/spreadBasedOnCreditRating.pkl
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The duration is a very important concept for risk analysis and hedging. The duration 
is defined as: the number of years needed to recover our initial investment. Let's look 
at the simple case: a zero-coupon bond. Today, we buy a 1-year zero-coupon bond. 
One year later, we would receive its face value of $100. Its timeline and cash flow are 
shown here:

Obviously, we have to wait for one year to recover our initial investment. Thus, the 
duration of this 1-year bond is 1. For a zero-coupon bond, the duration of the bond is 
the same as its maturity:

……….(14)

Here,D is duration and T is the maturity of a zero-coupon bond (in years). Let's look 
at our second example that we would have two equal cash flows of $100 at the end of 
the first two years:

How many years do we have to wait to recover our initial investment? The fact is 
that we have to wait for one year to receive the first $100 and wait for two years to 
receive the second $100. Thus, the first guess would be 1.5 years. However, after 
reading Chapter 3,Time Value of Money, we know that $100 received in year 2 is not 
equivalent to $100 received in year 1. If using the end of year 1 as our benchmark, the 
equivalent value of the second $100 is shown here:

>>> 100/(1+0.05)
95.23809523809524

Now, we would say that we have to wait 1 year to receive $100 and wait two years to 
receive $95.24. On average, how many years would we wait? The solution should be 
a weighted average. The weights of those two $100s are given here:

> pv2<-100/(1+0.05)
>w1=100/(100+pv2)
>>>w1
 0.5121951
>>>w2= pv2/(100+pv2)
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>>>w2
 0.4878049
>>>w1*1 + w2*2
    1.487281

Finally, we have D=w1*T1+w2*T2=w1*1+w2*2=0.5122*1 + 0.487805*2=1.487. The 
answer is that we have to wait 1.487 years to recover our initial investment. In the 
above reasoning, we discount the second $100 to the end of year 1 to get our answer.

Alternatively, we could compound the first $100 to the end of year2, then compare, 
see the following code:

>>>fv=100*(1+0.05)
>>>fv
   105

The corresponding weights are given here:

> w1=105/(100+105)
> w1
[1] 0.5121951
> w2=100/(100+105)
> w2
[1] 0.4878049
>

The solution should be the same since the weights are the same as before. This 
suggests that we could use any point of time to estimate the weights of those cash 
flows happening at different points in time. Conventionally, the present value is 
used as the benchmark, see the following code:

>>> pv1=100/(1+0.05)
>>> pv2=100/(1+0.05)**2
>>>w1= pv1/(pv1+pv2)
>>>w1
0.5121951219512195
>>>1-w1
0.4878048780487805

Again, both weights remain the same. Another advantage of using the present value 
as our benchmark is that we could estimate the total present value as well. The total 
value is given here. We could argue that if we invested $185.94 today, we would 
recover 51.2% in year 1 and the rest by the end of year 2. Thus, on average we have 
to wait for 1.487 years:

> pv1+pv2
[1] 185.941
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The general formula to estimate the duration for ngiven future cash flows is given in 
the following formula:

………(15)

D is duration, n is the number of cash flows, wi is the weight of the ith cash flow, and 
wi is defined as the present value of ith cash flow over the present values of all cash 
flows, Ti is the timing (in years) of the ith cash flow. Here, a Python function called 
duration is written:

def duration(t,cash_flow,y):
    n=len(t)
B,D=0,0
for i in range(n):
        B+=cash_flow[i]*exp(-y*t[i])
for i in range(n):
        D+=t[i]*cash_flow[i]*exp(-y*t[i])/B
    return D

If we add a header, the program would be more helpful, see the following code:

def duration(t,cash_flow,y):
    n=len(t)
    B=0     # B is the bond's present value
    for i in range(n):
        B+=cash_flow[i]*exp(-y*t[i])

    D=0     # D is the duration
    for i in range(n):
        D+=t[i]*cash_flow[i]*exp(-y*t[i])/B
    return D

Bond evaluation
Bond is also called fixed income security. There are different types of categories. 
Based on maturity, bonds could be classified into short-term, median-term, and long-
term. For US Treasury securities, T-bills are the securities issued by the Department of 
Treasury with a maturity less than 1 year, T-notes are for government bonds beyond 1 
year but less than 10 years. T-bonds are treasury securities with a maturity beyond 10 
years. Based on coupon payments, there are zero-coupon bonds and coupon bonds. 
When it is a central government's bond, we call them risk-free bonds since the central 
government usually has a right to print money, that is by default, free.
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If a bond holder could convert his/her bond into the underlying common stock with 
a predetermined number of shares before maturity, it is called a convertible bond. 
If a bond issuer could retire or buy back a bond before its maturity, it is named a 
callable bond. On the other hands, if the bond buyers could sell the bond back to  
the original issuers before maturity, it is balled a puttable bond. The cashflow for a 
zero-coupon bond is shown here:

Here, FV is the face value and n is the maturity (in years). To estimate the price of 
such a zero-coupon bond, we could apply the present value of one future cash flow 
easily. In other words, we could apply the scipy.pv() function.

For a coupon bond, we expect a set of regular coupon payments. The periodic 
coupon payment is estimated by the following formula:

Here,FV is the face value of the bond and frequency is the number of coupon 
payments each year. Let's look at a 3-year coupon bond. The face value is $100 with 
an annual coupon rate of 8%. The coupon payment is annual. The annual coupon 
payment is $8 for the next three years and the investors would also receive the face 
value of $100 on the maturity date. The timeline of this coupon bond and related 
future cash flows are shown here:

Recall that for the present value of one future cash flow and the present value of 
annuity, we have the following two formulae:
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Here, C is a constant cash flow and n is the number of periods. The price of a coupon 
bond is the combination of these two types of payments:

………….(16)

The scipy.pv() function could be used to calculate the price of bond. Assume that 
the effective annual rate is 2.4%:

>>> import scipy as sp
>>>sp.pv(0.024,3,0.08*100,100)
-116.02473258972169

Based on the above result, the price of this 3-year coupon bond is $116.02.

Since the price of a bond is the present value of its all future cash flows, its price 
should be negatively correlated with the discount rate. In other words, should the 
interest rate increase, the price of bonds would fall, and vice versa.

Yield to Maturity (YTM) is the same concept as International Rate of Return (IRR). 
Assume that we bought a zero-coupon bond for $717.25. The face value of the bond 
is $1,000 and it would mature in 10 years. What is its YTM? For a zero-coupon bond, 
we have the following formula for YTM:

…………(17)

Here,FV is the face value, PV is the price of the zero-coupon bond and 
n is the number of years (maturity).By applying the formula, we have 
717.25*(1+YTM)^10=1000. Thus, we have the following result:

>>> (1000/717.25)**(1/10)-1
>>>
0.033791469771228044

Assume that we bought a bond for $825 today. It has a maturity term of 5 years. The 
coupon rate is 3% and coupon payments are annual. If the face value is $1,000, what 
is the YTM? The scipy.rate() function could be used to estimate the YTM:

>>> import scipy as sp
>>> sp.rate(5,0.03*1000,-818,1000)
0.074981804314870726
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Based on this result, the YTM is 7.498%. The relationship between bond price, 
coupon rate, and face value is shown in the following table:

Condition Bond price versus face 
value

Premium, par, and 
discount

Coupon rate> YTM Price of bond> FV At a premium
Coupon rate =YTM Price of bond=FV At par
Coupon rate <YTM Price of bond<FV At a discount

Table 5.3: Relationship between bond price, coupon rate, and face value

Obviously, for two zero-coupon bonds, the longer the maturity, the riskier the bond. 
The reason is that for a zero-coupon bond with a longer maturity, we have to wait 
longer to recoup our initial investment. For the coupon bond with the same maturity, 
the higher the coupon rates, the safer the bond is since we could receive more 
payments early for the bond with a higher coupon rate. How about zero-coupon 
bonds and a coupon bond with different maturity dates?

Here is one example, we have a 15-year zero coupon bond with a face value of 
$100 and a coupon bond of 30years. The coupon rate is 9% with an annual coupon 
payment. Which bond is riskier? If the current yield jumps from 4% to 5%, what 
are the percentages for both of them? The riskier bond would have a much higher 
percentage change when the yield jumps or falls:

# for zero-coupon bond
>> p0=sp.pv(0.04,15,0,-100)
>>> p1=sp.pv(0.05,15,0,-100)
>>> (p1-p0)/p0
-0.1337153811552842

The related output is shown here:

>>> p0
>>> 55.526450271327484
>>> p1
48.101709809096995

For the coupon bond, we have the following result:

>>> p0
>>> p0=sp.pv(0.04,30,-0.09*100,-100)
>>> p1=sp.pv(0.05,30,-0.09*100,-100)
>>> (p1-p0)/p0
>>>
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    -0.13391794539315816
>>> p0
    186.46016650332245
>>> p1
    161.48980410753134

Based on the preceding results, the 30-year coupon bond is riskier than the 15-
year zero coupon bond since it has a bigger percentage change. For the 15-year 
zero coupon bond, its duration is 15 years. How about the aforementioned 30-year 
coupon bonds? The following result shows it is 17 years. Note that p4f is a set of 
Python programs written by the author:

>>>import p4f
>>>p4f.durationBond(0.04,0.09,30)
>>>
17.036402239014734

Note, in order to use the model called p4f, readers of this book can download it at 
http://canisius.edu/~yany/python/p4f.cpython-35.pyc. The relationship 
between the percentage change of a bond price and the change of YTM is given here:

……..(18)

Here,B is the bond price, ΔB is the change in bond price, y is YTM, m is the 
corresponding compounding frequency. The modified duration is defined here:

………….(19)

…………..(20)

For banks, their deposits usually are short-term while their loans (lending) are 
usually long-term. Thus, banks face an interest rate risk. One hedging strategy is 
called duration matching, that is, match the duration of liabilities with the duration  
of assets.

http://canisius.edu/~yany/python/p4f.cpython-35.pyc
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Stock valuation
There are several ways to estimate the price of a stock. One method is called the 
dividend discount model. The logic is that the price of a stock today is simply the 
summation of the present value of all its future dividends. Let's use the simplest one 
period model to illustrate. We expect a $1 dividend at the end of one year and its 
selling price is expected to be $50. If the appropriate cost of equity is 12%, what is the 
price of stock today? The timeline and future cash flows are shown here:

The price of stock is simply the present values of those two future cash flows, $45.54:

>> (1+50)/(1+0.12)
>>>
     45.535714285714285
>>> import scipy as sp
>>>sp.pv(0.12,1,1+50)
     -45.53571428571432

Let's look at a two-period model. We expect two dividends of $1.5 and $2 at the end 
of the next 2 years. In addition, the selling price is expected to be $78. What is the 
price today?

Assume that for this stock, the appropriate discount rate is 14%. Then the present 
value of the stock is $62.87:

>>>1.5/(1+0.14)+(2+78)/(1+0.14)**2
62.873191751308084

Along the same lines, we could estimate the cost of equity if both the present value 
and futures values are given. If the current price is $30 and the expected selling price 
at the end of one year is $35:
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Then we could estimate the total return:

>>> (35-30+1)/30
0.2

The total return, cost of equity (Re), has two components: capital gain yield and 
dividend yield:

……..(21)

The capital gain yield is 16.667% while the dividend yield is 3.333%. Another 
possible scenario is that a stock might enjoy a constant dividend growth rate. 
Company A is expected to issue a $4 dividend next year and enjoys a constant 
dividend growth rate of 2% afterward. If the cost of equity is 18%, what will be the 
stock price today? From Chapter 3, Time Value of Money, we know that the present 
value of growing perpetuity formula could be applied:

By using the correct notation, that is, P0 as today's stock price, d1 as the first expected 
dividend, we could have the following equivalent pricing formula:

………(22)

From the following results, we know that today's price should be $25:

>>> 4/(0.18-0.02)
>>>
25.0

Many young and small firms would not issue any dividends since they might need 
capital greatly after they came into existence. After a successful period, those firms 
might enjoy a super growth. After that, firms usually enter a long-term normal 
growth. For those cases, we could apply an n-period model. For an n-period model, 
we have n+1future cash flows: n dividend plus 1 selling price. Thus, we could have 
the following general formula for an n period model:
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……(23)

The selling price at the end of the n period is given here:

……..(24)

Let's use an example to explain how to apply this n-period model. Assume that 
a company had issued a $1.5 dividend last year. The dividend would enjoy 
grammatical growth in the next 5 years with growth rates of 20%, 15%, 10%, 9%, and 
8%. After that, the growth rate would be reduced to a long-term growth rate of 3% 
forever. If the rate of return for such types of stocks is 18.2%, what is the stock price 
today? The following table shows the time periods and the growth rates:

Period=> 1 2 3 4 5 6
Growth rate 0.2 0.15 0.1 0.09 0.08 0.04

As our first step, it should be asked how many periods for the n-period model? The 
rule of thumb is one period less than the year when the dividend enjoys a long-term growth 
rate. For this case, we could choose 5:

Period=> 1 2 3 4 5 6
Growth rate 0.2 0.15 0.1 0.09 0.08 0.04
dividend 1.80 2.07 2.277 2.48193 2.680 2.7877

The first dividend of 1.8 is from 1.5*(1+0.2). To solve this problem, we have the 
following codes:

>>>import scipy as sp
>>>dividends=[1.80,2.07,2.277,2.48193,2.680,2.7877]
>>>R=0.182
>>>g=0.03
>>>sp.npv(R,dividends[:-1])*(1+R)
>>>
9.5233173204508681
>>>sp.pv(R,5,0,2.7877/(R-g))
>>>
-7.949046992374841
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In the preceding codes, we drop the last cash flow since it is used to calculate the 
selling price of P5. Because the scipy.npv() treats the first cash flow happening 
at time zero, we have to adjust the result by timing it by (1+R). Calculating the 
present of five future dividends separated with the calculation of the present value 
of the selling price is to remind readers of the existence of so-called Excel sign 
convention. The stock price is 17.47 (=9.52+7.95). Alternatively, we could use the 
p4f.pvPriceNperiodModel() function, see the following code. The Python program 
is included in Appendix D:

>>>import p4f
>>> r=0.182
>>> g=0.03
>>> d=[1.8,2.07,2.277,2.48193,2.68,2.7877]
>>> p4f.pvValueNperiodModel(r,g,d)
          17.472364312825711

The preceding model depends on an important assumption, the number of shares 
is constant. Thus, if a company uses a part of its earnings to buy back shares, this 
assumption is violated. Thus, we could not use the dividend discount model. For those 
cases, we could apply a so-called share repurchase and the total payout model. Here 
is the formula. The present value of all of the firm's equity, rather than a single share, 
is calculated first:

Logic Solution expects its total earnings at the end of the year to be about $400 
million. The company plans to payout 45% of its total earnings: 30% for dividends 
and 15% for shares repurchases. If the company's long-term growth rate is 3%, the 
cost of equity is 18%, and the number of shares outstanding is 50 million, what is its 
stock price today? The solution is shown here:

>>> 400*0.45/(0.18-0.03)/50
>>>
24.0

The third method is to estimate the total value of the firm, that is, the enterprise 
value. Then we estimate the total value of the equity. Finally, we divide the 
total value of equity by the number of shares outstanding to reach the price. The 
enterprise value is defined here:
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Here,Equity is the market value of equity, Debt is the total book value of debt and 
Cash is the cash holding. The enterprise value could be viewed as the total capital 
we need to buy a whole company. Let's look at a simple example. Assume that the 
market value of a company is $6 million, the total debt is $4 million and the cash 
holding is $1 million. It seems that an investor needs $10 million to buy the whole 
company since she needs $6 million to buy all the shares and assume the debt 
burden of $4 million. Actually, since $1 million cash is available for the new owner, 
she needs to raise just $9 million. After we have the enterprise value, the following 
formula is used to find out the price of one share:

Here V0 is the enterprise value, Debt is the debt today, and Cash is the cash today. V0 
could be viewed as the total value of the firm owned by both equity holders and debt 
(bond) holders:

………(28)

Free cash flow at time t is defined as:

………(29)

FCFt is free cash flow for year t, NIt is the net income or year t, Dt is the depreciation 
for year t, CapExt is the capital expenditure for year t and  is the change in 
net working capital for year t. Net working capital is the difference between current 
assets and current liability. The generated formula is given here:

……(30)

WACC is the weighted average cost of capital. The reason is that we estimate the 
total value of the whole company, thus it is not appropriate to use the cost of equity 
as our discount rate:

……………(31)
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Where We (Re) is the weight (cost) for equity, Wd (Rd) is the weight (before-tax cost) 
for debt, and Tc is the corporate tax rate. Since Re is after-tax cost of equity, we have 
to convert Rd (before tax of equity) into the after-tax cost of debt by timing (1-Tc). Vn 
could be viewed as the selling price of the whole company:

…………….(32)

Another way to estimate a current stock price is based on certain multiples, such as 
industry P/E ratio. The method is straightforward. Assume that a company's next 
year's expected EPS is $4. If the industry average P/E ratio is 10, what is the stock 
price today? It is $40 today.

A new data type – dictionary
Dictionaries are unordered datasets and are accessed via keys and not via their 
position. A dictionary is an associative array (also known as hashes). Any key of the 
dictionary is associated (or mapped) to a value. The first variable is the key, while the 
second one is the value; see the following example. The curly parentheses are used. 
The second value could be any data type such as a string, an integer, or a real number:

>>>houseHold={"father":"John","mother":"Mary","daughter":"Jane"}
>>> household
{'father': 'John', 'daughter': 'Jane','mother': 'Mary'}
>>> type(houseHold)
<class 'dict'>
>>>houseHold['father']
'John'

Appendix A – simple interest rate versus 
compounding interest rate
The formula for payment of a simple interest rate is as follows:

The future value for compounded interest is as follows:
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Here, PV is the present value, R is the period rate, and n is the number of periods. 
Thus, those two future values will be $1,800 and $2,158.93.

The following program offers a graphic representation of a principal, simple interest 
payment, and the future values:

import numpy as np 
from matplotlib.pyplot import * 
from pylab import * 
pv=1000 
r=0.08 
n=10  
t=linspace(0,n,n) 
y1=np.ones(len(t))*pv # a horizontal line 
y2=pv*(1+r*t) 
y3=pv*(1+r)**t 
title('Simple vs. compounded interest rates') 
xlabel('Number of years') 
ylabel('Values') 
xlim(0,11) 
ylim(800,2200) 
plot(t, y1, 'b-') 
plot(t, y2, 'g--') 
plot(t, y3, 'r-') 
show()

The related graph is shown here:
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In the preceding program, the xlim() function would set the range of the x axis. 
This is true for the ylim() function. The third input variable for both the xlim() and 
ylim() functions are for the color and the line. The letter b is for black, g is for green, 
and r is for red.

Appendix B – several Python functions 
related to interest conversion

def APR2Rm(APR1,m1,m2):
"""
    Objective: convert one APR to another Rm
         APR1: annual percentage rate
           m1:  compounding frequency 
           m2:  effective period rate with this compounding

    Formula used: Rm=(1+APR1/m1)**(m1/m2)-1

    Example #1>>>APR2Rm(0.1,2,4)
                0.02469507659595993
"""
    return (1+APR/m1)**(m1/m2)-1

def APR2APR(APR1,m1,m2):
"""
    Objective: convert one APR to another Rm
         APR1: annual percentage rate
           m1:  compounding frequency 
           m2:  effective period rate with this compounding

    Formula used: Rm=(1+APR1/m1)**(m1/m2)-1

    Example #1>>>APR2APR(0.1,2,4)
                0.09878030638383972
"""
   return m2*((1+APR/m1)**(m1/m2)-1)

def APR2Rc(APR,m):
    return m*log(1+APR/m)

def Rc2Rm(Rc,m):
       return exp(Rc/m)-1

def Rc2APR(Rc,m):
       return m*(exp(Rc/m)-1)
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Appendix C – Python program for rateYan.py
def rateYan(APR,type):
"""Objective: from one APR to another effective rate and APR2
         APR : value of the given Annual Percentage Rate
        type : Converting method, e.g., 's2a', 's2q', 's2c'
's2a' means from semi-annual to annual
a for annual
                 s for semi-annual
                 q for quarterly
                 m for monthly
                 d for daily
                 c for continuously
    Example #1>>>rateYan(0.1,'s2a')
                [0.10250000000000004, 0.10250000000000004]
    Example #2>>>rateYan(0.1,'q2c')
                   0.098770450361485657
"""
    import scipy as sp
    rate=[]
    if(type[0]=='a'):
        n1=1
elif(type[0]=='s'):
        n1=2
elif(type[0]=='q'):
        n1=4
elif(type[0]=='m'):
        n1=12
elif(type[0]=='d'):
        n1=365
    else:        
        n1=-9
    if(type[2]=='a'):
        n2=1
elif(type[2]=='s'):
        n2=2
elif(type[2]=='q'):
        n2=4
elif(type[2]=='m'):
        n2=12
elif(type[2]=='d'):
        n2=365
    else:        
        n2=-9       
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    if(n1==-9 and n2==-9):
        return APR           
elif(n1==-9 and not(n2==-9)):
effectiveRate=sp.exp(APR/n2)-1
        APR2=n2*effectiveRate
rate.append(effectiveRate)
rate.append(APR2)
        return rate        
elif(n2==-9 and not(n1==-9)):
Rc=n1*sp.log(1+APR/n1)
        return Rc
    else:
effectiveRate=(1+APR/n1)**(n1/n2)-1
        APR2=n2*effectiveRate
rate.append(effectiveRate)
rate.append(APR2)
        return rate   

Appendix D – Python program to estimate 
stock price based on an n-period model
For an n-period model, we have n+1 future cash flows: n dividends plus one  
selling price:

…….(1)

The selling price at the end of the n-period is given here:

……………..(2)

See the following code for estimating the present value for a growing perpetuity 
with the first cash flow n+1 from today:

def pvValueNperiodModel(r,longTermGrowthRate,dividendNplus1):
"""Objective: estimate stock price based on an n-period model
                         r: discount rate 
LongTermGrowhRate: long term dividend growth rate
         dividendsNpus1   : a dividend vector n + 1

         PV    = d1/(1+R) + d2/(1+R)**2 + .... + dn/(1+R)**n + 
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sellingPrice/(1+R)**n
sellingPrice= d(n+1)/(r-g)
             where g is long term growth rate

    Example #1: >>> r=0.182
>>> g=0.03
>>> d=[1.8,2.07,2.277,2.48193,2.68,2.7877]
>>>pvValueNperiodModel(r,g,d)
                   17.472364312825711
"""
    import scipy as sp
    d=dividendNplus1
    n=len(d)-1
    g=longTermGrowthRate
pv=sp.npv(r,d[:-1])*(1+r)
sellingPrice=d[n]/(r-g)
pv+=sp.pv(r,n,0,-sellingPrice)
    return pv

Appendix E – Python program to estimate the 
duration for a bond

def durationBond(rate,couponRate,maturity):
"""Objective : estimte the durtion for a given bond
       rate      : discount rate
couponRate: coupon rate 
      maturity   : number of years 

       Example 1: >>>discountRate=0.1
>>>couponRate=0.04
>>> n=4
>>>durationBond(rate,couponRate,n)
                      3.5616941835365492

       Example #2>>>durationBond(0.1,0.04,4)
                     3.7465335177625576                   
"""
    import scipy as sp
    d=0
    n=maturity
    for i in sp.arange(n):
        d+=(i+1)*sp.pv(rate,i+1,0,-couponRate)
    d+=n*sp.pv(rate,nper,0,-1)
    return d/sp.pv(rate,n,-couponRate,-1)
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Appendix F – data case #2 – fund raised from 
a new bond issue
Currently, you are working as a financial analyst at International Business Machine 
Corporation (IBM). The firm plans to issue 30-year corporate bonds with a total face 
value of $60 million in the United States. Each bond has a face value of $1,000. The 
annual coupon rate is 3.5%. The firm plans to pay coupons once every year at the end 
of each year. Answer the following three questions:

1. How much would your company receive today by issuing the  
30-year bonds?

2. What is the YTM (Yield to Maturity) of the bond?
3. How much extra money could your company receive if your company 

manages to increase its credit rating by one notch?

The price of a bond is the summation of all its discounted future cash flows:

……(1)

Find out the appropriate discount rate for each future cash flow:

…………(2)

Here,Ri is the discount rate for year i , Rf,i is the risk-free rate, from the Government 
Treasury term structure of interest (yield curve) for year i, and Si is the credit 
spread which depends on the credit rating of your firm. The spread is based 
on the Python dataset calledspreadBasedOnCreditRating.pkl. The Python 
dataset is available at the website of:http://canisius.edu/~yany/python/
spreadBasedOnCreditRating.pkl:

>>>import pandas as pd
>>>spread=pd.read_pickle("c:/temp/spreadBasedOnCreditRating.pkl")
>>> spread
                     1       2       3       5       7      10     30 
Rating                                                         
Aaa/AAA          5.00    8.00   12.00   18.00   28.00   42.00   65.00
Aa1/AA+         10.00   18.00   25.00   34.00   42.00   54.00   77.00
Aa2/AA          14.00   29.00   38.00   50.00   57.00   65.00   89.00
Aa3/AA-         19.00   34.00   43.00   54.00   61.00   69.00   92.00
A1/A+           23.00   39.00   47.00   58.00   65.00   72.00   95.00
A2/A            24.00   39.00   49.00   61.00   69.00   77.00  103.00

http://canisius.edu/~yany/python/spreadBasedOnCreditRating.pkl
http://canisius.edu/~yany/python/spreadBasedOnCreditRating.pkl
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A3/A-           32.00   49.00   59.00   72.00   80.00   89.00  117.00
Baa1/BBB+       38.00   61.00   75.00   92.00  103.00  115.00  151.00
Baa2/BBB        47.00   75.00   89.00  107.00  119.00  132.00  170.00
Baa3/BBB-       83.00  108.00  122.00  140.00  152.00  165.00  204.00
Ba1/BB+        157.00  182.00  198.00  217.00  232.00  248.00  286.00
Ba2/BB         231.00  256.00  274.00  295.00  312.00  330.00  367.00
Ba3/BB-        305.00  330.00  350.00  372.00  392.00  413.00  449.00
B1/B+          378.00  404.00  426.00  450.00  472.00  495.00  530.00
B2/B           452.00  478.00  502.00  527.00  552.00  578.00  612.00
B3/B-          526.00  552.00  578.00  604.00  632.00  660.00  693.00
Caa/CCC+       600.00  626.00  653.00  682.00  712.00  743.00  775.00
US Treasury Yield  0.13    0.45    0.93    1.74    2.31    2.73  3.55
>>>

For year 5 and double AA rating, the spread is 55 basis-points. For each base 
point, it is 100th of 1%. In other words, we should divide 55 by 100 twice, that is, 
55/10000=0.0055.

The procedure ofa linear interpolation is shown here:

1. First, let me use a simple example. Assume that the YTM for 5years is 5%,  
the YTM for a 10-year bond is 10%. What are the YTMs for 6, 7, 8, and  
9-year bonds?

2. A quick answer is 6% for a 6-year bond, 7% for a 7-year bond, 8% for an 
8-year bond, and 9% for a 9-year bond. The basic idea is an equal incremental 
value.

3. Assume that YTM for a 5-year bond is R5, the YTM for a 10-year bond is R10. 
There are five intervals between year 5 and year 10. Thus, the incremental 
value between each year is :

 ° For a 6-year bond, its value will be 
 ° For a 7-year bond, its value will be 
 ° For an 8-year bond, its value will be 
 ° For a 9-year bond, its value will be 

Here is a more detailed explanation. If the two known points are given by the 
coordinates and , the linear interpolation is the straight line between 
these points. For a value x in the interval , the value y along the straight line  
is given in the equation:

…….(4)
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This can be derived geometrically from the figure on the right. It is a special case of 
polynomial interpolation with n=1.

Solving this equation for y, which is the unknown value at x, gives:

……(5)

This is the formula for linear interpolation in the interval of (x0, x1).

Summary
In this chapter, we cover various concepts related to interest rates, such as Annual 
Percentage Rate (APR), Effective Annual Rate (EAR), compounding frequency, how 
to convert one interest rate to another one with different compounding frequencies, 
and the term structure of interest rates. Then we discussed how to estimate the 
selling price of a regular bond and how to estimate the Yield to Maturity (YTM) and 
duration. To get a stock price, the so-called discount dividend model could be applied.

In the next chapter, we will discuss CAPM which is probably the most widely used 
model in assets pricing. After discussing its basic forms, we show how to download 
historical price data for a listed company and market index data. We illustrate how to 
estimate returns and run a linear regression to calculate the market risk for the stock.
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Capital Asset Pricing Model
Capital Asset Pricing Model (CAPM) is probably the most widely used model 
in assets pricing. There are several reasons behind its popularity. First, it is quite 
simple since it is a one-factor linear model. Second, it is quite easy to implement this 
one-factor model. Any interested reader could download historical price data for a 
listed company and market index data to calculate return first, and then estimate the 
market risk for the stock. Third, this simplest one-factor asset pricing model could 
be served as the first model for other more advanced ones, such as Fama-French 
3-factor, Fama-French-Carhart 4-factor, and Fama-French 5-factor models introduced 
in the next chapter (Chapter 7, Multifactor Models and Performance Measures). In this 
chapter, the following topics will be covered:

• Introduction to CAPM
• How to download data from Yahoo Finance
• Rolling beta
• Several Python programs to estimate beta for multiple stocks
• Adjusted beta and portfolio beta estimation
• Scholes and Williams (1977) adjustment for beta
• Dimson (1979) adjustment for beta
• Output data to various types of external files
• Simple string manipulation
• Python via Canopy
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Introduction to CAPM
According to the famous CAPM, the expected returns of a stock are linearly 
correlated with expected market returns. Here, we use the international business 
machine with a ticker of IBM as an example and this linear one-factor asset pricing 
model could be applied to any other stocks or portfolios. The formula is given here:

Here, E() is the expectation, E(RIBM) is the expected return for IBM, Rf is the  
risk-free rate, and E(Rmkt) is the expected market return. For instance, the S&P500 
index could be served as a market index. The slope of the preceding equation or  
is a measure of IBM's market risk. To make our notation simpler, the expectation 
could be dropped:

Actually, we could consider the relationship between the excess stock returns and 
the excess market returns. The following formula is essentially the same as the 
preceding formula, but it has a better and clearer interpretation:

Recall that in Chapter 3, Time Value of Money, we learnt that the difference between a 
stock's expected return and the risk free rate is called risk premium. This is true for 
both individual stocks and for a market index. Thus, the meaning of the Equation 
(3) is quite easy to interpret: the risk premium of individual stock depends on two 
components: its market risk and the market risk-premium.

Mathematically, the slop of the preceding linear regression could be written  
as follows:
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Here  is the covariance between IBM's returns and the market index returns 
and  is the variance of the market returns. Since 
, where  is the correlation between IBM's return and the index returns, the 
preceding equation could be written as the following one:

The meaning of beta is that when the expected market risk-premium increases by 
1%, the individual stock's expected return would increase by β%, vice versa. Thus, 
beta (market risk) could be viewed as an amplifier. The average beta of all stocks is 
one. Thus, if a stock's beta is higher than 1, it means that its market risk is higher than 
that of an average stock.

The following lines of code are an example of this:

>>> import numpy as np
>>> import statsmodels.api as sm
>>> y=[1,2,3,4,2,3,4]
>>> x=range(1,8)
>>> x=sm.add_constant(x)
>>> results=sm.OLS(y,x).fit()
>>> print(results.params)
     [ 1.28571429  0.35714286]

To see all information about the OLS results, we will use the command of 
print(results.summary()), see the following screenshot:
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At the moment, readers could just pay attention to the values of two coefficients and 
their corresponding T-values and P-values. We would discuss other results, such as 
Durbin-Watson statistics and the Jarque-Bera normality test in Chapter 8, Time-Series 
Analysis. The beta is 0.3571, which has a T-value of 2.152. Since it is bigger than 2,  
we could claim that it is significantly different from zero. Alternatively, based on  
the P-value of 0.084, we would have the same conclusion if we choose a 10% as our 
cut-off point. Here is the second example:

>>> from scipy import stats 
>>> ret = [0.065, 0.0265, -0.0593, -0.001,0.0346] 
>>> mktRet = [0.055, -0.09, -0.041,0.045,0.022] 
>>>(beta, alpha, r_value,p_value,std_err)=stats.linregress(ret,mktRet)

The corresponding result is shown here:

>>> print(beta, alpha) 
0.507743187877 -0.00848190035246
>>> print("R-squared=", r_value**2)
R-squared= 0.147885662966
>>> print("p-value =", p_value)
p-value = 0.522715523909

Again, the help() function could be used to get more information about this 
function, see the following first few lines:

>>>help(stats.linregress)

Help on the linregress function in the scipy.stats._stats_mstats_common 
module:

linregress(x, y=None)

Calculate a linear least-squares regression for two sets of measurements.

Parameters x, y: array like two sets of measurements. Both arrays should have the 
same length. If only x is given (and y=None), then it must be a two- dimensional 
array where one dimension has length 2. The two sets of measurements are then 
found by splitting the array along the length-2 dimension.

For the third example, we generate a known set of y and x observations with known 
intercept and slop, such as alpha=1 and beta=0.8, see the following formula:
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Here, yi is the ith observation for dependent variable y, 1 is the intercept, 0.8 is the 
slope (beta), xi is the ith observation for an independent variable of x, and  is the 
random value. For the preceding equation, after we have generated a set of y and x, 
we could run a linear regression. For this purpose, a set of random numbers are used:

from scipy import stats 
import scipy as sp
sp.random.seed(12456)
alpha=1
beta=0.8
n=100
x=sp.arange(n)
y=alpha+beta*x+sp.random.rand(n)
(beta,alpha,r_value,p_value,std_err)=stats.linregress(y,x) 
print(alpha,beta) 
print("R-squared=", r_value**2)
print("p-value =", p_value)

In the preceding code, the sp.random.rand() function would call a set of random 
numbers. In order to get the same set of random numbers, the sp.random.
seed() function is applied. In other words, whenever the same seed is used, any 
programmers would get the same set of random numbers. This will be discussed in 
more detail in Chapter 12, Monte Carlo Simulation. The result is shown here:

%run "C:/yan/teaching/Python2/codes/c6_02_random_OLS.py"
(-1.9648401142472594,1.2521836174247121,)
('R-squared=', 0.99987143193925765)
('p-value =', 1.7896498998980323e-192)

Now let's look at how to estimate the beta (market risk) for Microsoft. Assume that 
we are interested in the period from 1/1/2012 to 12/31/2016, for a total of five year's 
data. The complete Python program is shown here:

from scipy import stats 
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
begdate=(2012,1,1)
enddate=(2016,12,31)

ticker='MSFT'
p =getData(ticker, begdate, enddate,asobject=True,adjusted=True)
retIBM = p.aclose[1:]/p.aclose[:1]-1

ticker='^GSPC'
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p2 = getData(ticker, begdate, enddate,asobject=True,adjusted=True)
retMkt = p2.aclose[1:]/p2.aclose[:1]-1
(beta,alpha,r_value,p_value,std_err)=stats.linregress(retMkt,retIBM) 
print(alpha,beta) 
print("R-squared=", r_value**2)
print("p-value =", p_value)

To estimate the beta of IBM using five year data, the main function used to download 
historical price data in the preceding Python program is matplotlib.finance.
quotes_historical_yahoo_ochl . Here is the related link https://matplotlib.
org/api/finance_api.html. The ticker symbol of ^GSPC stands for the S&P500 
market index. The result is shown here:

Based the preceding results, the beta for IBM is 0.41, while the intercept is 0.004. In 
addition, the R2 is 0.36 and P-value is almost zero. In the preceding program, the 
risk-free rate is ignored. The impact of its omission on beta (slop) is small. In the next 
chapter, we will show how to include the risk free rate when discussing the Fama-
French 3-factor model. To get more information about the quotes_historical_
yahoo_ochl, the help function could be used:

help(quotes_historical_yahoo_ochl)
Help on function quotes_historical_yahoo_ochl in 
module matplotlib.finance:
quotes_historical_yahoo_ochl(ticker, date1, date2, asobject=False, 
adjusted=True, cachename=None)
 Get historical data for ticker between date1 and date2.
     
See :func:`parse_yahoo_historical` for explanation of 
output formats and the *asobject* and *adjusted* kwargs.
Parameters
    ----------
ticker : str   stock ticker
date1 : sequence of form (year, month, day), `datetime`, 
           or `date` start date
date2 : sequence of form (year, month, day), `datetime`, or 
              `date`  end date
  cachename : str or `None`
            is the name of the local file cache.  If None, will

https://matplotlib.org/api/finance_api.html
https://matplotlib.org/api/finance_api.html
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            default to the md5 hash or the url (which incorporates 
            the ticker and date range)
   Examples
    --------
    sp=f.quotes_historical_yahoo_ochl('^GSPC',d1,d2,asobject=True,
        adjusted=True)
      returns = (sp.open[1:] - sp.open[:-1])/sp.open[1:]
     [n,bins,patches] = hist(returns, 100)
     mu = mean(returns)
     sigma = std(returns)
     x = normpdf(bins, mu, sigma)
     plot(bins, x, color='red', lw=2)

Obviously, it is a good idea to write a function to get data with just three import 
values: ticker, beginning, and ending dates, see the following code:

from scipy import stats 
from matplotlib.finance import quotes_historical_yahoo_ochl as aa 
#
def dailyReturn(ticker,begdate,enddate):
     p = aa(ticker, begdate,enddate,asobject=True,adjusted=True)
     return p.aclose[1:]/p.aclose[:-1]-1
#
begdate=(2012,1,1)
enddate=(2017,1,9)
retIBM=dailyReturn("wmt",begdate,enddate)
retMkt=dailyReturn("^GSPC",begdate,enddate)
outputs=stats.linregress(retMkt,retIBM) 
print(outputs)

The output for Walmart's beta (market risk) is as follows:

Alternatively, we could call the p4f.dailyReturnYahoo() function, see the 
following code:

import p4f
x=dailyReturn("ibm",(2016,1,1),(2016,1,10))
print(x)
Out[51]: array([-0.0007355 , -0.00500558, -0.01708957, -0.00925784])
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Moving beta
Sometimes, researchers need to generate a beta time series based on, for example, 
a three-year moving window. In such cases, we could write a loop or double loops. 
Let's look at a simpler case: estimating the annual beta for IBM over several years. 
First, let's look at two ways of getting years from a date variable:

import datetime
today=datetime.date.today()
year=today.year                   # Method I
print(year)
2017
print(today.strftime("%Y"))       # Method II
 '2017'

The Python program used to estimate the annual beta is shown here:

import numpy as np
import scipy as sp
import pandas as pd
from scipy import stats 
from matplotlib.finance import quotes_historical_yahoo_ochl 

def ret_f(ticker,begdate, enddate):
    p = quotes_historical_yahoo_ochl(ticker, begdate,    
    enddate,asobject=True,adjusted=True)
    return((p.aclose[1:] - p.aclose[:-1])/p.aclose[:-1])
#
begdate=(2010,1,1)
enddate=(2016,12,31)
#
y0=pd.Series(ret_f('IBM',begdate,enddate))
x0=pd.Series(ret_f('^GSPC',begdate,enddate))
#
d=quotes_historical_yahoo_ochl('^GSPC', begdate, enddate,asobject=True
,adjusted=True).date[0:-1]
lag_year=d[0].strftime("%Y")
y1=[]
x1=[]
beta=[]
index0=[]
for i in sp.arange(1,len(d)):
    year=d[i].strftime("%Y")
    if(year==lag_year):
       x1.append(x0[i])
       y1.append(y0[i])
    else:
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       (beta,alpha,r_value,p_value,std_err)=stats.linregress(y1,x1) 
       alpha=round(alpha,8)
       beta=round(beta,3)
       r_value=round(r_value,3)
       p_vaue=round(p_value,3)
       print(year,alpha,beta,r_value,p_value)
       x1=[]
       y1=[]
       lag_year=year

The corresponding output is shown here:

Adjusted beta
Many researchers and professionals find that beta has a mean-reverting tendency. It 
means that if this period's beta is less than 1, there is a good chance that the next beta 
would be higher. On the other hand, if the current beta is higher than 1, the next beta 
might be smaller. The adjusted beta has the following formula:

Here, βadj is the adjusted beta and β is our estimated beta. The beta of a portfolio is 
the weighted beta of individual stocks within the portfolio:

Here  is the beta of a portfolio, wi (βi) is the weight (beta) of its stock, and n is 
the number of stocks in the portfolio. The weight of wi is calculated according to the 
following equation:
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Here vi is the value of stock i, and summation of all vi, the denominator in the 
preceding equation is the value of the portfolio.

Scholes and William adjusted beta
Many researchers find that β would have an upward bias for frequently traded 
stocks and a downward bias for infrequently traded stocks. To overcome this, Sholes 
and Williams recommend the following adjustment:

Here, β is the stock or portfolio beta and ρm is the autocorrelation for the market return. 
The three betas in the preceding formula are defined by the following three equations:

Here, let's look at how to add a lag to an array. The program is in the left panel, 
while the output is shown in the right one:

import pandas as pd
import scipy as sp
x=sp.arange(1,5,0.5)
y=pd.DataFrame(x,columns=['Ret'])
y['Lag']=y.shift(1)
print(y)

In the preceding program the .shift() function is applied. Since we need the 
market return one period ahead, we could specify a negative value of -1 in the 
.shift() function, see the following code:

import pandas as pd
import scipy as sp
x=sp.arange(1,5,0.5)
y=pd.DataFrame(x,columns=['Ret'])
y['Lag']=y.shift(1)
y['Forward']=y['Ret'].shift(-1)
print(y)

    Ret Lag  Forward
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0  1.0  NaN      1.5
1  1.5  1.0      2.0
2  2.0  1.5      2.5
3  2.5  2.0      3.0
4  3.0  2.5      3.5
5  3.5  3.0      4.0
6  4.0  3.5      4.5
7  4.5  4.0      NaN

The output is as follows:

First, let's look at a Python dataset related to monthly data with a name of 
yanMonthly.pkl, http://canisius.edu/~yany/python/yanMonthly.pkl.  
The following code would read in the dataset:

import pandas as pd
x=pd.read_pickle("c:/temp/yanMonthly.pkl")
print(x[0:10])

The related output is shown here:

http://canisius.edu/~yany/python/yanMonthly.pkl
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Let's look at what kind of securities are included in this monthly dataset, see the 
following output:

import pandas as pd
import numpy as np
df=pd.read_pickle("c:/temp/yanMonthly.pkl")
unique=np.unique(df.index)
print(len(unique))
print(unique)

From the output shown here, we can see that there are 129 securities:

To get S&P500 data, we would use ^GSPC since this is the ticker symbol used by 
Yahoo!Finance:

import pandas as pd
import numpy as np
df=pd.read_pickle("c:/temp/yanMonthly.pkl")
sp500=df[df.index=='^GSPC']
print(sp500[0:5])
ret=sp500['VALUE'].diff()/sp500['VALUE'].shift(1)
print(ret[0:5])
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The first 10 lines are shown here:

After estimating returns, we could estimate their lag and lead, and then three 
different regressions to estimate those three betas.

Along the same line, Dimson (1979) suggests the following method to adjust beta:

The most frequently used k value is 1. Thus, we have the following equation:

Since this is equivalent to running a three-factor linear model, we will leave it to the 
next chapter (Chapter 7, Multifactor Models and Performance Measures).

Extracting output data
In this section, we'll be discussing different ways to extract our output data to 
different file formats.
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Outputting data to text files
The following code will download the daily price data for Microsoft and save it  
to a text file:

import pandas_datareader.data as getData
import re
ticker='msft'
f=open("c:/temp/msft.txt","w")
p = getData.DataReader(ticker, "google")
f.write(str(p))
f.close()

The first several saved observations are shown in the following screenshot:

Saving our data to a .csv file
The following program first retrieves IBM price data, and then saves it as a .csv file 
under c:/temp:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import csv
f=open("c:/temp/c.csv","w")

ticker='c'
begdate=(2016,1,1)
enddate=(2017,1,9)
p = getData(ticker, begdate, enddate,asobject=True,adjusted=True)

writer = csv.writer(f)
writer.writerows(p)
f.close()

In the preceding code, we rename the quotes_historical_yahoo_ochl() function 
as getData for convenience. A reader could use their own name.
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Saving our data to an Excel file
The following program first retrieves IBM price data, and then saves it as a .csv file 
under c:/temp:

import pandas as pd
df=pd.read_csv("http://chart.yahoo.com/table.csv?s=IBM")
f= pd.ExcelWriter('c:/temp/ibm.xlsx')
df.to_excel(f, sheet_name='IBM')
f.save()

Note that, if readers find an error message of No module named openpyxl, it means 
that you have to install that module first. A few observations are shown in the 
following screenshot:

Obviously, there is a good change that we don't link the first columns since it is just 
the irrelevant row column indicator:

import pandas as pd
df=pd.read_csv("http://chart.yahoo.com/table.csv?s=IBM")
f= pd.ExcelWriter('c:/temp/ibm.xlsx')
df.to_excel(f,index=False,sheet_name='IBM')
f.save() 

Saving our data to a pickle dataset
The following program first generates a simple array that has just three values. We 
save them to a binary file named tmp.bin at C:\temp\:

>>>import pandas as pd 
>>>import numpy as np 
>>>np.random.seed(1234) 
>>> a = pd.DataFrame(np.random.randn(6,5))
>>>a.to_pickle('c:/temp/a.pickle') 
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The dataset of named a is shown here:

Saving our data to a binary file
The following program first generates a simple array that has just three values. We 
save them to a binary file named tmp.bin at C:\temp\:

>>>import array 
>>>import numpy as np 
>>>outfile = "c:/temp/tmp.bin" 
>>>fileobj = open(outfile, mode='wb') 
>>>outvalues = array.array('f') 
>>>data=np.array([1,2,3]) 
>>>outvalues.fromlist(data.tolist()) 
>>>outvalues.tofile(fileobj) 
>>>fileobj.close()

Reading data from a binary file
Assume that we have generated a binary file called C:\temp\tmp.bin from the 
previous discussion. The file has just three numbers: 1, 2, and 3. The following 
Python code is used to read them:

>>>import array 
>>>infile=open("c:/temp/tmp.bin", "rb") 
>>>s=infile.read() # read all bytes into a string 
>>>d=array.array("f", s) # "f" for float 
>>>print(d) 
>>>infile.close()

The contents of d are as follows:
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Simple string manipulation
For Python, we could assign a string to a variable without defining it in the  
first place:

>>> x="This is great"
>>> type(x)
<class 'str'>

For the formula to convert an effective rate to another one, the second input value is 
a string. For example, 's2a':

>>> type='s2a'
>>> type[0]
's'
>>> len(type)
3

The len() function shows the length of a string, see the following code:

>>>x='Hello World!'
>>>len(x)
13

Here are several widely used ways to select substring:

string='Hello World!'

# find the length of the string
n_length=len(string)
print(n_length)

# the number of appearance of letter l
n=string.count('l') 
print(n) 

# find teh locatoin of work of 'World'
loc=string.index("World") 
print(loc) 

# number of spaces
n2=string.count(' ')
print(n2)

print(string[0]) # print the first letter 
print(string[0:1]) # print the first letter (same as above)
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print(string[0:3]) # print the first three letters
print(string[:3]) # same as above 
print(string[-3:]) # print the last three letters
print(string[3:]) # ignore the first three 
print(string[:-3]) # except the last three

The corresponding output is shown here:

Many times, we want to remove the prevailing or trailing spaces. For those cases, 
three functions, called strip(), lstrip(), and rstrip() could be applied:

string='Hello World!'

print(string.lower())
print(string.title())
print(string.capitalize())
print(string.swapcase())

string2=string.replace("World", "John")
print(string2)

# strip() would remove spaces before and the end of string
# lstrip() would remove spaces before and the end of string
# rstrip() would remove spaces before and the end of string
string3=' Hello World! '
print(string3)
print(string3.strip())
print(string3.lstrip())
print(string3.rstrip())
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The output is shown here:

The following Python program generates the frequency table for all words used in 
the bible:

from string import maketrans 
import pandas as pd 
word_freq = {}
infile="c:/temp/AV1611.txt"
word_list = open(infile, "r").read().split() 
ttt='!"#$%&()*+,./:;<=>?@[\\]^_`{|}~0123456789'
for word in word_list:
    word = word.translate(maketrans("",""),ttt )
    if word.startswith('-'): 
        word = word.replace('-','')
    if len(word): 
        word_freq[word] = word_freq.get(word, 0) + 1 
keys = sorted(word_freq.keys())
x=pd.DataFrame(keys) 
x.to_pickle('c:/temp/uniqueWordsBible.pkl')

An interested reader would download the pickle file from the author's web page 
at http://canisius.edu/~yany/python/uniqueWordsBible.pkl. After typeing 
x[0:10], we can see the first 10 words, see the following screenshot:

http://canisius.edu/~yany/python/uniqueWordsBible.pkl
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Python via Canopy
This section is optional, especially for readers who have no issues with Python or 
Python via Anaconda. It is a good idea to have another super package to make our 
programming in Python easier. In this section, we will discuss two simple tasks: how 
to install Python via Canopy and how to check and install various Python modules. 
To install Python, go to the related web page at https://store.enthought.com/
downloads/#default. After that, you will see the following screen:

Depending on the operating system; you could download Canopy, such as winders 
32-bit. After launching Canopy, the following screen will appear:

https://store.enthought.com/downloads/#default
https://store.enthought.com/downloads/#default
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The two most used panels are Editor and Package Manager. After clicking Editor, 
the following panel will pop up:
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Obviously, we could create a new file or select files from our existing programs. Let's 
try the simplest one; see the following screenshot. After clicking the green bottom, 
we can run the program:

Alternatively, we could click Run on the menu bar and then choose the appropriate 
action. The most important advantage that Canopy could offer is that it is extremely 
easy to install various Python modules. After clicking Package Manager, we will see 
the following screen:

From the left-hand side, we see that there are 99 packages installed and 532 are 
available. Assume that the Python model called statsmodels is not pre-installed. 
After clicking Available on the left-hand side, we search for this model by typing 
the keyword. After finding the module, we can decide whether we should install it. 
Quite often, multiple versions exist; see the following screenshot:
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Appendix A – data case #3 - beta estimation

Objective: hands-on experience to estimate the market risk for a given set of 
companies:

1. What are alpha and beta for those companies?
2. Comment on your results.

http://www.pythonforbeginners.com/basics/string-manipulation-in-python
http://www.pythonforbeginners.com/basics/string-manipulation-in-python
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3. Based on your monthly returns, what are the means of annual returns for 
S&P500 and risk-free rate?

4. If the expected market return is 12.5% per year and the expected risk-free rate 
is 0.25% per year, what are the costs of equity for those companies? 

5. What is the portfolio beta?
Computational tool: Python
Period: From 1/2/ 2011 to 12/31/2016 (the last five years).
Technical details:

i Company name Ticker Industry Shares
1 Wal-Mart Stores Inc. WMT Superstore 1000
2 Apple Inc. AAPL Computer 2000
3 International Business Machine IBM Computer 1500
4 General Electric Company GE Technology 3000
5 Citigroup C Banking 1800

Procedure for data downloading and manipulation:

1. Stock monthly price data is from Yahoo finance (http://finance.yahoo.com).
2. Calculate monthly returns from monthly prices.
3. S&P500 is used as the market index and its ticker is ^GSPC.
4. Risk-free rate from Prof. French monthly dataset is used as our risk-free rate.
5. When merging those datasets, please pay attention to the order of their dates.

Note 1 – how to download data? Here we use S&P500 as an example (ticker is 
^GSPC):

1. Go to Yahoo Finance (http://finance.yahoo.com).
2. Enter ^GSPC.
3. Click Historical Prices.
4. Choose starting date and ending dates. Click Get Prices.
5. Go to the bottom of the page and click Download to spreadsheet.
6. Give a name, such as sp500.csv.

http://finance.yahoo.com
http://finance.yahoo.com
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Note 2 – how to download a monthly risk-free rate?

1. Go to the Prof. French Data library at http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data_library.html.

2. Choose Fama-French 3 factors, see the following screenshot:

The first several lines and the last several lines are given in the following screenshot:

Exercises
1. What is the meaning of CAPM? Is it a linear model?
2. What are the features of a one-factor linear model?
3. What are the definitions of total risk and market risk and do you measure them?
4. Explain the similarity and difference between the following two equations:

5. What is the relationship between total risk and market risk for a stock?
6. Who should care about CAPM or what are the usages of the model?
7. If stock A has a higher market risk than stock B, does it mean that A has a 

higher expected return as well? Explain.
8. How do you measure different types of risk?

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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9. How do you predict the expected market returns?
10. If we know the expected market risk premium, how do you predict the cost 

of equity of a firm?
11. What is the logic behind the following beta adjustment formula?

12. Construct a portfolio with unequal weight of 20%, 10%, 30%, 10%, 10%, and 
20%. The list of stocks are Walmart (WMT), International Business Machine 
(IBM), Citi Group (C ), Microsoft (MSFT), Google (GOOG), and Dell (DELL). 
Estimate their monthly portfolio returns from 2001 to 2016.

13. Find the beta of IBM from Yahoo Finance. Go to Yahoo Finance, then IBM, 
and then click Key Statistics on the left-hand side. http://finance.yahoo.
com/q/ks?s=IBM+Key+Statistics

Download IBM's historical price data and estimate its beta and compare.

14. What is the total risk and market risk for DELL, IBM, GOOG, and C if you 
are using five-year monthly data?

15. Write a Python program to estimate α and β for the following 10 stocks. The 
time period covered should be the last five years (1/2/2012-1/10/2017) by 
using monthly data from the Yahoo Finance and the Federal Reserve Web 
site (for risk-free rate):

Company name Ticker Industry
1 Family Dollar Stores FDO Retail
2 Wal-Mart Stores WMT Superstore
3 McDonald's MCD Restaurants
4 Dell DELL Computer hardware
5 International Business 

Machine
IBM Computer

6 Microsoft MSFT Software
7 General Electric GE Conglomerates
8 Google GOOG Internet services
9 Apple AAPL Computer hardware
10 eBay EBAY Internet services

http://finance.yahoo.com/q/ks?s=IBM+Key+Statistics
http://finance.yahoo.com/q/ks?s=IBM+Key+Statistics
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16. From this chapter, we know that we could call the p4f.dailyReturn 
function to download the historical data for a given ticker plus a designed 
time period; see the following code:
import p4f
x=dailyReturn("ibm",(2016,1,1),(2016,1,10))

The function is shown in the following code:
def dailyReturn(ticker,begdate,enddate):
    from scipy import stats 
    from matplotlib.finance import quotes_historical_yahoo_ochl
    p = quotes_historical_yahoo_ochl(ticker, begdate,    
          enddate,asobject=True,adjusted=True)
    return p.aclose[1:]/p.aclose[:-1]-1

Obviously, the second and the third input formats of beginning 
dates and ending dates are not user-friendly; see dailyReturn("i
bm",(2016,1,1),(2016,1,10)). Modify the program to make it more  
user-friendly, such as dailyReturn2("ibm", 20160101, 20160110).

17. Download price data, as long as it's possible, from Yahoo Finance for a few 
stocks such as DELL, IBM, and MSFT. Then calculate their volatilities over 
several decades. For example, estimate volatilities for IBM over several  
five-year periods. What is the trend of the volatility?

18. What is the correlation between (among) market indices? For example, you 
can download price data for S&P500 (its Yahoo ticker is ^GSPC), and Dow 
Jones Industrial Average (^DJI) over the last 10 years. Then estimate their 
returns and calculate the corresponding correlation. Comment on your result.

19. Which five stocks are most strongly correlated with IBM from 2006 to 2010? 
(Hint: there is not a unique answer. You can try a dozen stocks).

20. On January 2nd 2017, your portfolio consists of 2,000 shares of IBM, 1,500 
shares of Citigroup, and 500 shares of Microsoft (MSFT). What is the 
portfolio's beta? You can use past five-year historical to run CAPM. 

21. What is the correlation between IBM stock returns and Microsoft (MSFT)?

You can use the past 10 years' historical data to estimate 
the correlation.
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22. Find the issue and correct it for the following code:
from scipy import stats 
from matplotlib.finance import quotes_historical_yahoo_ochl

def dailyReturn(ticker,begdate=(1962,1,1),enddate=(2017,1,10)):
p = quotes_historical_yahoo_ochl(ticker, begdate, enddate,asobject
=True,adjusted=True)
return p.aclose[1:]/p.aclose[:-1]-1

retIBM=dailyReturn("wmt")
retMkt=dailyReturn("^GSPC")

outputs=stats.linregress(retIBM,retMkt) 
print(outputs)

23. Write a Python function called beta() to offer a beta value, its significance 
value such as T-vale or P-value by using the last five years of historical data, 
plus S&P500 as the index.

Summary
Capital Asset Pricing Model (CAPM) is probably the most widely used model 
in assets pricing. There are several reasons behind its popularity. First, it is quite 
simple. It is just a one-factor linear model. Second, it is quite easy to implement this 
one-factor model. Any interested reader could download historical price data for a 
listed company and a market index data to calculate their return, and then estimate 
the market risk for the stock. Third, this simplest one-factor asset pricing model 
could be served as the first model for other more advanced ones, such as Fama-
French 3-factor, Fama-French-Carhart 4-factor models, and Fama-French 5 factor 
models, which will be introduced in the next chapter.
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Multifactor Models and 
Performance Measures

In Chapter 6, Capital Asset Pricing Model, we discussed the simplest one-factor linear 
model: CAPM. As mentioned, this one-factor linear model serve as a benchmark for 
more advanced and complex models. In this chapter, we will focus on the famous 
Fama-French three-factor model, Fama-French-Carhart four-factor model, and 
Fama-French five-factor model. After understanding those models, readers should 
be able to develop their own multifactor linear models, such as by adding Gross 
Domestic Product (GDP), Consumer Price Index (CPI), a business cycle indicator 
or other variables as an extra factor(s). In addition, we will discuss performance 
measures, such as the Sharpe ratio, Treynor ratio, and Jensen's alpha. In particular, 
the following topics will be covered in this chapter:

• Introduction to the Fama-French three-factor model
• Fama-French-Carhart four-factor model
• Fama-French five-factor model
• Other multiplefactor models
• Sharpe ratio and Treynor ratio
• Lower partial standard deviation and Sortino ratio
• Jensen's alpha
• How to merge different datasets
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Introduction to the Fama-French  
three-factor model
Before discussing the Fama-French three-factor model and other models, let's look at 
a general equation for a three-factor linear model:

Here, y is the dependent variable, α is the intercept, x1, x2, and x3 are three 
independent variables, β1, β2 and β3 are three coefficients, and ε is a random factor. 
In other words, we try to use three independent variables to explain one dependent 
variable. The same as a one-factor linear model, the graphical presentation of this 
three-factor linear model is a straight line, in a four-dimensional space, and the 
power of each independent variable is a unit as well. Here, we will use two simple 
examples to show how to run multifactor linear regression. For the first example, 
we have the following code. The values have no specific meaning and readers could 
enter their own values as well:

from pandas.stats.api import ols
import pandas as pd
y = [0.065, 0.0265, -0.0593, -0.001,0.0346] 
x1 = [0.055, -0.09, -0.041,0.045,0.022]
x2 = [0.025, 0.10, 0.021,0.145,0.012]
x3=  [0.015, -0.08, 0.341,0.245,-0.022]
df=pd.DataFrame({"y":y,"x1":x1, 'x2':x2,'x3':x3})
result=ols(y=df['y'],x=df[['x1','x2','x3']])
print(result)

In the preceding program, the pandas.stats.api.ols() function is applied. OLS 
stands for Ordinary Least Squares. For more information about the OLS model, we 
could use the help() function; see the following two lines of code. For brevity, the 
output is not shown here:

from pandas.stats.api import ols
help(ols) 
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The pandas DataFrame is used to construct our dataset. Readers should pay 
attention to the structure of {"y":y, "x1":x1, 'x2':x2, 'x3':x3}. It has the data 
format of a dictionary. The result of running the regression is shown here:

From the output, the three-factor model is listed first: y is against three independent 
or explainable variables of x1, x2, and x3. The number of observations is 5, while the 
degree of freedom is 4. The value of R2 is 0.96 while the adjusted R2 is 0.84. The R2 
value reflects the percentage of variations in y could be explained by x1, x2, and x3. 
Since the adjusted R2 considers the impact of the number of independent variables, it 
is more meaningful. RMSE stands for Mean Standard Square Error. The smaller this 
value, the better our model. The F-stat and the p-value reflect the goodness of our 
linear model. The F-value reflects the quality of the whole model. The F-value should 
be compared with its critical F-value, which in turn depends on three input variables: 
confidence level, degree of freedom for the numerator, and degree of freedom for the 
denominator. The scipy.stats.f.ppf() function could be applied to find out the 
critical F-value; see the following code:

import scipy.stats as stats
alpha=0.05
dfNumerator=3
dfDenominator=1
f=stats.f.ppf(q=1-alpha, dfn=dfNumerator, dfd=dfDenominator)
print(f)
215.70734537



Multifactor Models and Performance Measures

[ 216 ]

The confidence level is equal to 1 minus alpha, that is, 95% in this case. The higher 
the confidence level, the more reliable the result, such as 99% instead of 95%. The 
most-used confidence levels are 90%, 95%, and 99%. dfNumeratro (dfDenominator) 
is the degree of freedom for the numerator (denominator), which depends on the 
simple sizes. From the preceding result of OLS regression, we know that those two 
values are 3 and 1.

From the preceding values, F=8.1 < 215.7 (critical F-value), we should accept the null 
hypothesis that all coefficients are zero, that is, the quality of the model is not good. 
On the other hand, a P-value of 0.25 is way higher the critical value of 0.05. It also 
means that we should accept the null hypothesis. This makes sense since we have 
entered those values without any meanings.

For the second example, one CSV file related to IBM, downloaded from Yahoo! 
Finance, is used and the dataset can be downloaded at http://canisius.
edu/~yany/data/ibm.csv. Alternatively, readers can go to http://finance.yahoo.
com/ to download IBM's historical data. The first several lines are shown here:

Date is the date variable, Open is the opening price, High (Low) is the highest 
(lowest) price achieved during the period, Close is the closing price, Volume is the 
trading volume and Adj.Close is the adjusted closing price, adjusted for stock split 
and dividend distributions. In the following Python program, we try to use three 
variables of Open, High, and Volume to explain Adj.Close; see the following equation:

Again, this OLS regression just serves as an illustration showing how to run a three-
factor model. It might have no economic meaning at all. The beauty of such an 
example is that we could easily get data and test our Python program:

import pandas as pd
import numpy as np

http://canisius.edu/~yany/data/ibm.csv
http://canisius.edu/~yany/data/ibm.csv
http://finance.yahoo.com/
http://finance.yahoo.com/
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import statsmodels.api as sm
inFile='http://canisius.edu/~yany/data/ibm.csv'
df = pd.read_csv(inFile, index_col=0)
x = df[['Open', 'High', 'Volume']]
y = df['Adj.Close']
x = sm.add_constant(x)
result = sm.OLS(y, x).fit()
print(result.summary())

The first three commands import three Python modules. The command line of x=sm.
add_constant(x) will add a column of 1s. If the line is missing, we would force a 
zero intercept. To enrich our experience of running a three-factor linear model, this 
time, a different OLS function is applied. The advantage of using the statsmodels.
apilsm.OLS() function is that we could find more information about our results, 
such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), 
skew, and kurtosis. The discussion of their definitions will be postponed to the next 
chapter (Chapter 8, Time-Series Analysis). The corresponding output after running the 
preceding Python program is given here:

Again, we will refrain from spending time interpreting the result since our objective 
at the moment is to show how to run a three-factor regression.



Multifactor Models and Performance Measures

[ 218 ]

Fama-French three-factor model
Recall that the CAPM has the following form:

Here, E() is the expectation, E(Ri) is the expected return for stock i, Rf is the risk-free 
rate, and E(Rmkt) is the expected market return. For instance, the S&P500 index could 
serve as a market index. The slope of the preceding equation ( ) is a measure of the 
stock's market risk. To find out the value of , we run a linear regression. The Fama-
French three-factor model could be viewed as a natural extension of CAPM, see here:

The definitions of Ri, Rf, and Rmkt remain the same. SMB is the portfolio returns of 
small stocks minus the portfolio returns of big stocks; HML is the portfolio returns 
for high book-to-market value minus returns of low book-to-market value stocks. 
The Fama/French factors are constructed using the six value-weight portfolios 
formed on size and book-to-market. Small Minus Big (SMB) is the average return 
on the three small portfolios minus the average return on the three big portfolios. 
Based on the size, measured by the market capitalization (numbers of shares 
outstanding times the end of year price), they classify all stocks into two categories, 
S (small) and H (high). Similarly, based on the ratio of book value of equity to the 
market value of equity, all stocks are classified into three groups of H (high), M 
(Median), and L (Low). Eventually, we could have the following six groups:
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The SMB is constructed by the following six portfolios:
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When ratios of equity book value over market value are low (high), those stocks are 
called growth (value stocks) stocks. Thus, we could use another formula; see here:

High Minus Low (HML) is the average return on the two value portfolios minus the 
average return on the two growth portfolios; see the following equation:

Rm-Rf, the excess return on the market, value-weight return of all CRSP firms 
incorporated in the US and listed on the NYSE, AMEX, or NASDAQ that have a 
CRSP share code of 10 or 11 at the beginning of month t, good shares and price data 
at the beginning of t, and good return data for t minus the 1-month Treasury bill 
rate (from Ibbotson Associates). The following program retrieves the Fama-French 
monthly factors and generates a dataset with the .pickle format. The dataset for 
the Fama-French monthly dataset in the pandas .pickle format can be downloaded 
from http://www.canisius.edu/~yany/python/ffMonthly.pkl:

import pandas as pd
x=pd.read_pickle("c:/temp/ffMonthly.pkl")
print(x.head())
print(x.tail())

The corresponding output is show here:

http://www.canisius.edu/~yany/python/ffMonthly.pkl


Multifactor Models and Performance Measures

[ 220 ]

Next, we show how to run a Fama-French three-factor regression using 5-year 
monthly data. The added twist is that the historical price data is downloaded 
first. Then we calculate monthly returns and convert them to monthly ones before 
merging with the monthly Fama-French three-factor time series:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np
import pandas as pd
import scipy as sp
import statsmodels.api as sm

ticker='IBM'
begdate=(2012,1,1)
enddate=(2016,12,31)

p= getData(ticker, begdate, enddate,asobject=True, adjusted=True)
logret = sp.log(p.aclose[1:]/p.aclose[:-1])

ddate=[]
d0=p.date

for i in range(0,sp.size(logret)):
    x=''.join([d0[i].strftime("%Y"),d0[i].strftime("%m"),"01"])
    ddate.append(pd.to_datetime(x, format='%Y%m%d').date())
        
t=pd.DataFrame(logret,np.array(ddate),columns=[''RET''])
ret=sp.exp(t.groupby(t.index).sum())-1
ff=pd.read_pickle('c:/temp/ffMonthly.pkl')
final=pd.merge(ret,ff,left_index=True,right_index=True)
y=final[''RET'']
x=final[[''MKT_RF'',''SMB'',''HML'']]
x=sm.add_constant(x)
results=sm.OLS(y,x).fit()
print(results.summary())

In the preceding program, the start date is January 1, 2012, and the end date is 
December 31, 2016. After retrieving the daily price data, we estimate the daily 
returns and then convert them to monthly ones. The Fama-French monthly three-
factor time series with the pandas .pickle format is uploaded. In the preceding 
program, the usage of np.array(date,dtype=int64) is to make both indices have 
the same data types. The corresponding output is as follows:
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To save space, we will not discuss the result.

Fama-French-Carhart four-factor model 
and Fama-French five-factor model
Jegadeesh and Titman (1993) show a profitable momentum trading strategy: buy 
winners and sell losers. The basic assumption is that within a short time period, such 
as 6 months, a winner will remain as a winner, while a loser will remain as a loser. For 
example, we could classify winners from losers based on the last 6-month cumulative 
total returns. Assume we are in January 1965. The total returns over the last 6 months 
are estimated first. Then sort them into 10 portfolios according to their total returns 
from the highest to the lowest. The top (bottom) 10% are labeled as winners (losers). 
We long winner portfolio and short loser portfolio with a 6-month holding period. 
The next month, February 1965, we repeat the same procedure. Over January 1965 
to December 1989, Jegadeesh and Titman's (1993) empirical results suggest that such 
a trading strategy would generate a return of 0.95% per month. Based on this result, 
Carhart (2000) adds the momentum as the 4th to the Fama-French  three-factor model:
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Here, MOM is the momentum factor. The following codes could upload 
ffcMonthly.pkl and print the first and last several lines. The Python dataset can 
be downloaded from the author's website at http://www.canisius.edu/~yany/
python/ffcMonthly.pkl:

import pandas as pd
x=pd.read_pickle("c:/temp/ffcMonthly.pkl")
print(x.head())
print(x.tail())

The output is shown here:

In 2015, Fama and French developed a so-called five-factor model; see the  
following formula:

In the preceding equation, RMW is the difference between the returns on diversified 
portfolio of stocks with robust and weak profitability, CMA is the difference between 
the returns of diversified portfolios of the stocks of low and high investment firms, 
which Fama and French call conservative and aggressive. If the exposures to the five 
factors capture all variation in expected returns, the intercept for all securities and 
portfolio i should be zero. Again, we would not show how to run a Fama-French 
five-factor model since it is quite similar to running a Fama-French three-factor 
model. Instead, the following code shows the first and last several lines of a Python 
dataset called ffMonthly5.pkl. The Python dataset can be downloaded from the 
author's website at http://www.canisius.edu/~yany/python/ffMonthly5.pkl:

import pandas as pd
x=pd.read_pickle("c:/temp/ffMonthly5.pkl")
print(x.head())
print(x.tail())

http://www.canisius.edu/~yany/python/ffcMonthly.pkl
http://www.canisius.edu/~yany/python/ffcMonthly.pkl
http://www.canisius.edu/~yany/python/ffMonthly5.pkl
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The corresponding output is shown here:

Along the same lines, for the daily frequency, we have several datasets called 
ffDaily, ffcDaily, and ffDaily5; see Appendix A – list of related Python datasets for 
more detail.

Implementation of Dimson (1979) 
adjustment for beta
Dimson (1979) suggests the following method:

The most frequently used k value is 1. Thus, we have the next equation:

Before we run the regression based on the preceding equation, two functions called 
.diff() and .shift() are explained. Here, we randomly choose five prices. Then 
we estimate their price difference returns and add lag and forward returns:

import pandas as pd
import scipy as sp

price=[10,11,12.2,14.0,12]
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x=pd.DataFrame({'Price':price})
x['diff']=x.diff()
x['Ret']=x['Price'].diff()/x['Price'].shift(1)
x['RetLag']=x['Ret'].shift(1)
x['RetLead']=x['Ret'].shift(-1)
print(x)

The output is shown here:

Obviously, the price time series is assumed from the oldest to the newest. The 
difference is defined as p(i) – p(i-1). Thus, the first difference is NaN, that is, a missing 
value. Let's look at period 4, that is, index=3. The difference is 1.8 (14-12.2), return 
is (14-12.2)/12.2= 0.147541. The lag ret will be the return before this period, that is, 
0.109091, while the lead return will be the next period return, that is, -0.142857. In  
the following Python program, we illustrate how to run the previous program for 
IBM stocks:

import pandas as pd
import numpy as np
from pandas.stats.api import ols

df=pd.read_pickle("c:/temp/yanMonthly.pkl")
sp500=df[df.index=='^GSPC']
sp500['retMkt']=sp500['VALUE'].diff()/sp500['VALUE'].shift(1)
sp500['retMktLag']=sp500['retMkt'].shift(1)
sp500['retMktLead']=sp500['retMkt'].shift(-1)

ibm=df[df.index=='IBM']
ibm['RET']=ibm['VALUE'].diff()/ibm['VALUE'].shift(1)
y=pd.DataFrame(ibm[['DATE','RET']])
x=pd.DataFrame(sp500[['DATE','retMkt','retMktLag','retMktLead']])
data=pd.merge(x,y)

result=ols(y=data['RET'],x=data[['retMkt','retMktLag','retMktLead']])
print(result)
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The output is shown here:

Performance measures
To compare the performance of mutual functions or individual stocks, we need a 
performance measure. In finance, we know that investors should seek a trade-off 
between risk and returns. It might not be a good idea to say that portfolio A is better 
than portfolio B since the former offered us a 30% return last year while the latter 
offered just 8%. The obvious reason is that we should not ignore risk factors. Because 
of this, we often hear the phrase "risk-adjusted return". In this section, the Sharpe 
ratio, Treynor ratio, Sortino ratio, and Jensen's alpha will be discussed. The Sharpe 
ratio is a widely used performance measure and it is defined as follows:
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Here,  is the mean return for a portfolio or a stock,  is the mean return for a risk-
free security, σ is the variance of the excess portfolio (stock) return, and VaR is the 
variance of the excess portfolio (stock) return. The following code is used to estimate 
the Sharpe ratio with a hypothetical risk-free rate:

import pandas as pd
import scipy as sp
df=pd.read_pickle("c:/temp/yanMonthly.pkl")
rf=0.01
ibm=df[df.index=='IBM']
ibm['RET']=ibm['VALUE'].diff()/ibm['VALUE'].shift(1)
ret=ibm['RET']
sharpe=sp.mean((ret)-rf)/sp.std(ret)
print(sharpe)

The Sharpe ratio is -0.00826559763423. The following code will download daily data 
directly from Yahoo! Finance, then estimate the Sharpe ratio without considering the 
impact of the risk-free rate:

import scipy as sp
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
begdate=(2012,1,1)
enddate=(2016,12,31)
def ret_f(ticker,begdate,enddate):
     p = getData(ticker,begdate, enddate,asobject=True,adjusted=True)
     return(p.aclose[1:]/p.aclose[:-1]-1)
y=ret_f('IBM',begdate,enddate)
sharpe=sp.mean(y)/sp.std(y)
print(sharpe)

The result is 0.00686555838073. Based on the preceding code, a Python program 
is developed with more explanation plus two examples; see Appendix C for more 
detail. The Sharpe ratio looks at the total risk since the standard deviation is used as 
the denominator. This measure is appropriate when the portfolio in consideration is 
all the wealth for a company or individual owner. In Chapter 6, Capital Asset Pricing 
Model, we argued that a rational investor should consider only the market risk 
instead of the total risk when he/she estimates the expected returns. Thus, when 
the portfolio under consideration is only part of the wealth, using total risk is not 
appropriate. Because of this, Treynor suggests using beta as the denominator:
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The only modification is that the sigma (total risk) is replaced by beta (market risk). 
Another argument against using standard deviation in the Sharpe ratio is that it 
considers the deviations in both directions, below and above the mean. However, 
we know that investors are worried more about the downside risk (deviation below 
mean return). The second issue for the Sharpe ratio is that for the numerator, we 
compare mean returns with a risk-free rate. Nevertheless, for the denominator, the 
deviations are from the mean return instead for the same risk-free rate. To overcome 
those two shortcomings, a so-called Lower Partial Standard Deviation (LPSD) is 
developed. Assume we have n returns and one risk-free rate (Rf). Assume further 
that there are m returns are less than this risk-free rate. LPSD is defined here:

Alternatively, we have the following equivalent formula:

The Sortino ratio is defined here:

We could write a Python program to estimate the Sortino ratio; see the following 
code. To guarantee getting the same set of random numbers, the same seed should 
be used in the sp.random.seed() function:

import scipy as sp
import numpy as np

mean=0.10;
Rf=0.02
std=0.20
n=100
sp.random.seed(12456)
x=sp.random.normal(loc=mean,scale=std,size=n)
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print("std=", sp.std(x))

y=x[x-Rf<0]  
m=len(y)
total=0.0
for i in sp.arange(m):
    total+=(y[i]-Rf)**2

LPSD=total/(m-1)
print("y=",y)
print("LPSD=",LPSD)

The corresponding output is shown here:

From the output, the standard deviation is 0.22 while the LPSD value is 0.045. For 
mutual fund managers, getting a positive alpha is quite important. Thus, alpha or 
Jensen's alpha is a performance measure. Jensen's alpha is defined as the difference 
between the realized returns and the expected returns. It has the following form:

How to merge different datasets
It is a common task to merge different datasets, such as merging index data with 
stock data and the like. Thus, it is quite important to understand the mechanism of 
merging different datasets. Here, the pandas.merge() function is discussed:

import pandas as pd
import scipy as s
x= pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                 'A': ['A0', 'A1', 'A2', 'A3'],
                 'B': ['B0', 'B1', 'B2', 'B3']})
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y = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K6'],
                 'C': ['C0', 'C1', 'C2', 'C3'],
                 'D': ['D0', 'D1', 'D2', 'D3']})

The sizes of both x and y are 4 by 3, that is, four rows and three columns; see the 
following code:

print(sp.shape(x))
print(x)

The output is shown here:

print(sp.shape(y))
print(y)

Assume that we intend to merge them based on the variable called key, a common 
variable shared by both datasets. Since the common values of this variable are K0, K1 
and K2. The final result should have three rows and five columns since K3 and K6 
are not the common values by the two datasets; see the result shown here:

result = pd.merge(x,y, on='key')
print(result)

The output is shown here:
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Since key is shared by both datasets, we could simply ignore it; see the following 
code. In other words, result and result2 are the same:

result2 = pd.merge(x,y)
print(result2)

The complete meaning of the pandas.merge() function is given here:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on = 
None,left_index=False, right_index=False, sort=True,suffixes=('_x', 
'_y'), copy=True, indicator=False)

For the first two input variables, left is for the first input dataset while right is  
the second input dataset. For the how= condition, we have the following four  
possible scenarios:

how='inner' Meaning Description
Inner INNER JOIN Use intersection of keys from both frames
Outer FULL OUTER JOIN Use union of keys from both frames
Left LEFT OUTER JOIN Use keys from left frame only
Right RIGHT OUTER JOIN Use keys from right frame only

Table 7.1 Meanings of the four join conditions: inner, outer, left, and right

The format of an inner join demands both datasets have the same items. An analogy 
is students from a family with both parents. The left join is based on the left dataset. 
In other words, our benchmark is the first dataset (left). An analogy is choosing 
students from families with a mum. The right is the opposite of the left, that is, the 
benchmark is the second dataset (right). The outer is the full dataset which contain 
both datasets, the same as students from all families: with both parents, with mum 
only, and with dad only.

In the following example, the first dataset has 4 years of data. Those values are 
entered with no specific meanings. Readers could use their own values. Our common 
variable is YEAR. For the first dataset, we have 4 years of data: 2010, 2011, 2012, and 
2013. For the second dataset, we have 2011, 2013, 2014, and 2015. Obviously, only 2 
years overlap. In total, we have 6 years of data:

import pandas as pd
import scipy as sp
x= pd.DataFrame({'YEAR': [2010,2011, 2012, 2013],
'IBM': [0.2, -0.3, 0.13, -0.2],
'WMT': [0.1, 0, 0.05, 0.23]})
y = pd.DataFrame({'YEAR': [2011,2013,2014, 2015],
'C': [0.12, 0.23, 0.11, -0.1],
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'SP500': [0.1,0.17, -0.05, 0.13]})

print(pd.merge(x,y, on='YEAR'))
print(pd.merge(x,y, on='YEAR',how='outer'))
print(pd.merge(x,y, on='YEAR',how='left'))
print(pd.merge(x,y, on='YEAR',how='right'))

The four outputs are shown here:

When the common variable has different names in those two datasets, we should 
specify their names by using left_on='left_name' and right_on='another_
name'; see the following code:

import pandas as pd
import scipy as sp
x= pd.DataFrame({'YEAR': [2010,2011, 2012, 2013],
                 'IBM': [0.2, -0.3, 0.13, -0.2],
                 'WMT': [0.1, 0, 0.05, 0.23]})
y = pd.DataFrame({'date': [2011,2013,2014, 2015],
                 'C': [0.12, 0.23, 0.11, -0.1],
                 'SP500': [0.1,0.17, -0.05, 0.13]})
print(pd.merge(x,y, left_on='YEAR',right_on='date'))
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If we intend to merge based on the index (row numbers), we specify that left_
index='True', and right_index='True'; see the following code. In a sense, since 
both datasets have four rows, we simply put them together, row by row. The true 
reason is that for those two datasets, there is no specific index. For a comparison, the 
ffMonthly.pkl data has the date as its index:

import pandas as pd
import scipy as sp
x= pd.DataFrame({'YEAR': [2010,2011, 2012, 2013],
                 'IBM': [0.2, -0.3, 0.13, -0.2],
                 'WMT': [0.1, 0, 0.05, 0.23]})
y = pd.DataFrame({'date': [2011,2013,2014, 2015],
                 'C': [0.12, 0.23, 0.11, -0.1],
                 'SP500': [0.1,0.17, -0.05, 0.13]})
print(pd.merge(x,y, right_index=True,left_index=True))

The output is shown here. Again, we simply illustrate the outcome without 
considering the economic meaning by merging different years' data together:

Here is another example of merging on index where date is used as the index for 
both datasets:

import pandas as pd
ff=pd.read_pickle("c:/temp/ffMonthly.pkl")
print(ff.head(2))
mom=pd.read_pickle("c:/temp/ffMomMonthly.pkl")
print(mom.head(3))
x=pd.merge(ff,mom,left_index=True,right_index=True)
print(x.head(2))

Both datasets are available, for example, http://canisius.edu/~yany/python/
ffMonthly.pkl. The output is shown here:

http://canisius.edu/~yany/python/ffMonthly.pkl
http://canisius.edu/~yany/python/ffMonthly.pkl
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Sometimes, we need to merge two datasets based on two keys, such as stock ID and 
date; see the format here:

result = pd.merge(left, right, how='left', on=['key1', 'key2'])

Let's use the following hypothetical example by typing some values:

import pandas as pd
x= pd.DataFrame({'ID': ['IBM', 'IBM', 'WMT', 'WMT'],
'date': [2010, 2011, 2010, 2011],
'SharesOut': [100, 40, 60, 90],
'Asset': [20, 30, 10, 30]})

y = pd.DataFrame({'ID': ['IBM', 'IBM', 'C', 'WMT'],
'date': [2010, 2014, 2010, 2010],
'Ret': [0.1, 0.2, -0.1,0.2],
'ROA': [0.04,-0.02,0.03,0.1]})

z= pd.merge(x,y, on=['ID', 'date'])

For the first dataset, we have shares outstanding data for two stocks over the years 
2010 and 2011. The second dataset has data for annual returns and ROA for three 
stocks over 2 years (2010 and 2014). Our objective is to merge those two datasets by 
stock ID and date (year). The output is shown here:
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After understanding how to run a multifactor regression and how to merge different 
datasets, readers will be able to add their own factor or factors. One issue is that 
some factors might have a different frequency, such as quarterly GDP instead of 
monthly ones. For those cases, we could use various ways to fill in those missing 
values; see the following example:

import pandas as pd
GDP=pd.read_pickle("c:/temp/usGDPquarterly.pkl")
ff=pd.read_pickle("c:/temp/ffMonthly.pkl")
final=pd.merge(ff,GDP,left_index=True,right_index=True,how='left') 
tt=final['AdjustedGDPannualBillion']
GDP2=pd.Series(tt).interpolate()
final['GDP2']=GDP2

print(GDP.head())
print(ff.head())
print(final.tail(10))

The output is shown here:

Readers should compare those two GDP time series to the impact.
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Appendix A – list of related Python datasets
The prefix for these datasets is http://canisius.edu/~yany/python/. For 
example, for ffMonthly.pkl, we would have http://canisius.edu/~yany/
python/ffMonthly.pkl:

Filename Description
ibm3factor.pkl A simple dataset for the FF three-factor model 

for IBM
ffMonthly.pkl Fama-French monthly three factors
ffMomMonthly.pkl Monthly momentum factor
ffcMonthly.pkl Fama-French-Carhart monthly four factors
ffMonthly5.pkl Fama-French monthly five factors
yanMonthly.pkl A monthly dataset generated by the author
ffDaily.pkl Fama-French-Carhart daily four factors
ffcDaily.pkl Fama-French daily five factors
ffDaily5.pkl Fama-French monthly four factors
usGDPquarterly.pkl Quarterly US GDP data
usDebt.pkl US national debt level
usCPImonthly.pkl Consumer Price Index (CPI) data
tradingDaysMonthly.pkl Trading days for monthly data
tradingDaysDaily.pkl Trading days for daily data
businessCycleIndicator.pkl A business cycle indicator
businessCycleIndicator2.pkl Another business cycle indicator
uniqueWordsBible.pkl All unique words from the Bible

One example of the code is shown here:

import pandas as pd
x=pd.read_pickle("c:/temp/ffMonthly.pkl")
print(x.head())
print(x.tail())

http://canisius.edu/~yany/python/
http://canisius.edu/~yany/python/ffMonthly.pkl
http://canisius.edu/~yany/python/ffMonthly.pkl
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The output is shown here:

Appendix B – Python program to generate 
ffMonthly.pkl
The following program is used to generate the dataset called ffMonthly.pkl:

import scipy as sp
import numpy as np
import pandas as pd
file=open("c:/temp/ffMonthly.txt","r")
data=file.readlines()
f=[]
index=[]
for i in range(4,sp.size(data)):
print(data[i].split())
t=data[i].split()
index.append(pd.to_datetime(t[0]+'01', format='%Y%m%d').date())
#index.append(int(t[0]))
for j in range(1,5):
k=float(t[j])
f.append(k/100)
n=len(f) 
f1=np.reshape(f,[n/4,4])
ff=pd.DataFrame(f1,index=index,columns=['MKT_RF','SMB','HML','Rf'])
ff.to_pickle("c:/temp/ffMonthly.pkl")
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The first and last several lines are shown here:

Appendix C – Python program for  
Sharpe ratio

def sharpeRatio(ticker,begdate=(2012,1,1),enddate=(2016,12,31)):
    Objective: estimate Sharpe ratio for stock
        ticker  : stock symbol 
        begdate : beginning date
        enddate : ending date
       
       Example #1: sharpeRatio("ibm")
                     0.0068655583807256159
        
       Example #2: date1=(1990,1,1)
                   date2=(2015,12,23)
                   sharpeRatio("ibm",date1,date2)
                     0.027831010497755326
    
    import scipy as sp
    from matplotlib.finance import quotes_historical_yahoo_ochl as 
getData
    p = getData(ticker,begdate, enddate,asobject=True,adjusted=True)
    ret=p.aclose[1:]/p.aclose[:-1]-1
    return sp.mean(ret)/sp.std(ret) 
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Appendix D – data case #4 – which model is 
the best, CAPM, FF3, FFC4, or FF5, or others?
Currently, we have many asset pricing models. Among them, the most important ones 
are CAPM, Fama-French three-factor model, Fama-French-Carhart four-factor model, 
or Fama-French five-factor model. The objectives of this data case include the following:

• Becoming familiar with the method to download data
• Understanding the T-value, F-values, and adjusted R2
• Writing various Python programs to conduct the test

Definitions of those four models CAPM:

Fama-French three-factor model:

Fama-French-Carhart four-factor model:

Fama-French five-factor model:

In the preceding equation, RMV is the difference between the returns on diversified 
portfolio of stocks with robust and weak profitability, and CMA is the difference 
between the returns of diversified portfolios of the stocks of low and high investment 
firms, which Fama and French call conservative and aggressive. If the exposures 
to the five factors capture all variation in expected returns, the intercept for all 
securities and portfolio should be zero. The source of the data is as follows:

• http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html http://canisius.edu/~yany/python/ffMonthly.pkl
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html http://canisius.edu/~yany/python/ffMonthly.pkl
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• http://canisius.edu/~yany/python/ffMonthly.pkl

ffMonthly.pkl Fama-French monthly three factors
ffcMonthly.pkl Fama-French-Carhart monthly four factors
ffMonthly5.pkl Fama-French monthly five factors
yanMonthly.pkl Fama-French daily three factors
yanMonthly.pkl A monthly dataset generated by the author
usGDPannual.pkl US GDP annual
usCPImonthly.pkl Consumer Price Index (CPI) monthly

Several questions:

• Which criterion?
• Is the performance time-period independent?
• In-sample estimation versus out-sample prediction
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Exercises
1. What are the differences between the CAPM and Fama-French 3three-factor 

models?
2. What are the meanings of SMB and HML in the Fama-French three-factor 

model?
3. What is the meaning of MOM in the Fama-French-Carhart four-factor model?
4. What are the meanings of RMW and CMA in the Fama-French five-factor 

model?
5. What is the difference between R2 and adjusted R2 when running  

multifactor models?
6. How many OLS functions we could use? Please offer at least two functions 

from different Python modules.
7. Which module contains the function called rolling_kurt? How can you use 

the function?
8. Based on daily data downloaded from Yahoo! Finance, find the results for 

IBM based on the last 5 years by running both the CAPM and Fama-French 
three-factor models. Which model is better?

9. What is the momentum factor? How do you run a Fama-French-Carhart 
four-factor model? Please use a few tickers as an illustration.

10. What is the definition of the Fama-French 5 factor model? How do you run it 
for Citi Group? The ticker of the financial institution is C.

11. For the following stock tickers, IBM, DELL, WMT, ^GSPC, C, A, AA, and 
MOFT, run regression based on CAPM, FF3, FFC4, and FF5. Which one is the 
best? Discuss your benchmark or criteria to compare.

12. Write a Python program to estimate rolling beta on a yearly basis based on 
the Fama-French three-factor model. Use it to show the annual beta for IBM 
from 1962 to 2016.

13. Update the following Python datasets. The original datasets can be 
downloaded from the author's web page. For example, in order to download 
the first dataset, called ffMonthly.pkl, go to http://canisius.edu/~yany/
python/ffMonthly.pkl:

ffMonthly.pkl Fama-French monthly three factors
ffcMonthly.pkl Fama-French-Carhart monthly four factors
ffMonthly5.pkl Fama-French monthly five factors

http://canisius.edu/~yany/python/ffMonthly.pkl
http://canisius.edu/~yany/python/ffMonthly.pkl
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14. Data source: http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html.

15.  Update the following Python datasets:

usGDPannual.pkl US GDP annual 
usCPImonthly.pkl CPI (Consumer price index) monthly 

16. The Fama-French SMH could be viewed as a portfolio. Download both daily 
and monthly SMB. Then estimate the total returns over 10-, 20-, and 30-year 
periods. Compare the differences between each pair of total returns. For 
example, compare total returns from 1980 to 2000 based on both daily SML 
and monthly SML. Why they are different?

17. Do the same thing for the market return and compare with SML. Why is the 
difference for market much smaller than the difference for SML portfolio?

18. Do the same thing for HML and explain.
19. How many ways are there to merge two datasets?
20. If we have two datasets, sorted by ticker and date, how do you merge them?
21. Write a function to estimate the Treynor ratio. The format of the function 

is treynorRatio (ticker, rf, begdate, enddate), where ticker is a stock 
symbol, such as IBM, rf is the risk-free rate, begdate is the beginning date, 
and enddate is the end date.

22. Randomly choose 10 stocks, such as stocks with tickers of IBM, C, WMT, 
MSFT, and so on, and run CAPM to test whether their intercepts are zero  
or not.

23. Write a Python program to calculate the Sortino ratio. The format of the 
program will be sortinoRatio(ticker,rf,begdate,enddate).

24. How can you replicate the Jagadeesh and Tidman (1993) momentum  
strategy using Python and CRSP data? (Assume that your school has a  
CRSP subscription.)

25. When using the statsodels.api.ols() function to run a linear regression, 
what is the consequence when the following line is omitted?
x = sm.add_constant(x)

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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26. Debug the following program used to estimate LPSD:
import scipy as sp
import numpy as np
mean=0.08;Rf=0.01;std=0.12;n=100
x=sp.random.normal(loc=mean,scale=std,size=n)
y=x[x-Rf<0]  
m=len(y)
for i in sp.arange(m):
    total=0.0
    total+=(y[i]-Rf)**2
LPSD=total/(m-1)

Summary
In this chapter, we have discussed multiple-factor linear models. Those models could 
be viewed as a simple extension of the CAPM, a single one-factor linear model.  
These multifactor models include the Fama-French three-factor, Fama-French-Carhart 
four-factor, and Fama-French five-factor models.

In the next chapter, we will discuss various properties for time series. In finance and 
economics, a huge amount of our data is in the format of time series, such as stock 
price and Gross Domestic Product (GDP), or stocks' monthly or daily historical 
prices. For time series, there exist many issues, such as how to estimate returns from 
historical price data, how to merge datasets with the same or different frequencies, 
seasonality, and detection of auto-correlation. Understanding those properties is 
vitally important for our knowledge development.
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Time-Series Analysis
In finance and economics, a huge amount of our data is in the format of time-series, 
such as stock prices and Gross Domestic Products (GDP). From Chapter 4, Sources 
of Data, it is shown that from Yahoo!Finance, we could download daily, weekly, and 
monthly historical price time-series. From Federal Reserve Bank's Economics Data 
Library (FRED), we could retrieve many historical time-series such as GDP. For 
time-series, there exist many issues, such as how to estimate returns from historical 
price data, how to merge datasets with the same or different frequencies, seasonality, 
and detect auto-correlation. Understanding those properties is vitally important for 
our knowledge development.

In this chapter, the following topics will be covered:

• Introduction to time-series analysis
• Design a good date variable, and merging different datasets by date
• Normal distribution and normality test
• Term structure of interest rates, 52-week high, and low trading strategy
• Return estimation and converting daily returns to monthly or annual returns
• T-test, F-test, and Durbin-Watson test for autocorrelation
• Fama-MacBeth regression
• Roll (1984) spread, Amihud's (2002) illiquidity, and Pastor and Stambaugh's 

(2003) liquidity measure
• January effect and weekday effect
• Retrieving high-frequency data from Google Finance and Prof. Hasbrouck's 

TORQ database (Trade, Order, Report, and Quotation)
• Introduction to CRSP (Center for Research in Security Prices) database
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Introduction to time-series analysis
Most finance data is in the format of time-series, see the following several examples. 
The first one shows how to download historical, daily stock price data from 
Yahoo!Finance for a given ticker's beginning and ending dates:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
x = getData("IBM",(2016,1,1),(2016,1,21),asobject=True, adjusted=True)
print(x[0:4])

The output is shown here:

The type of the data is numpy.recarray as the type(x) would show. The second 
example prints the first several observations from two datasets called ffMonthly.
pkl and usGDPquarterly.pkl, and both are available from the author's website, 
such as http://canisius.edu/~yany/python/ffMonthly.pkl:

import pandas as pd
GDP=pd.read_pickle("c:/temp/usGDPquarterly.pkl")
ff=pd.read_pickle("c:/temp/ffMonthly.pkl")
print(GDP.head())
print(ff.head())

The related output is shown here:

http://canisius.edu/~yany/python/ffMonthly.pkl
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There is one end of chapter problem which is designed to merge discrete data  
with the daily data. The following program retrieves the daily price data from 
Google finance:

import pandas_datareader.data as web
import datetime
ticker='MSFT'
begdate = datetime.datetime(2012, 1, 2)
enddate = datetime.datetime(2017, 1, 10)
a = web.DataReader(ticker, 'google',begdate,enddate)
print(a.head(3))
print(a.tail(2))

The corresponding output is shown here:

To get the current stock quote, we have the following program. Note that the output 
is for January 21, 2017:

import pandas_datareader.data as web
ticker='AMZN'
print(web.get_quote_yahoo(ticker))

By using the next Python program, the Gross Domestic Product (GDP) data from 
January 1947 to June 2016 would be retrieved:

import pandas_datareader.data as web
import datetime
begdate = datetime.datetime(1900, 1, 1)
enddate = datetime.datetime(2017, 1, 27)
x= web.DataReader("GDP", "fred", begdate,enddate)
print(x.head(2))
print(x.tail(3))
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The output is shown here:

Merging datasets based on a date 
variable
To make our time-series more manageable, it is a great idea to generate a date 
variable. When talking about such a variable, readers could think about year (YYYY), 
year and month (YYYYMM) or year, month, and day (YYYYMMDD). For just the 
year, month, and day combination, we could have many forms. Using January 20, 
2017 as an example, we could have 2017-1-20, 1/20/2017, 20Jan2017, 20-1-2017, and 
the like. In a sense, a true date variable, in our mind, could be easily manipulated. 
Usually, the true date variable takes a form of year-month-day or other forms of its 
variants. Assume the date variable has a value of 2000-12-31. After adding one day to 
its value, the result should be 2001-1-1.

Using pandas.date_range() to generate one 
dimensional time-series
We could easily use the pandas.date_range() function to generate our time-series; 
refer to the following example:

import pandas as pd
import scipy as sp
sp.random.seed(1257)
mean=0.10
std=0.2
ddate = pd.date_range('1/1/2016', periods=252) 
n=len(ddate)
rets=sp.random.normal(mean,std,n)
data = pd.DataFrame(rets, index=ddate,columns=['RET'])
print(data.head())
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In the preceding program, since the sp.random.seed() function is applied, readers 
should get the same output if he/she uses the same seed. The output is shown here:

                 RET
2016-01-01  0.431031
2016-01-02  0.279193
2016-01-03  0.002549
2016-01-04  0.109546
2016-01-05  0.068252

To better facilitate working with time-series data, in the following program, the 
pandas.read_csv() function is used, see the following code:

import pandas as pd
url='http://canisius.edu/~yany/data/ibm.csv' 
x=pd.read_csv(url,index_
col=0,parse_dates=True)
print(x.head())

The output is shown here:

To see the format of date, we have the following code:

>>>x[0:1]

>>>x[0:1].index
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In the following program, the matplotlib.finance.quotes_historical_yahoo_
ochl() function is applied:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
x = getData("IBM",(2016,1,1),(2016,1,21),asobject=True, adjusted=True)
print(x[0:4])

The output is shown here:

Note that the index is in a form of date format, see the following code. For the 
meaning of .strftime("%Y"), see Table 8.2:

>>>x[0][0]
  datetime.date(2016, 1, 4)
>>>x[0][0].strftime("%Y")
 '2016'

Here are several ways to define a date variable:

Function Description Examples
pandas.date_
range

1. For a range 
of dates

pd.date_range('1/1/2017', 
periods=252)

datetime.date 2. One day >>>from datetime import 
datetime

>>>datetime.date(2017,1,20)

datetime.date.
today()

3. Get today's 
value 

>>>datetime.date.today()

datetime.date(2017, 1, 26)

datetime.now() 4. Get the 
current time

>>>from datetime import 
datetime

>>>datetime.now()

datetime.datetime(2017, 1, 26, 
8, 58, 6, 420000)



Chapter 8

[ 249 ]

Function Description Examples
relativedelta() 5. Add certain 

numbers 
of days, 
months, or 
years to a 
date variable

>>>from datetime import 
datetime

>>>today=datetime.today().
date()

>>>print(today)

2017-01-26

>>>print(today+relativedelta(
days=31))

 2017-02-26

Table 8.1 A few ways to define a date variable

Retrieving the year, month, and day from a date variable is used quite frequently 
when dealing with time-series—see the following Python program by using the 
strftime() function. The corresponding output is in the following right panel. The 
format of those results of year, month, and day, is string:

import datetime
today=datetime.date.today()
year=today.strftime("%Y")
year2=today.strftime("%y")
month=today.strftime("%m")
day=today.strftime("%d")
print(year,month,day,year2)
('2017', '01', '24', '17')

The following table summarizes its usages. For more details, see the link at:  
http://strftime.org/:

Function Description Examples
.strftime("%Y") 1. 4-digit year 

string 
a=datetime.date(2017,1,2)

a.strftime("%Y")

.strftime("%y") 2. 2-digit year 
string 

a.strftime("%y")

.strftime("%m") 3. Month string a.strftime("%m")

.strftime("%d") 4. Day string a.strftime("%d")

Table 8.2 Retrieving year, month, and day

http://strftime.org/
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Return estimation
With price data, we could calculate returns. In addition, sometimes we have to 
convert daily returns to weekly or monthly, or convert monthly returns to quarterly 
or annual ones. Thus, understanding how to estimate returns and their conversion is 
vital. Assume that we have the following four prices:

>>>p=[1,1.1,0.9,1.05]

It is important to know how these prices are sorted. If the first price happened before 
the second price, then the first return should be (1.1-1)/1=10%. Next, we learn how to 
retrieve the first n-1 and the last n-1 records from an n record array. To list the first 
n-1 price, we use p[:-1], while for the last three prices we use p[1:] as shown in the 
following code:

>>>print(p[:-1]) 
>>>print(p[1:]) 
[ 1. 1.1 0.9] 
[ 1.1 0.9 1.05]

To estimate returns, we could use the following code:

>>>ret=(p[1:]-p[:-1])/p[:-1] 
>>>print(ret )
[ 0.1 -0.18181818 0.16666667]

When given two prices of x1 and x2 and assume that x2 is behind x1, we could 
use ret=(x2-x1)/x1. Alternatively, we could use ret=x2/x1-1. Thus, for the preceding 
example, we could use ret=p[1:]/p[:-1]-1. Obviously, this second method 
would avoid certain typing errors. On the other hand, if the prices are arranged in 
the reverse order, for example, the first one is the latest price and the last one is the 
oldest price, then we have to estimate returns in the following way:

>>>ret=p[:-1]/p[1:]-1 
>>>print(ret )
[-0.09090909 0.22222222 -0.14285714] 
>>>

As it is mentioned in Chapter 7, Multifactor Models and Performance Measures we could 
use .diff() and .shift() functions to estimate returns. See the following code:

import pandas as pd
import scipy as sp
p=[1,1.1,0.9,1.05] 
a=pd.DataFrame({'Price':p})
a['Ret']=a['Price'].diff()/a['Price'].shift(1)
print(a)
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The output is shown here:

Price       Ret
0   1.00       NaN
1   1.10  0.100000
2   0.90 -0.181818
3   1.05  0.166667

The following code shows how to download daily price data from Yahoo!Finance 
and estimate daily returns:

>>>from matplotlib.finance import quotes_historical_yahoo_ochl as 
getData 
>>>ticker='IBM' 
>>>begdate=(2013,1,1) 
>>>enddate=(2013,11,9) 
>>>x =getData(ticker, begdate, enddate,asobject=True, adjusted=True) 
>>>ret=x.aclose[1:]/x.aclose[:-1]-1

The first line uploads a function from matplotlib.finance. We define the 
beginning and ending dates using a tuple data type. The downloaded historical 
daily price data is assigned to x. To verify that our returns are correctly estimated, 
we can print a few prices to our screen. Then, we could manually verify one or two 
return values as shown in the following code:

>>>x.date[0:3] 
array([datetime.date(2013, 1, 2), datetime.date(2013, 1, 3), 
datetime.date(2013, 1, 4)], dtype=object) 
>>>x.aclose[0:3] 
array([ 192.61, 191.55, 190.3 ]) 
>>>ret[0:2] 
array([-0.00550335, -0.00652571]) 
>>>(191.55-192.61)/192.61 
-0.005503348735787354 
>>>

Yes, the last result confirms that our first return is correctly estimated.
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Converting daily returns to monthly ones
Sometimes, we need to convert daily returns to monthly or annual ones. Here is our 
procedure. First, we estimate the daily log returns. We then take a summation of 
all daily log returns within each month to find out the corresponding monthly log 
returns. The final step is to convert a log monthly return to a monthly percentage 
return. Assume that we have the price data of p0, p1, p2, …., p20, where p0 is the last 
trading price of the last month, p1 is the first price of this month, and p20 is the last 
price of this month. Thus, this month's percentage return is given as follows:

The monthly log return is defined as follows:

The relationship between a monthly percentage and a log monthly return is given as 
follows:

The daily log return is defined similarly, as follows:

Let's look at the following summation of log returns:

Based on the previous procedure, the following Python program converts daily 
returns into monthly returns:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np
import pandas as pd 
#
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ticker='IBM' 
begdate=(2013,1,1) 
enddate=(2013,11,9)
#
x = getData(ticker, begdate, enddate,asobject=True, adjusted=True)
logret = np.log(x.aclose[1:]/x.aclose[:-1])
yyyymm=[]
d0=x.date
#
for i in range(0,np.size(logret)): 
    yyyymm.append(''.join([d0[i].strftime("%Y"),d0[i].
strftime("%m")]))

y=pd.DataFrame(logret,yyyymm,columns=['retMonthly']) 
retMonthly=y.groupby(y.index).sum()

print(retMonthly.head())

The output is shown here:

Merging datasets by date
The following program merges the daily adjusted closing price of IBM with the  
daily Fama-French 3-factor time-series. The ffMonthly.pkl is available at:  
http://canisius.edu/~yany/python/ffDaily.pkl:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np 
import pandas as pd 
ticker='IBM' 
begdate=(2016,1,2) 
enddate=(2017,1,9) 
x =getData(ticker, begdate, enddate,asobject=True, adjusted=True) 
myName=ticker+'_adjClose'
x2=pd.DataFrame(x['aclose'],x.date,columns=[myName]) 
ff=pd.read_pickle('c:/temp/ffDaily.pkl') 
final=pd.merge(x2,ff,left_index=True,right_index=True)
print(final.head())

http://canisius.edu/~yany/python/ffDaily.pkl
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The output is given as follows:

            IBM_adjClose  MKT_RF     SMB     HML   RF
2016-01-04    130.959683 -0.0159 -0.0083  0.0053  0.0
2016-01-05    130.863362  0.0012 -0.0021  0.0000  0.0
2016-01-06    130.208315 -0.0135 -0.0013  0.0001  0.0
2016-01-07    127.983111 -0.0244 -0.0028  0.0012  0.0
2016-01-08    126.798264 -0.0111 -0.0047 -0.0004  0.0

Understanding the interpolation 
technique
Interpolation is a technique used quite frequently in finance. In the following 
example, we have to replace two missing values, NaN, between 2 and 6. The  
pandas.interpolate() function, for a linear interpolation, is used to fill in the  
two missing values:

import pandas as pd 
import numpy as np 
nn=np.nan
x=pd.Series([1,2,nn,nn,6]) 
print(x.interpolate())

The output is shown here:

0    1.000000
1    2.000000
2    3.333333
3    4.666667
4    6.000000
dtype: float64

The preceding method is a linear interpolation. Actually, we could estimate a Δ and 
calculate those missing values manually:
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Here, v2(v1) is the second (first) value and n is the number of intervals between those 
two values. For the preceding case, Δ is (6-2)/3=1.33333. Thus, the next value will 
be v1+Δ=2+1.33333=3.33333. This way, we could continually estimate all missing 
values. Note that if we have several periods with missing values, then the delta 
for each period has to be calculated manually to verify the methodology. From the 
Yahoo!Finance bond page at http://finance.yahoo.com/bonds, we could get the 
following information:

Maturity Yield Yesterday Last week Last month
3 Month 0.05 0.05 0.04 0.03
6 Month 0.08 0.07 0.07 0.06
2 Year 0.29 0.29 0.31 0.33
3 Year 0.57 0.54 0.59 0.61
5 Year 1.34 1.32 1.41 1.39
10 Year 2.7 2.66 2.75 2.66
30 Year 3.8 3.78 3.85 3.72

Table 8.3 Term structure interest rate

Based on the tabular data, we have the following code:

>>>import numpy as np
>>>import pandas as pd
>>>nn=np.nan
>>>x=pd.Series([0.29,0.57,nn,1.34,nn,nn,nn,nn,2.7])
>>>y=x.interpolate()
>>>print(y)
0 0.290
1 0.570
2 0.955
3 1.340
4 1.612
5 1.884
6 2.156
7 2.428
8 2.700
dtype: float64
>>>

http://finance.yahoo.com/bonds
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Merging data with different frequencies
The following Python program merges two datasets: US Gross Domestic Product 
(GDP) data with a quarterly frequency and ffMonthly, http://canisius.
edu/~yany/python/ffMonthly.pkl with a monthly frequency.

The interpolation methodology discussed previously is applied to the missing  
months in terms of GDP data. The ffMonthly dataset is assumed to be saved  
in the c:/temp/ directory:

import pandas as pd
import pandas_datareader.data as web
import datetime
begdate = datetime.datetime(1900, 1, 1)
enddate = datetime.datetime(2017, 1, 27)
GDP= web.DataReader("GDP", "fred", begdate,enddate)
ff=pd.read_pickle("c:/temp/ffMonthly.pkl")
final=pd.merge(ff,GDP,left_index=True,right_index=True,how='left') 
tt=final['GDP']
GDP2=pd.Series(tt).interpolate()
final['GDP2']=GDP2

The outputs are shown here. Since there is no data for GDP before 1947 and the 
ffMonthly time-series starts from July 1926, the last several observations of the 
merged data are more informative:

print(final.head())
print(final.tail(10))
        MKT_RF     SMB     HML      RF      GDP  GDP2
1926-07-01  0.0296 -0.0230 -0.0287  0.0022  NaN   NaN
1926-08-01  0.0264 -0.0140  0.0419  0.0025  NaN   NaN
1926-09-01  0.0036 -0.0132  0.0001  0.0023  NaN   NaN
1926-10-01 -0.0324  0.0004  0.0051  0.0032  NaN   NaN
1926-11-01  0.0253 -0.0020 -0.0035  0.0031  NaN   NaN
            MKT_RF     SMB     HML      RF      GDP          GDP2
2016-02-01 -0.0007  0.0083 -0.0048  0.0002      NaN  18337.766667
2016-03-01  0.0696  0.0086  0.0111  0.0002      NaN  18393.933333
2016-04-01  0.0092  0.0068  0.0325  0.0001  18450.1  18450.100000
2016-05-01  0.0178 -0.0027 -0.0179  0.0001      NaN  18525.166667
2016-06-01 -0.0005  0.0061 -0.0149  0.0002      NaN  18600.233333
2016-07-01  0.0395  0.0290 -0.0098  0.0002  18675.3  18675.300000
2016-08-01  0.0050  0.0094  0.0318  0.0002      NaN  18675.300000
2016-09-01  0.0025  0.0200 -0.0134  0.0002      NaN  18675.300000
2016-10-01 -0.0202 -0.0440  0.0415  0.0002      NaN  18675.300000
2016-11-01  0.0486  0.0569  0.0844  0.0001      NaN  18675.300000
2016-07-01  0.0395  0.0290 -0.0098  0.0002  18675.3  18675.300000
2016-08-01  0.0050  0.0094  0.0318  0.0002      NaN  18675.300000

http://canisius.edu/~yany/python/ffMonthly.pkl
http://canisius.edu/~yany/python/ffMonthly.pkl
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2016-09-01  0.0025  0.0200 -0.0134  0.0002      NaN  18675.300000
2016-10-01 -0.0202 -0.0440  0.0415  0.0002      NaN  18675.300000
2016-11-01  0.0486  0.0569  0.0844  0.0001      NaN  18675.300000

For the second example, we merge a business cycle indicator, called businessCycle.
pkl, available at http://canisius.edu/~yany/python/businessCycle.pkl, with 
a monthly frequency and GDP (quarterly frequency). See the following code:

import pandas as pd
import pandas_datareader.data as web
import datetime
import scipy as sp
import numpy as np
cycle=pd.read_pickle("c:/temp/businessCycle.pkl")
begdate = datetime.datetime(1947, 1, 1)
enddate = datetime.datetime(2017, 1, 27)
GDP= web.DataReader("GDP", "fred", begdate,enddate)
final=pd.merge(cycle,GDP,left_index=True,right_index=True,how='right')

We could print a few lines to see the results:

print(cycle.head())
print(GDP.head())
print(final.head())
          cycle
date             
1926-10-01  1.000
1926-11-01  0.846
1926-12-01  0.692
1927-01-01  0.538
1927-02-01  0.385
1947-07-01  0.135  250.1
1947-10-01  0.297  260.3
1948-01-01  0.459  266.2
              GDP
DATE             
1947-01-01  243.1
1947-04-01  246.3
1947-07-01  250.1
1947-10-01  260.3
1948-01-01  266.2
            cycle    GDP
DATE                    
1947-01-01 -0.189  243.1
1947-04-01 -0.027  246.3

http://canisius.edu/~yany/python/businessCycle.pkl
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Tests of normality
In finance, knowledge about normal distribution is very important for two reasons. 
First, stock returns are assumed to follow a normal distribution. Second, the error 
terms from a good econometric model should follow a normal distribution with a 
zero mean. However, in the real world, this might not be true for stocks. On the other 
hand, whether stocks or portfolios follow a normal distribution could be tested by 
various so-called normality tests. The Shapiro-Wilk test is one of them. For the first 
example, random numbers are drawn from a normal distribution. As a consequence, 
the test should confirm that those observations follow a normal distribution:

from scipy import stats 
import scipy as sp
sp.random.seed(12345)
mean=0.1
std=0.2
n=5000
ret=sp.random.normal(loc=0,scale=std,size=n)
print 'W-test, and P-value' 
print(stats.shapiro(ret))
W-test, and P-value
(0.9995986223220825, 0.4129064679145813)

Assume that our confidence level is 95%, that is, alpha=0.05. The first value of the 
result is the test statistic, and the second one is its corresponding P-value. Since 
the P-value is so big, much bigger than 0.05, we accept the null hypothesis that the 
returns follow a normal distribution. For the second example, random numbers are 
drawn from a uniform distribution:

from scipy import stats
import scipy as sp
sp.random.seed(12345)
n=5000
ret=sp.random.uniform(size=n)
print 'W-test, and P-value' 
print(stats.shapiro(ret)) 
W-test, and P-value
(0.9537619352340698, 4.078975800593137e-37)

Since the P-value is close to zero, we reject the null hypothesis. In other words, those 
observations do not follow a normal distribution. The third example verifies whether 
IBM's returns follow a normal distribution. The last five year's daily data from 
Yahoo! Finance is used for the test. The null hypothesis is that IBM's daily returns are 
drawn from a normal distribution:

from scipy import stats 
from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
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import numpy as np 

ticker='IBM' 
begdate=(2012,1,1) 
enddate=(2016,12,31) 

p =getData(ticker, begdate, enddate,asobject=True, adjusted=True) 
ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:] 
print 'ticker=',ticker,'W-test, and P-value' 
print(stats.shapiro(ret))
ticker= IBM W-test, and P-value
(0.9213278889656067, 4.387053202198418e-25)

Since this P-value is so close to zero, we reject the null hypothesis. In other 
words, we conclude that IBM's daily returns do not follow a normal distribution. 
For a normality test, we could also apply the Anderson-Darling test, which is a 
modification of the Kolmogorov-Smirnov test, to verify whether the observations 
follow a particular distribution. See the following code:

print( stats.anderson(ret) )
AndersonResult(statistic=12.613658863646833, critical_values=array([ 
0.574,  0.654,  0.785,  0.915,  1.089]), significance_level=array([ 
15. ,  10. ,   5. ,   2.5,   1. ]))

Here, we have three sets of values: the Anderson-Darling test statistic, a set of critical 
values, and a set of corresponding confidence levels, such as 15 percent, 10 percent, 
5 percent, 2.5 percent, and 1 percent, as shown in the previous output. If we choose 
a 1 percent confidence level—the last value of the third set—the critical value is 
1.089, the last value of the second set. Since our testing statistic is 12.61, which is 
much higher than the critical value of 1.089, we reject the null hypothesis. Thus, our 
Anderson-Darling test leads to the same conclusion as our Shapiro-Wilk test. One 
of the beauties of the scipy.stats.anderson() test is that we can test for other 
distributions. After applying the help() function, we would get the following list. 
The default distribution is for the normality test:

>>>from scipy import stats 
>>>help(stats.anderson)
anderson(x, dist='norm')
Anderson-Darling test for data coming from a particular distribution
dist : {'norm','expon','logistic','gumbel','extreme1'}, optional the 
type of distribution to test against.  The default is 'norm'  and 
'extreme1' is a synonym for 'gumbel'
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Estimating fat tails
One of the important properties of a normal distribution is that we could use mean 
and standard deviation, the first two moments, to fully define the whole distribution. 
For n returns of a security, its first four moments are defined in equation (1). The 
mean or average is defined as follows:

Its (sample) variance is defined by the following equation. The standard deviation, 
that is, σ, is the square root of the variance:

The skewness defined by the following formula indicates whether the distribution is 
skewed to the left or to the right. For a symmetric distribution, its skewness is zero:

The kurtosis reflects the impact of extreme values because of its power of four. There 
are two types of definitions with and without minus three; refer to the following two 
equations. The reason behind the deduction of three in equation (10B), is that for a 
normal distribution, its kurtosis based on equation (10A) is three:
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Some books distinguish these two equations by calling equation (10B) excess 
kurtosis. However, many functions based on equation (10B) are still named kurtosis. 
We know that a standard normal distribution has a zero mean, unit standard 
deviation, zero skewness, and zero kurtosis (based on equation 10B). The following 
output confirms these facts:

from scipy import stats,random
import numpy as np
np.random.seed(12345)
ret = random.normal(0,1,500000)
print('mean    =', np.mean(ret))
print('std     =',np.std(ret))
print('skewness=',stats.skew(ret))
print('kurtosis=',stats.kurtosis(ret))

The related output is shown here. Note that since the scipy.random.seed() 
function is applied, readers should get the same results if the same seed of 12345  
is used:

The mean, skewness, and kurtosis are all close to zero, while the standard deviation 
is close to one. Next, we estimate the four moments for S&P500 based on its daily 
returns as follows:

from scipy import stats
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np
ticker='^GSPC'
begdate=(1926,1,1)
enddate=(2016,12,31)
p = getData(ticker, begdate, enddate,asobject=True, adjusted=True)
ret = p.aclose[1:]/p.aclose[:-1]-1
print( 'S&P500  n       =',len(ret))
print( 'S&P500  mean    =',round(np.mean(ret),8))
print('S&P500  std     =',round(np.std(ret),8))
print('S&P500  skewness=',round(stats.skew(ret),8))
print('S&P500  kurtosis=',round(stats.kurtosis(ret),8))
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The output for those five values, including the number of observations, is given here:

This result is very close to the result in the paper titled Study of Fat Tail Risk by 
Cook Pine Capital (2008). Using the same argument, we conclude that the SP500 
daily returns are skewed to the left, that is, a negative skewness, and have fat tails 
(kurtosis is 20.81 instead of zero).

T-test and F-test
In finance, a T-test could be viewed as one of the most widely used statistical 
hypothesis tests in which the test statistic follows a student's t distribution if the null 
hypothesis is supported. We know that the mean for a standard normal distribution 
is zero. In the following program, we generate 1,000 random numbers from a 
standard normal distribution. Then, we conduct two tests: test whether the mean is 
0.5, and test whether the mean is zero:

>>>from scipy import stats 
>>>import numpy as np
>>>np.random.seed(1235) 
>>>x = stats.norm.rvs(size=10000) 
>>>print("T-value P-value (two-tail)") 
>>>print(stats.ttest_1samp(x,0.5)) 
>>>print(stats.ttest_1samp(x,0)) 
T-value P-value (two-tail)
Ttest_1sampResult(statistic=-49.763471231428966, pvalue=0.0)
Ttest_1sampResult(statistic=-0.26310321925083019, 
pvalue=0.79247644375164861)

For the first test, in which we test whether the time-series has a mean of 0.5, we reject 
the null hypothesis since the T-value is 49.76 and the P-value is 0. For the second test, 
we accept the null hypothesis since the T-value is close to -0.26 and the P-value is 
0.79. In the following program, we test whether the mean of the daily returns from 
IBM in 2013 is zero:

from scipy import stats 
import scipy as sp
from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
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ticker='ibm' 
begdate=(2013,1,1) 
enddate=(2013,12,31) 
p=getData(ticker,begdate,enddate,asobject=True, adjusted=True) 
ret=p.aclose[1:]/p.aclose[:-1]-1
print(' Mean T-value P-value ' ) 
print(round(sp.mean(ret),5), stats.ttest_1samp(ret,0))
Mean T-value P-value 
(-4e-05, Ttest_1sampResult(statistic=-0.049698422671935881, 
pvalue=0.96040239593479948))

From the previous results, we know that the average daily returns for IBM is 0.00004 
percent. The T-value is -0.049 while the P-value is 0.96. Thus, we accept the null 
hypothesis, that is, the daily mean return is statistically the same as zero.

Tests of equal variances
Next, we test whether two variances for IBM and DELL are the same or not over a 
five-year period from 2012 to 2016. The function called sp.stats.bartlet() performs 
Bartlett's test for equal variances with a null hypothesis that all input samples are from 
populations with equal variances. The outputs are the T-value and P-value:

import scipy as sp 
from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
begdate=(2012,1,1) 
enddate=(2016,12,31) 
def ret_f(ticker,begdate,enddate): 
    p = getData(ticker,begdate, enddate,asobject=True,adjusted=True) 
    return p.aclose[1:]/p.aclose[:-1]-1
y=ret_f('IBM',begdate,enddate) 
x=ret_f('DELL',begdate,enddate) 
print(sp.stats.bartlett(x,y)) 
BartlettResult(statistic=108.07747537504794, 
pvalue=2.5847436899908763e-25)

With a T-value of 108 and a P-value of 0, we conclude that these two stocks will  
have different variances for their daily stock returns from 2012 to 2016 for any 
significance level.
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Testing the January effect
In this section, we use IBM's data to test the existence of the so-called January effect, 
which states that stock returns in January are statistically different from those in 
other months. First, we collect the daily price for IBM from Yahoo! Finance. Then, we 
convert daily returns to monthly ones. After that, we classify all monthly returns into 
two groups: returns in January versus returns in other months.

Finally, we test the equality of group means as shown in the following code:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
import numpy as np 
import scipy as sp 
import pandas as pd
from datetime import datetime 
ticker='IBM' 
begdate=(1962,1,1) 
enddate=(2016,12,31) 
x =getData(ticker, begdate, enddate,asobject=True, adjusted=True) 
logret = sp.log(x.aclose[1:]/x.aclose[:-1]) 
date=[] 
d0=x.date 
for i in range(0,sp.size(logret)): 
    t1=''.join([d0[i].strftime("%Y"),d0[i].strftime("%m"),"01"]) 
    date.append(datetime.strptime(t1,"%Y%m%d")) 
  
y=pd.DataFrame(logret,date,columns=['logret']) 
retM=y.groupby(y.index).sum() 
ret_Jan=retM[retM.index.month==1] 
ret_others=retM[retM.index.month!=1] 
print(sp.stats.ttest_ind(ret_Jan.values,ret_others.values)) 
Ttest_indResult(statistic=array([ 1.89876245]), pvalue=array([ 
0.05803291]))
>>>

Since the T-value is 1.89 and P-value is 0.058, we conclude that there is no January 
effect if we use IBM as an example and choose a 5 percent significance level. A word 
of caution: we should not generalize this result since it is based on just one stock. In 
terms of the weekday effect, we could apply the same procedure to test its existence. 
One end of chapter problems is designed to test the weekday effect based on the 
same logic.
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52-week high and low trading strategy
Some investors/researchers argue that we could adopt a 52-week high and low 
trading strategy by taking a long position if today's price is close to the maximum 
price achieved in the past 52 weeks and taking an opposite position if today's price is 
close to its 52-week low. Let's randomly choose a day of 12/31/2016. The following 
Python program presents this 52-week's range and today's position:

import numpy as np
from datetime import datetime 
from dateutil.relativedelta import relativedelta 
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
#
ticker='IBM' 
enddate=datetime(2016,12,31)
#
begdate=enddate-relativedelta(years=1) 
p =getData(ticker, begdate, enddate,asobject=True, adjusted=True) 
x=p[-1] 
y=np.array(p.tolist())[:,-1] 
high=max(y) 
low=min(y) 
print(" Today, Price High Low, % from low ") 
print(x[0], x[-1], high, low, round((x[-1]-low)/(high-low)*100,2))

The corresponding output is shown as follows:

According to the 52-week high and low trading strategy, we have more incentive 
to buy IBM's stock today. This example is just an illustration on how to make a 
decision. There is nothing done to test whether this is a profitable trading strategy. If 
a reader is interested in testing this 52-week high and low trading strategy, he/she 
should use all stocks to form two portfolios. For more details, see George and  
Huang (2004).
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Estimating Roll's spread
Liquidity is defined as how quickly we can dispose of our asset without losing its 
intrinsic value. Usually, we use spread to represent liquidity. However, we need 
high-frequency data to estimate spread. Later in the chapter, we show how to 
estimate spread directly by using high-frequency data. To measure spread indirectly 
based on daily observations, Roll (1984) shows that we can estimate it based on the 
serial covariance in price changes, as follows:

Here, S is the Roll spread, Pt is the closing price of a stock on day,  is Pt-Pt-1, and ,  
t is the average share price in the estimation period. The following Python code 
estimates Roll's spread for IBM, using one year's daily price data from Yahoo! Finance:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import scipy as sp 
ticker='IBM' 
begdate=(2013,9,1) 
enddate=(2013,11,11) 
data= getData(ticker, begdate, enddate,asobject=True, adjusted=True) 
p=data.aclose 
d=sp.diff(p)
cov_=sp.cov(d[:-1],d[1:]) 
if cov_[0,1]<0: 
    print("Roll spread for ", ticker, 'is', round(2*sp.sqrt(-cov_
[0,1]),3)) 
else: 
    print("Cov is positive for ",ticker, 'positive', round(cov_
[0,1],3))

The corresponding output is shown as follows:

Thus, during that period, Roll's spread for IBM is $1.136. See the following for the 
major assumption for Roll's model,  and .
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The covariance between them is negative. When its value is positive, Roll's model 
would fail. In a real world, it could occur for many cases. Usually, practitioners 
adopt two approaches: when the spread is negative, we just ignore those cases or use 
other methods to estimate spread. The second approach is to add a negative sign in 
front of a positive covariance.

Estimating Amihud's illiquidity
According to Amihud (2002), liquidity reflects the impact of order flow on price. His 
illiquidity measure is defined as follows:

Here, illiq(t) is the Amihud's illiquidity measure for month t, Ri is the daily return at 
day i, Pi is the closing price at i, and Vi is the daily dollar trading volume at i. Since 
the illiquidity is the reciprocal of liquidity, the lower the illiquidity value, the higher 
the liquidity of the underlying security. First, let's look at an item-by-item division:

>>>x=np.array([1,2,3],dtype='float') 
>>>y=np.array([2,2,4],dtype='float') 
>>>np.divide(x,y) 
array([ 0.5 , 1. , 0.75]) 
>>>

In the following code, we estimate Amihud's illiquidity for IBM based on trading 
data in October 2013. The value is 1.21*10-11. It seems that this value is quite small. 
Actually, the absolute value is not important; the relative value matters. If we 
estimate the illiquidity for WMT over the same period, we would find a value of 
1.52*10-11. Since 1.21 is less than 1.52, we conclude that IBM is more liquid than 
WMT. This correlation is represented in the following code:

import numpy as np 
import statsmodels.api as sm 
from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
begdate=(2013,10,1) 
enddate=(2013,10,30) 
ticker='IBM'                   # or WMT  
data= getData(ticker, begdate, enddate,asobject=True, adjusted=True) 
p=np.array(data.aclose) 
dollar_vol=np.array(data.volume*p) 
ret=np.array((p[1:] - p[:-1])/p[1:]) 
illiq=np.mean(np.divide(abs(ret),dollar_vol[1:])) 
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print("Aminud illiq for =",ticker,illiq) 
'Aminud illiq for =', 'IBM', 1.2117639237103875e-11)
 ('Aminud illiq for =', 'WMT', 1.5185471291382207e-11)

Estimating Pastor and Stambaugh (2003) 
liquidity measure
Based on the methodology and empirical evidence in Campbell, Grossman, and 
Wang (1993), Pastor and Stambaugh (2003) designed the following model to measure 
individual stock's liquidity and the market liquidity:

Here, yt is the excess stock return, Rt-Rf , t, on day t, Rt is the return for the stock, Rf,t is 
the risk-free rate, x1,t is the market return, and x2,t is the signed dollar trading volume:

pt is the stock price, and volume, t is the trading volume. The regression is run based 
on daily data for each month. In other words, for each month, we get one β2 that is 
defined as the liquidity measure for individual stock. The following code estimates 
the liquidity for IBM. First, we download the IBM and S&P500 daily price data, 
estimate their daily returns, and merge them as follows:

import numpy as np 
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np 
import pandas as pd 
import statsmodels.api as sm 
ticker='IBM' 
begdate=(2013,1,1) 
enddate=(2013,1,31) 

data =getData(ticker, begdate, enddate,asobject=True, adjusted=True) 
ret = data.aclose[1:]/data.aclose[:-1]-1 
dollar_vol=np.array(data.aclose[1:])*np.array(data.volume[1:]) 
d0=data.date 

tt=pd.DataFrame(ret,index=d0[1:],columns=['ret']) 
tt2=pd.DataFrame(dollar_vol,index=d0[1:],columns=['dollar_vol']) 
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ff=pd.read_pickle('c:/temp/ffDaily.pkl') 
tt3=pd.merge(tt,tt2,left_index=True,right_index=True) 
final=pd.merge(tt3,ff,left_index=True,right_index=True) 
y=final.ret[1:]-final.RF[1:] 
x1=final.MKT_RF[:-1] 
x2=np.sign(np.array(final.ret[:-1]-final.RF[:-1]))*np.array(final.
dollar_vol[:-1]) 
x3=[x1,x2] 
n=np.size(x3) 
x=np.reshape(x3,[n/2,2]) 
x=sm.add_constant(x) 
results=sm.OLS(y,x).fit() 
print(results.params)

In the previous program, y is IBM's excess return at time t+1, x1 is the market excess 
return at time t, and x2 is the signed dollar trading volume at time t. The coefficient 
before x2 is Pastor and Stambaugh's liquidity measure. The corresponding output is 
given as follows:

const    2.702020e-03
x1      -1.484492e-13
x2       6.390822e-12
dtype: float64

Fama-MacBeth regression
First, let's look at the OLS regression by using the pandas.ols function as follows:

from datetime import datetime 
import numpy as np 
import pandas as pd 
n = 252 
np.random.seed(12345) 
begdate=datetime(2013, 1, 2) 
dateRange = pd.date_range(begdate, periods=n) 
x0= pd.DataFrame(np.random.randn(n, 1),columns=['ret'],index=dateRan
ge) 
y0=pd.Series(np.random.randn(n), index=dateRange) 
print pd.ols(y=y0, x=x0)

For the Fama-MacBeth regression, we have the following code:

import numpy as np 
import pandas as pd 
import statsmodels.api as sm
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from datetime import datetime 
#
n = 252 
np.random.seed(12345) 
begdate=datetime(2013, 1, 2) 
dateRange = pd.date_range(begdate, periods=n) 
def makeDataFrame(): 
    data=pd.DataFrame(np.random.randn(n,7),columns=['A','B','C','D',
'E',' F','G'],
    index=dateRange) 
    return data 
#
data = { 'A': makeDataFrame(), 'B': makeDataFrame(), 'C': 
makeDataFrame() }
Y = makeDataFrame() 
print(pd.fama_macbeth(y=Y,x=data))

Durbin-Watson
Durbin-Watson statistic is related auto-correlation. After we run a regression, the 
error term should have no correlation, with a mean zero. Durbin-Watson statistic is 
defined as:

Here, et is the error term at time t, T is the total number of error term. The  
Durbin-Watson statistic tests the null hypothesis that the residuals from an ordinary 
least-squares regression are not auto-correlated against the alternative that the 
residuals follow an AR1 process. The Durbin-Watson statistic ranges in value from 
0 to 4. A value near 2 indicates non-autocorrelation; a value toward 0 indicates 
positive autocorrelation; a value toward 4 indicates negative autocorrelation, see the 
following table:

Durbin-Watson Test Description
No autocorrelation 

Towards 0 Positive auto-correlation 
Towards 4 Negative auto-correlation 

Table 8.3 Durbin-Watson Test
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The following Python program runs a CAPM first by using daily data for IBM. The 
S&P500 is used as the index. The time period is from 1/1/2012 to 12/31/2016, a 
5-year window. The risk-free rate is ignored in this case. For the residual from the 
regression, a Durbin-Watson test is run to test its autocorrelation:

import pandas as pd
from scipy import stats 
import statsmodels.formula.api as sm
import statsmodels.stats.stattools as tools 
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
#
begdate=(2012,1,1)
enddate=(2016,12,31)
#
def dailyRet(ticker,begdate,enddate):
    p =getData(ticker, begdate, enddate,asobject=True,adjusted=True)
    return p.aclose[1:]/p.aclose[:-1]-1

retIBM=dailyRet('IBM',begdate,enddate)
retMkt=dailyRet('^GSPC',begdate,enddate)

df = pd.DataFrame({"Y":retIBM, "X": retMkt})
result = sm.ols(formula="Y ~X", data=df).fit()
print(result.params)
residuals=result.resid
print("Durbin Watson")
print(tools.durbin_watson(residuals))

The output is shown here:



Time-Series Analysis

[ 272 ]

A positive of 1.82 close to 2 indicates the autocorrelation might be zero for the 
residuals from the CAPM for IBM. We would have a more definitive answer. 
Alternatively, we simply type the command of print(result.summary()), see the 
following screenshot:

The preceding result shows the number of observations is 1,257 and Durbin-Watson 
test is 1.82. Based on lower (upper) bounds (dL and dU) at: https://web.stanford.
edu/~clint/bench/dwcrit.htm, we conclude that 1.82 is not close enough to 2. 
Thus, the residuals are still positively correlated. The Akaike Information Criterion 
(AIC) is a measure of the relative quality of statistical models for a given set of data. 
It has the following formula:

Here, k is the number of coefficients to be estimated in the model and L is the value 
of the log-likelihood. In the preceding example, k=1 and L=4089.0. Thus, AIC will 
be 2*1-2*4089.9=8177.8. AIC would test whether this is a good model in an absolute 
term. However, given several candidate models, the preferred model is the one with 
the minimum AIC value. AIC rewards goodness of fit (as assessed by the likelihood 
function), but it also includes a penalty that is an increasing function of the number 
of estimated parameters (k). BIC stands for Bayesian Information Criterion and it is 
defined here:

https://web.stanford.edu/~clint/bench/dwcrit.htm
https://web.stanford.edu/~clint/bench/dwcrit.htm
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Here, n is the number of observations and k is the number of parameters to be 
estimated including the intercept. The Jarque–Bera test is a goodness-of-fit test of 
whether our data has the skewness and kurtosis matching a normal distribution:

Here, S is the skewness and C is the kurtosis. The null hypothesis is a joint 
hypothesis of the skewness being zero and the excess kurtosis being zero. From the 
preceding result, since Prob. (JB) is zero, we reject the null hypothesis.

Python for high-frequency data
High-frequency data is referred to as second-by-second or millisecond-by-millisecond 
transaction and quotation data. The New York Stock Exchange's Trade and Quotation 
(TAQ) database is a typical example (http://www.nyxdata.com/data-products/
daily-taq). The following program can be used to retrieve high-frequency data from 
Google Finance:

import tempfile
import re, string 
import pandas as pd 
ticker='AAPL'                    # input a ticker 
f1="c:/temp/ttt.txt"             # ttt will be replace with above 
sticker
f2=f1.replace("ttt",ticker) 
outfile=open(f2,"w") 
#path="http://www.google.com/finance/getprices?q=ttt&i=300&p=10d&f=d
,o, h,l,c,v" 
path="https://www.google.com/finance/getprices?q=ttt&i=300&p=10d&f=d
,o,%20h,l,c,v"
path2=path.replace("ttt",ticker) 
df=pd.read_csv(path2,skiprows=8,header=None) 
fp = tempfile.TemporaryFile()
df.to_csv(fp) 
print(df.head())
fp.close()

http://www.nyxdata.com/data-products/daily-taq
http://www.nyxdata.com/data-products/daily-taq
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In the preceding program, we have two input variables: ticker and path. After we 
choose path with an embedded variable called ttt, we replace it with our ticker 
using the string.replace() function. The first and last five lines are shown as 
follows using the .head() and .tail() functions:

The related web page for the intra-day high-frequency data from Google is located at 
https://www.google.com/finance/getprices?q=AAPL&i=300&p=10d&f=d,o,%20
h,l,c,v and its header (first 10) lines are given as follows:

EXCHANGE%3DNASDAQ
MARKET_OPEN_MINUTE=570
MARKET_CLOSE_MINUTE=960
INTERVAL=300
COLUMNS=DATE,CLOSE,LOW,OPEN,VOLUME
DATA=
TIMEZONE_OFFSET=-300
a1484145000,118.75,118.7,118.74,415095
1,119.1975,118.63,118.73,1000362
2,119.22,119.05,119.2,661651
3,118.96,118.91,119.225,487105
4,118.91,118.84,118.97,399730
5,118.985,118.82,118.91,334648

The objective of the following program is to add a timestamp:

import tempfile
import pandas as pd, numpy as np, datetime 
ticker='AAPL' 
path="https://www.google.com/finance/getprices?q=ttt&i=300&p=10d&f=d
,o,%20h,l,c,v"

https://www.google.com/finance/getprices?q=AAPL&i=300&p=10d&f=d,o,%20h,l,c,v
https://www.google.com/finance/getprices?q=AAPL&i=300&p=10d&f=d,o,%20h,l,c,v
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x=np.array(pd.read_csv(path.replace('ttt',ticker),skiprows=7,header=N
one)) 
#
date=[] 
for i in np.arange(0,len(x)): 
    if x[i][0][0]=='a': 
        t= datetime.datetime.fromtimestamp(int(x[i][0].
replace('a',''))) 
        print ticker, t, x[i][1:] 
        date.append(t) 
    else: 
        date.append(t+datetime.timedelta(minutes =int(x[i][0]))) 

final=pd.DataFrame(x,index=date) 
final.columns=['a','CLOSE','LOW','OPEN','VOL'] 
del final['a'] 
fp = tempfile.TemporaryFile()
#final.to_csv('c:/temp/abc.csv'.replace('abc',ticker)) 
final.to_csv(fp) 
print(final.head())

After running the program, we can observe the following output:

%run "c:\users\yany\appdata\local\temp\tmppuuqpb.py"
AAPL 2017-01-11 09:30:00 [118.75 118.7 118.74 415095L]
AAPL 2017-01-17 09:30:00 [118.27 118.22 118.34 665157L]
AAPL 2017-01-23 09:30:00 [119.96 119.95 120.0 506837L]

To view the first and last several lines, we could use the .head() and .tail() 
functions as follows:

>>>final.head() 
                       CLOSE     LOW     OPEN      VOL
2017-01-11 09:30:00   118.75   118.7   118.74   415095
2017-01-11 09:31:00  119.198  118.63   118.73  1000362
2017-01-11 09:32:00   119.22  119.05    119.2   661651
2017-01-11 09:33:00   118.96  118.91  119.225   487105
2017-01-11 09:34:00   118.91  118.84   118.97   399730
>>>final.tail() 
                      CLOSE      LOW     OPEN     VOL
2017-01-23 20:05:00  121.86   121.78   121.79  343711
2017-01-  23 20:06:00  121.84  121.815   121.86  162673
2017-01-23 20:07:00  121.77   121.75   121.84  166523
2017-01-23 20:08:00   121.7   121.69   121.78   68754
2017-01-23 20:09:00  121.82  121.704  121.707  103578
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Since the TAQ database is quite expensive, potentially, most readers might not 
be able to access the data. Fortunately, we have a database called Trade, Order, 
Report, and Quotation (TORQ). Thanks to Prof. Hasbrouck, the database can be 
downloaded from http://people.stern.nyu.edu/jhasbrou/Research/.

From the same web page, we could download the TORQ manual as well. Based on 
Prof. Hasbrouck's binary datasets, we generate a few corresponding datasets in the 
pickle format of pandas. The Consolidated Trade (CT) dataset can be downloaded 
from http://canisius.edu/~yany/python/TORQct.pkl. After saving this dataset 
in C:\temp, we can issue the following two lines of Python code to retrieve it:

import pandas as pd
import pandas as pd
import scipy as sp
x=pd.read_pickle("c:/temp/TORQct.pkl")
print(x.head())
print(x.tail())
print(sp.shape(x))

To view the first and last couple of lines, we use the .head() and .tail() functions 
as follows:

date      time  price  siz  g127  tseq cond ex
symbol                                                    
AC      19901101  10:39:06   13.0  100     0  1587       N
AC      19901101  10:39:36   13.0  100     0     0       M
AC      19901101  10:39:38   13.0  100     0     0       M
AC      19901101  10:39:41   13.0  100     0     0       M
AC      19901101  10:41:38   13.0  300     0  1591       N
            date      time   price    siz  g127    tseq cond ex
symbol                                                         
ZNT     19910131  11:03:31  12.375   1000     0  237884       N
ZNT     19910131  12:47:21  12.500   6800     0  237887       N
ZNT     19910131  13:16:59  12.500  10000     0  237889       N
ZNT     19910131  14:51:52  12.500    100     0  237891       N
ZNT     19910131  14:52:27  12.500   3600     0       0    Z  T
(728849, 8)

Since the ticker is used as an index, we could list all unique index values to find out 
the names of stocks contained in the dataset as follows:

import numpy as np
import pandas as pd
ct=pd.read_pickle("c:/temp/TORQct.pkl")
print(np.unique(np.array(ct.index)))

http://people.stern.nyu.edu/jhasbrou/Research/
http://canisius.edu/~yany/python/TORQct.pkl
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The output is shown here:

['AC' 'ACN' 'ACS' 'ADU' 'AL' 'ALL' 'ALX' 'AMD' 'AMN' 'AMO' 'AR' 'ARX' 
'ATE'
 'AYD' 'BA' 'BG' 'BMC' 'BRT' 'BZF' 'CAL' 'CL' 'CLE' 'CLF' 'CMH' 'CMI' 
'CMY'
 'COA' 'CP' 'CPC' 'CPY' 'CU' 'CUC' 'CUE' 'CYM' 'CYR' 'DBD' 'DCN' 'DI' 
'DLT'
 'DP' 'DSI' 'EFG' 'EHP' 'EKO' 'EMC' 'FBO' 'FDX' 'FFB' 'FLP' 'FMI' 
'FNM'
 'FOE' 'FPC' 'FPL' 'GBE' 'GE' 'GFB' 'GLX' 'GMH' 'GPI' 'GRH' 'HAN' 
'HAT'
 'HE' 'HF' 'HFI' 'HTR' 'IBM' 'ICM' 'IEI' 'IPT' 'IS' 'ITG' 'KFV' 'KR' 
'KWD'
 'LOG' 'LPX' 'LUK' 'MBK' 'MC' 'MCC' 'MCN' 'MDP' 'MNY' 'MO' 'MON' 'MRT'
 'MTR' 'MX' 'NI' 'NIC' 'NNP' 'NSI' 'NSO' 'NSP' 'NT' 'OCQ' 'OEH' 'PCO' 
'PEO'
 'PH' 'PIM' 'PIR' 'PLP' 'PMI' 'POM' 'PPL' 'PRI' 'RDA' 'REC' 'RPS' 
'SAH'
 'SJI' 'SLB' 'SLT' 'SNT' 'SPF' 'SWY' 'T' 'TCI' 'TEK' 'TUG' 'TXI' 'UAM'
 'UEP' 'UMG' 'URS' 'USH' 'UTD' 'UWR' 'VCC' 'VRC' 'W' 'WAE' 'WBN' 'WCS'
 'WDG' 'WHX' 'WIN' 'XON' 'Y' 'ZIF' 'ZNT']

Spread estimated based on  
high-frequency data
Based on the Consolidated Quote (CQ) dataset supplied by Prof. Hasbrouck, we 
generate a dataset with the pickle format of pandas, that can be downloaded from 
http://canisius.edu/~yany/python/TORQcq.pkl. Assume that the following 
data is located under C:\temp:

import pandas as pd 
cq=pd.read_pickle("c:/temp/TORQcq.pkl") 
print(cq.head() )

The output is shown here:

           date      time     bid     ofr  bidsiz  ofrsiz  mode  qseq
symbol                                                                
AC      19901101   9:30:44  12.875  13.125      32       5    10    50
AC      19901101   9:30:47  12.750  13.250       1       1    12     0
AC      19901101   9:30:51  12.750  13.250       1       1    12     0
AC      19901101   9:30:52  12.750  13.250       1       1    12     0
AC      19901101  10:40:13  12.750  13.125       2       2    12     0
>>>cq.tail() 
            date      time     bid     ofr  bidsiz  ofrsiz  mode  qseq

http://canisius.edu/~yany/python/TORQcq.pkl
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symbol                                                                
ZNT     19910131  13:31:06  12.375  12.875       1       1    12     0
ZNT     1  9910131  13:31:06  12.375  12.875       1       1    12     
0
ZNT     19910131  16:08:44  12.500  12.750       1       1     3    69
ZNT     19910131  16:08:49  12.375  12.875       1       1    12     0
ZNT     19910131  16:16:54  12.375  12.875       1       1     3     0

Again, we could use the unique() function to find out all tickers. Assume that we 
are interested in a stock with an MO ticker as shown in the following code:

>>>x=cq[cq.index=='MO'] 
>>>x.head() 
            date     time     bid     ofr  bidsiz  ofrsiz  mode  qseq
symbol                                                               
MO      19901101  9:30:33  47.000  47.125     100       4    10    50
MO      19901101  9:30:35  46.750  47.375       1       1    12     0
MO      19901101  9:30:38  46.875  47.750       1       1    12     0
MO      19901101  9:30:40  46.875  47.250       1       1    12     0
MO      19901101  9:30:47  47.000  47.125     100       3    12    51

It is a good idea to check a few observations. From the first line of the following 
output, we know that spread should be 0.125 (47.125-47.000):

>>>x.head().ofr-x.head().bid 
symbol 
MO 0.125 
MO 0.625 
MO 0.875 
MO 0.375 
MO 0.125 
dtype: float64 
>>>

To find the mean spread and the mean relative spread, we have the following code. 
The complete program is given as follows:

import pandas as pd 
import scipy as sp
cq=pd.read_pickle('c:/temp/TORQcq.pkl') 
x=cq[cq.index=='MO'] 
spread=sp.mean(x.ofr-x.bid) 
rel_spread=sp.mean(2*(x.ofr-x.bid)/(x.ofr+x.bid)) 
print(round(spread,5) )
print(round(rel_spread,5) )
0.39671 
0.00788
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In the preceding example, we didn't process or clean the data. Usually, we have to 
process data by adding various filters, such as delete quotes with negative spread, 
bidsiz is zero, or ofrsiz is zero, before we estimate spread and do other estimates.

Introduction to CRSP
For this book, our focus is free public data. Thus, we only discuss a few financial 
databases since some readers might from schools with valid subscription. CRSP is 
the one. In this chapter, we mention just three Python datasets.

Center for Research in Security Prices (CRSP). It contains all trading data, such 
as closing price, trading volume, and shares outstanding for all listed stocks in the 
US from 1926 onward. Because of its quality and long history, it has been used 
intensively by academic researchers and practitioners. The first dataset is called 
crspInfo.pkl, see the following code:

import pandas as pd
x=pd.read_pickle("c:/temp/crspInfo.pkl")
print(x.head(3))
print(x.tail(2))

The related output is shown here:

   PERMNO  PERMCO     CUSIP                       FIRMNAME TICKER  
EXCHANGE  \
0   10001    7953  36720410                GAS NATURAL INC   EGAS         
2   
1   10002    7954  05978R10  BANCTRUST FINANCIAL GROUP INC   BTFG         
3   
2   10003    7957  39031810     GREAT COUNTRY BK ASONIA CT   GCBK         
3   
    BEGDATE   ENDDATE  
0  19860131  20151231  
1  19860131  20130228  
2  19860131  19951229  

       PERMNO  PERMCO     CUSIP               FIRMNAME TICKER  
EXCHANGE  \
31216   93435   53452  82936G20  SINO CLEAN ENERGY INC   SCEI         
3   
31217   93436   53453  88160R10       TESLA MOTORS INC   TSLA         
3   
        BEGDATE   ENDDATE  
31216  20100630  20120531  
31217  20100630  20151231  
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The PERMNO is the stock ID, PERMCO is the company ID, CUSIP is security ID, 
FIRMNAME is the company header name, that is, today's name, EXCHANGE is the 
exchange code, BEGDATE (ENDDATE) is when the data is available. The second 
dataset is for market indices, see the following code:

import pandas as pd
x=pd.read_pickle("c:/temp/indexMonthly.pkl")
print(x.head())
    DATE    VWRETD    VWRETX    EWRETD    EWRETX  SP500RET  SP500INDEX  
\
0  19251231       NaN       NaN       NaN       NaN       NaN       
12.46   
1  19260130  0.000561 -0.001390  0.023174  0.021395  0.022472       
12.74   
2  19260227 -0.033040 -0.036580 -0.053510 -0.055540 -0.043950       
12.18   
3  19260331 -0.064000 -0.070020 -0.096820 -0.101400 -0.059110       
11.46   
4  19260430  0.037019  0.034031  0.032946  0.030121  0.022688       
11.72   
   TOTALVAL  TOTALN     USEDVAL  USEDN  
0  27487487     503         NaN    NaN  
1  27624240     506  27412916.0  496.0  
2  26752064     514  27600952.0  500.0  
3  25083173     519  26683758.0  507.0  
4  25886743     521  24899755.0  512.0  

The last dataset is for monthly stocks.
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1947-04-01  246.3
1947-07-01  250.1
1947-10-01  260.3
1948-01-01  266.2
                GDP
DATE               
2015-07-01  18141.9
2015-10-01  18222.8
2016-01-01  18281.6
2016-04-01  18450.1
2016-07-01  18675.3

Appendix B – critical values of F for the 0.05 
significance level
The first row is for the degree of freedom for the denominator while the first column 
is for the degree of freedom for the numerator:
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The key part of the program used to generate the preceding table is given here:

import scipy.stats as stats
alpha=0.05
dfNumerator=5
dfDenominator=10
f=stats.f.ppf(q=1-alpha, dfn=dfNumerator, dfd=dfDenominator)
print(f)
3.32583453041

Appendix C – data case #4 - which political 
party manages the economy better?
In the US, people have been seeing many presidential debates among potential 
presidential nominees for the Republican and Democratic parties. One question a 
potential voter likes to ask is, which party could manage the economy better? With 
this term project, we try to ask this question: which party could manage the economy 
better in terms of the performance of the stock market? According to the web page of 
http://www.enchantedlearning.com/history/us/pres/list.shtml, we could 
find which party a US president belongs to:

President                                               which party                time period

http://www.enchantedlearning.com/history/us/pres/list.shtml
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Thus, we could generate the following table. The PARTY and RANGE variables  
are from the web page. YEAR2 is the second number of RANGE minus 1, except  
for the last row:

PARTY RANGE YEAR1 YEAR2
Republican 1923-1929 1923 1928
Republican 1929-1933 1929 1932
Democrat 1933-1945 1933 1944
Democrat 1945-1953 1945 1952
Republican 1953-1961 1953 1960
Democrat 1961-1963 1961 1962
Democrat 1963-1969 1963 1968
Republican 1969-1974 1969 1973
Republican 1974-1977 1974 1976
Democrat 1977-1981 1977 1980
Republican 1981-1989 1981 1988
Republican 1989-1993 1989 1992
Democrat 1993-2001 1993 2000
Republican 2001-2009 2001 2008
Democrat 2009-2017 2009 2016

Table 1: Parties and Presidents since 1923

1. Retrieve monthly stock data.
2. Classify returns into two groups according to YEAR1 and YEAR2: under 

Republican and under Democratic.
3. Test the null hypothesis: two group means are equal:

4. Discuss your results and answer the following question: are the monthly 
mean returns under both parties equal? Based on the preceding table, readers 
could sort all monthly mean returns into two categories: under Democratic 
Party and under the Republican Party.
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For readers from schools without CRSP subscription, they could 
download the S&P500 market index from Yahoo! Finance. On the 
other hand, for readers from schools with CRSP subscriptions, 
they could use both value-weighted market returns (VWRETD) 
and equal-weighted market index (EWRETD).

Exercises
1. Which module contains the function called rolling_kurt? How can you use 

the function?
2. Based on daily data downloaded from Yahoo! Finance, find whether  

Wal-Mart's daily returns follow a normal distribution.
3. Based on daily returns in 2016, are the mean returns for IBM and DELL  

the same?

You can use Yahoo! Finance as your source of data

4. How many dividends distributed or stock splits happened over the past 10 
years for IBM and DELL based on the historical data?

5. Write a Python program to estimate rolling beta on a 3-year window for a 
few stocks such as IBM, WMT, C and MSFT.

6. Assume that we just downloaded the prime rate from the Federal Banks' data 
library from: http://www.federalreserve.gov/releases/h15/data.htm. 
We downloaded the time-series for Financial 1-month business day. Write a 
Python program to merge them using:

 ° Go to the web page: http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html.

 ° Click on Fama-French Factor, and download their monthly factors 
named F-F_Research_Data_Factors.zip. Unzip the .zip file and 
estimate market monthly returns.

 ° For example, for July 1926, market return = 2.65/100+0.22/100. This file 
was created by CMPT_ME_BEME_RETS using the 201212 CRSP database.

http://www.federalreserve.gov/releases/h15/data.htm
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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7. Download the monthly and daily Fama-French factors from Prof. French's 
data library at: http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html. Assume that you are holding an SMB 
portfolio. Answer the following three questions:

 ° What is the total return from January 1, 1989 to December 31, 2016 
using daily data?

 ° What is the total return from January 1, 1989, to December 31, 2016, 
using monthly data?

 ° Are they the same? If they are different, explain some reasons that 
lead to their differences.

8. How to replicate Jagadeech and Tidman (1993) momentum strategy by using 
Python and CRSP data? [Assume that your school has CRSP subscription].

9. Write a Python program to estimate returns. The format of your function 
could be dailyRet(data,sorted=0). Then sorted is for how the price is 
sorted. For example, the default value could be from the oldest to the newest, 
while sorted=1 for the opposite. One related Python program is given here:
import pandas as pd
import scipy as sp
p=[1,1.1,0.9,1.05] 
a=pd.DataFrame({'Price':p})
a['Ret']=a['Price'].diff()/a['Price'].shift(1)
print(a)
   Price       Ret
0   1.00       NaN
1   1.10  0.100000
2   0.90 -0.181818
3   1.05  0.166667

Note that there are two sorting: p1 is before p2 or p1 is after p2.

10. Replicate the table for the critical values of F for the 0.05 significant level in 
Appendix B. The following Python program is offered:
import scipy.stats as stats
alpha=0.05
dfNumerator=5
dfDenominator=10
stats.f.ppf(q=1-alpha, dfn=dfNumerator, dfd=dfDenominator)

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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11. In addition, generate the similar tables for 0.01 and 0.10 significant levels.
12. Based on the program to test the January effect, write a Python program to 

test week-day effect.
13. Generate a business cycle indicator. The business cycle data is from the 

National Bureau of Economic Research center. The original starting date is 
June 1854, http://www.nber.org/cycles/cyclesmain.html. Since stock 
data starts from 1926, we could remove data before 1923. For a peak, we 
assign a positive 1, while for a trough, we assign a negative 1. Any months 
between those peaks and troughs, we linearly interpolate, see the following 
Panel B. P for peak and T for trough. T(t-1) is for the previous trough and  
P(t-1) is for the previous peak:

Contraction Expansion Cycle

Peak (P) Trough (T) P to T T(t-1) to P T(-1) 
to T

P(t-1) 
to P

May 1923(II) July 1924 (III) 14 22 36 40
October 1926(III) November 1927 (IV) 13 27 40 41
August 1929(III) March 1933 (I) 43 21 64 34
May 1937(II) June 1938 (II) 13 50 63 93
February 1945(I) October 1945 (IV) 8 80 88 93
November 1948(IV) October 1949 (IV) 11 37 48 45
July 1953(II) May 1954 (II) 10 45 55 56
August 1957(III) April 1958 (II) 8 39 47 49
April 1960(II) February 1961 (I) 10 24 34 32
December 1969(IV) November 1970 (IV) 11 106 117 116
November 1973(IV) March 1975 (I) 16 36 52 47
January 1980(I) July 1980 (III) 6 58 64 74
July 1981(III) November 1982 (IV) 16 12 28 18
July 1990(III) March 1991(I) 8 92 100 108
March 2001(I) November 2001 (IV) 8 120 128 128
December 2007 (IV) June 2009 (II) 18 73 91 81

14. Write a Python program to download daily price and estimate daily returns. 
Then convert daily returns into monthly ones. The date variable for the 
monthly returns should be the last trading days of the month. A Python 
dataset at: http://canisius.edu/~yany/python/tradingDaysMonthly.
pkl, could be used, see the following code:
>>>import pandas as pd
>>>x=pd.read_pickle("c:/temp/tradingDaysMonthly.pk")

http://www.nber.org/cycles/cyclesmain.html
http://canisius.edu/~yany/python/tradingDaysMonthly.pkl
http://canisius.edu/~yany/python/tradingDaysMonthly.pkl
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>>>print(x.head())
  tradingDays
0  1925-12-31
1  1926-01-30
2  1926-02-27
3  1926-03-31
4  1926-04-30

15. Write a Python program to generate quarterly returns from historical daily 
price or historical monthly price data.

Summary
In this chapter, many concepts and issues associated with time-series are discussed 
in detail. Topics include how to design a true date variable, how to merge datasets 
with different frequencies, how to download historical prices from Yahoo! Finance; 
also, different ways to estimate returns, estimate the Roll (1984) spread, Amihud's 
(2002) illiquidity, Pastor and Stambaugh's (2003) liquidity, and how to retrieve 
high-frequency data from Prof. Hasbrouck's TORQ database (Trade, Oder, Report 
and Quotation). In addition, two datasets from CRSP are shown. Since this book is 
focusing on open and publicly available finance, economics, and accounting data, we 
could mention a few financial databases superficially.

In the next chapter, we discuss many concepts and theories related to portfolio 
theory such as how to measure portfolio risk, how to estimate the risk of 2-stock and 
n-stock portfolio, the trade-off between risk and return by using various measures of 
Sharpe ratio, Treynor ratio, and Sortino ratio, how to minimize portfolio risk based 
on those measures (ratios), how to set up an objective function, how to choose an 
efficient portfolio for a given set of stocks, and how to construct an efficient frontier.
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Portfolio Theory
Understanding portfolio theory is very important in learning finance. It is well 
known that don't put all your eggs in one basket, that is, it is a great idea to diversify 
away your risk. However, very few know the implied assumption behind such a 
famous idiom. In this chapter, we will discuss various risk measures for individual 
stocks or portfolios, such as Sharpe ratio, Treynor ratio, Sortino ratio, how to 
minimize portfolio risk based on those measures (ratios), how to set up an objective 
function, how to choose an efficient portfolio for a given set of stocks, and how to 
construct an efficient frontier. Our focus is on how to apply portfolio theory by using 
real-world data. For instance, today we have $2 million cash and plan to purchase 
IBM and Walmart stocks. If we have 30% invested in the first one and the rest in the 
second, what is our portfolio risk? What is the least risky portfolio that we could 
form based on those two stocks? How about 10 or 500 stocks? In this chapter, the 
following topics will be covered:

• Introduction to portfolio theory
• A 2-stock portfolio 
• N-stock portfolio 
• Correlation versus diversification effect
• Producing a return matrix
• Generating an optimal portfolio based on Sharpe ratio, Treynor ratio, and 

Sortinor ratio
• Constructing an efficient frontier
• Modigliani and Modigliani performance measure (M2 measure)
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Introduction to portfolio theory
The keyword for the portfolio theory is diversification, while the keyword for 
diversification is correlation. In other words, correlation is used to measure how 
closely two stocks or portfolios are moving together. The objective of portfolio 
theory is to allocate our assets optimally with respect to risk and return. Markowitz 
(1952) argues that we should consider only the first two moments of a security's 
return distribution: mean and variance. For financial markets, several important 
assumptions are made, such as stock markets are inefficient, a typical investor is 
rational, and an arbitrage opportunity would not last long. For the preferences 
between two stocks, for a given risk, a rational investor would prefer stock with 
a higher expected return; for a given return, a rational investor prefers stock with 
a lower risk level. Sometimes, a single period portfolio optimization is called 
Markowitz Portfolio Optimization. The input includes a return matrix, and a variance 
and covariance matrix, while the output is an efficient portfolio. By connecting 
numerous efficient portfolios, an efficient frontier is formed. Here, we start with the 
simplest scenario: a two-stock portfolio.

A 2-stock portfolio
Clearly, a 2-stock portfolio is the simplest one. Let's assume that the weights of those 
two stocks are w1 and w2. The portfolio returns are given here:

Here, Rp,t, is the portfolio return at time t, w1 (w2) is the weight for stock 1 (2), and 
R1,t (R2,t) is return at time t for stock 1 (2). When talking about expected return or 
mean, we have a quite similar formula:

Here,  is the mean or expected portfolio returns and   is the mean or 
expected returns for stock 1 (2). The variance of such a 2-stock portfolio is given here:
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Here,  is the portfolio variance and  is the standard deviation for stock 1 
(2). The definitions of variance and standard for stock 1 are shown here:

 is the covariance (correlation) between stocks 1 and 2. They are defined here:

For covariance, if it is positive, then those two stocks usually would move together. 
On the other hand, if it is negative, they would move in the opposite way most of 
times. If the covariance is zero, then they are not related. However, if we know that 

 we could not claim whether A is strongly correlated with B than C, or the 
other way around. On the other hand, if  we would claim that A is strongly 
correlated with B than A. This suggests that correlation is more useful than covariance. 
The range of a correlation is from -1 to 1. The lower the value of correlation, the higher 
is the effectiveness of the diversification effect. When the correlation is -1 (1), it is called 
perfectively negatively (positively) correlated. When two stocks (or portfolios) are 
perfectively positively correlated there is no diversification.

Assume that the volatilities (standard deviations) of two stocks are 0.06 and 0.24 and 
they are perfectively negatively correlated. What are two weights in order to form a 
zero-risk portfolio? There exist several methods to find a solution.

Method 1: we could manually find a solution: plug in given values into Equation (3) 
and set it equal to zero where x=x1 and x2=1-x:

After expanding and collecting terms, we would end up with the following  
general equation:
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For such a general form, we have the following two solutions if the term inside the 
square root is positive, that is, :

Based on a set of a, b, and c, we have a solution of x=80%, that is, when w1=0.80 and 
w2=0.2, the preceding 2-stock portfolio will be risk-free. Assume that we have an 
equation of x2+6x+3=0, the following Python program offers two solutions:

import scipy as sp
a=1
b=6
c=3
inside=b**2-4*a*c
if inside>0:
    squared=sp.sqrt(inside)
print("x1=",(b+squared)/(2*a))
print("x2=",(b-squared)/(2*a)) 
('x1=', 5.4494897427831779)
('x2=', 0.55051025721682212)

Method 2: For a given pair of standard deviations (or a pair of variances) plus a 
correlation between those two stocks, we generate many weights for stock 1, such as 
0, 0.001, 0.002, 0.003, and the like. Remember that w2=1-w1. By applying Equation (3), 
we estimate the variances of this 2-stock portfolio. Our final solution will be the pair 
of w1 and w2 achieving the minimum portfolio variance, see the following code:

import scipy as sp
sigma1=0.06
sigma2=0.24
var1=sigma1**2
var2=sigma2**2
rho=-1
n=1000
portVar=10   # assign a big number
tiny=1.0/n

for i in sp.arange(n):
    w1=i*tiny
    w2=1-w1
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    var=w1**2*var1 +w2**2*var2+2*w1*w2*rho*sigma1*sigma2
    if(var<portVar):
        portVar=var
        finalW1=w1
    #print(vol)
print("min vol=",sp.sqrt(portVar), "w1=",finalW1) ('min vol=', 
('min vol=', ('min vol=', 9.3132257461547852e-10, 'w1=', 
0.80000000000000004)

First, the result confirms our previous result with w1=0.8 and w2=0.2. In the 
program, we have 1000 pairs of w1 and w2. A small value, called tiny, is 
1/1000=0.001. The first pair of two weights is 0.1% and 99.9%. A very big number 
is assigned to our solution variable, that is, as an initial value. In this program, 
portVar=10. Other big numbers would work perfectly, such as 100. Here is the logic: 
based on the first pair of w1 and w2, we estimate the portfolio variance. If this new 
portfolio variance is less than portVar, we replace portVar with this new value 
and record w1 as well. If the new portfolio variance is bigger than portVar, we do 
nothing. Repeat the same procedure until we finish the loop. Here is an analogy. 
Assume that we want to find the tallest person among 1,000 persons. Assume that 
we have a variable call tallestPerson and its initial vale is 0.1 inch. Since every 
person will be taller than this value, the first person's height will replace this value. If 
the next person's height is higher than this variable, we replace it. Otherwise, we go 
to the next one. The procedure is repeated until the last person. In terms of efficiency, 
one small trick is to estimate var1 and var2 just once.

In finance, it is a convention to use both variance and standard deviation to represent 
risk, since they describe uncertainty. Usually, we use standard deviation of returns 
to represent the volatility. It is a good idea to look at the impact of correlation on 
the efficient frontier. First, let's learn how to generate a set of correlated random 
numbers. There are two steps involved:

1. Generate two random time series, x1 and x2, with a zero-correlation.
2. Apply the following formula:
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Here ρ is the predetermined correlation between those two time series. Now, y1 and 
y2 are correlated with a predetermined correlation. The following Python program 
would implement the preceding approach:

import scipy as sp
sp.random.seed(123)
n=1000
rho=0.3
x1=sp.random.normal(size=n)
x2=sp.random.normal(size=n)
y1=x1
y2=rho*x1+sp.sqrt(1-rho**2)*x2
print(sp.corrcoef(y1,y2))
[[ 1.          0.28505213]
 [ 0.28505213  1.        ]]

Optimization – minimization
Before discussing how to generate an optimal portfolio, it is necessary to study a 
few optimization functions. In the following example, we minimize our objective 
function of y:

First, let's look at the graph of this objective function, see the following code:

import scipy as sp
import matplotlib.pyplot as plt
x=sp.arange(-5,5,0.01)
a=3.2
b=5.0
y=a+b*x**2
plt.plot(x,y)
plt.title("y= "+str(a)+"+"+str(b)+"x^2")
plt.ylabel("y")
plt.xlabel("x")
plt.show()
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The graph is shown here:

To make the program more general, two coefficients of a and b are generated. 
Apparently, since the power of x is 2, y is minimized only when x is 0. The Python 
code for minimization is as follows:

from scipy.optimize import minimize
def myFunction(x):
    return (3.2+5*x**2)
x0=100
res = minimize(myFunction,x0,method='nelder-mead',options={'xtol':1e-
8,'disp': True})
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In the preceding program, the major function used is called the scipy.optimize.
minimize() function. The first input is our objective function. In this case, it is our y 
function. The second value is our input value, that is, initial value. Since there is only 
one independent variable of x for the y function, x0 is a scalar. For the third input 
value, method, we have several choices: NelderMead. The following table lists 11 
choices for the variable:

Method Description
NelderMead Uses the Simplex algorithm. This algorithm is robust in many applications. 

However, if numerical computation of derivative can be trusted, other 
algorithms using the first and/or second derivatives information might be 
preferred for their better performance in general.

Powell It is a modification of Powell's method, which is a conjugate direction 
method. It performs sequential one-dimensional minimizations along 
each vector of the directions set, which is updated at each iteration of the 
main minimization loop. The function need not be differentiable, and no 
derivatives are taken.

CG Uses a nonlinear conjugate gradient algorithm by Polak and Ribiere, a 
variant of the Fletcher-Reeves method. Only the first derivatives are used.

BFGS Uses the quasi-Newton method of Broyden, Fletcher, Goldfarb, and 
Shanno (BFGS). It uses the first derivatives only. BFGS has proven good 
performance even for non-smooth optimizations. This method also 
returns an approximation of the Hessian inverse, stored as hess_inv in the 
OptimizeResult object.

NewtonCG Uses a Newton-CG algorithm (also known as the truncated Newton 
method). It uses a CG method to compute the search direction.

LBFGSB Uses the help() function to find more information.
TNC [ibid]
COBYLA [ibid]
SLSQP [ibid]
dogleg [ibid]
trustncg [ibid]

Table 9.1 Types of solver

The output shows that the function value is 3.2, and it is achieved by assigning 0 to x.
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Optimization terminated successfully:

The next example is using the scipy.optimize.brent() function on an exponential 
function minimization, see the code followed by the objective function:

The following program tries to minimize the objective function, that is, y:

from scipy import optimize
import numpy as np
import matplotlib.pyplot as plt
# define a function 
a=3.4
b=2.0
c=0.8
def f(x):
    return a-b*np.exp(-(x - c)**2)

x=np.arange(-3,3,0.1)
y=f(x)
plt.title("y=a-b*exp(-(x-c)^2)")
plt.xlabel("x")
plt.ylabel("y")
plt.plot(x,y)
plt.show()

# find the minimum
solution= optimize.brent(f) 
print(solution)
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The solution is 0.799999999528 and the related graph is shown here:

In economics and finance, there is an important concept called utility. One of the 
major reasons to design such a concept is that for many situations, we could not 
quantify certain effects, such as happiness, willingness, risk preference, wellness, 
emotion, and the like. For example, your boss asks you to work extra hours on 
Friday and promises you a bonus. Assume that its value is x dollar per hour and 
you are happy with it. If the task is urgent, your boss might ask for more hours. 
Assume that you have to work on Saturday. Do you think the same x dollar per 
hour would make your happy? For most workers the extra bonus should be higher 
than x since they would think that they have sacrificed more now than just a Friday 
evening. Usually, a utility function could be defined as the different between benefits 
and costs. The marginal benefit is a decreasing function of our input. It means the 
extra dollar received is not as valuable of the previous dollar. On the other hand, 
the marginal cost will be an increasing function of your input. When you asked to 
contribute extra work, the appropriate monetary incentive would go higher. Here is 
one utility function:
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Here, U is the utility function, E(R) is the expected portfolio return and we could  
use its mean to approximate, A is the risk-averse coefficient, and σ2 is the variance  
of the portfolio. When the expected return is higher, our utility is higher. The 
opposite is true: when the risk of our portfolio is higher the utility is lower. The key 
is A, which represents the risk-tolerance. With the same expected return and risk 
level, a more risk-reverse investor (a higher A) would experience a lower utility. 
Generally speaking, the objective is to balance the benefits (expected returns) with 
risk (variance).

Assume that we have a set of stocks, such as International Business Machine (IBM), 
Walmart (WMT), and Citi Group (C). Based on the preceding utility function, which 
stock should we choose for different given risk preference? The code is given here:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np
import pandas as pd
import scipy as sp

tickers=('IBM','WMT','C')  # tickers
begdate=(2012,1,1)         # beginning date 
enddate=(2016,12,31)       # ending date
n=len(tickers)             # number of observations
A=1                        # risk preference

def ret_f(ticker,begdate,enddte):
    x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
    ret =x.aclose[1:]/x.aclose[:-1]-1
    return ret

def myUtilityFunction(ret,A=1):
    meanDaily=sp.mean(ret)
    varDaily=sp.var(ret)
    meanAnnual=(1+meanDaily)**252
    varAnnual=varDaily*252
    return meanAnnual- 0.5*A*varAnnual

for i in sp.arange(n):
    ret=ret_f(tickers[i],begdate,enddate)
    print(myUtilityFunction(ret,A))
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In the preceding program, the mean and standard deviation are both annualized. 
The value of 252 represents the number of trading days per year. The time period 
used is from 1/1/2012 to 12/31/2016, that is, a five-year period. The output is shown 
here. Again, the result is for the investor with a risk preference with A=1:

Based on the concept of utility, investors prefer stock with the highest utility. Thus, 
we should choose the last stock. In other words, if we have to choose one stock as 
our investment, we should choose City Group. On the other hand, when A=10, that 
is, extremely risk-averse, we have the following utility values for those three stocks:

The result suggests that such an investor should choose the second stock, that is, 
Walmart as our sole investment. This is consistent with our common sense, see their 
corresponding mean returns and risk levels:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np
import pandas as pd
import scipy as sp

tickers=('IBM','WMT','C')  # tickers
begdate=(2012,1,1)         # beginning date 
enddate=(2016,12,31)       # ending date
n=len(tickers)             # number of observations

def ret_f(ticker,begdate,enddte):
    x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
    ret =x.aclose[1:]/x.aclose[:-1]-1
    return ret

def meanVarAnnual(ret):
    meanDaily=sp.mean(ret)
    varDaily=sp.var(ret)
    meanAnnual=(1+meanDaily)**252
    varAnnual=varDaily*252
return meanAnnual, varAnnual
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print("meanAnnual,      varAnnjal")
for i in sp.arange(n):
    ret=ret_f(tickers[i],begdate,enddate)
    print(meanVarAnnual(ret))

The output is shown here:

In the preceding program, a function called meanVarAnnual() is generated that 
delivers annualized mean return and annualized volatility. Let's compare the last 
two stocks. The second stock is less risky than the third one at the same time; it 
has a higher risk than the third stock. The mean annual return of the second stock 
decreases by 12%, however, its variance decreases by 63%. The consequence is that 
utility increased.

For portfolio optimization, or Markowitz Portfolio Optimization, our input datasets 
include: expected returns, standard deviations, and correlation matrix. The output 
will be an optimal portfolio. By connecting those efficient portfolios, an efficient 
frontier could be constructed. In the rest of this chapter, we use historical returns  
to represent expected returns and use the historical correlation in the place of 
expected correlation.

Forming an n-stock portfolio
The following program generates a return matrix with three stocks plus S&P500:

import statsimport numpy as np
import pandas as pd
tickers=['IBM','dell','wmt']
path1='http://chart.yahoo.com/table.csv?s=^GSPC'
final=pd.read_csv(path1,usecols=[0,6],index_col=0)
final.columns=['^GSPC']
path2='http://chart.yahoo.com/table.csv?s=ttt'
for ticker in tickers:
    print ticker
    x = pd.read_csv(path2.replace('ttt',ticker),usecols=[0,6],index_
col=0)
    x.columns=[ticker]
    final=pd.merge(final,x,left_index=True,right_index=True)
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To show the first and last few lines, we use the .head() and .tail() functions  
as follows:

>>>final.head()
              ^GSPC     IBM   dell    wmt
Date                                     
2013-10-18  1744.50  172.85  13.83  75.71
2013-10-17  1733.15  173.90  13.85  75.78
2013-10-16  1721.54  185.73  13.85  75.60
2013-10-15  1698.06  183.67  13.83  74.37
2013-10-14  1710.14  185.97  13.85  74.68
>>>final.tail()
             ^GSPC    IBM  dell   wmt
Date                                 
1988-08-23  257.09  17.38  0.08  2.83
1988-08-22  256.98  17.36  0.08  2.87
1988-08-19  260.24  17.67  0.09  2.94
1988-08-18  261.03  17.97  0.09  2.98
1988-08-17  260.77  17.97  0.09  2.98
>>>

In the preceding program, we retrieve S&P500 data first. Then stock data is merged 
with the market index. The major function used is pandas.merge(). Please pay 
attention to the meanings of two input parameters: left_index=True and right_
index=True. They indicate that those two datasets are merged by their indices. In the 
program, the daily frequency is retrieved. It is quite often that academic researchers and 
professionals prefer monthly frequency. One of the reasons is that monthly data has 
little so-called micro-structure effect compared with daily data. The following program 
uses monthly data. The Python data used is yanMonthly.pkl, http://canisius.
edu/~yany/python/yanMonthly.pkl. First, we print a list of securities included:

import pandas as pd
import scipy as sp
df=pd.read_pickle("c:/temp/yanMonthly.pkl")
print(sp.unique(df.index))
['000001.SS' 'A' 'AA' 'AAPL' 'BC' 'BCF' 'C' 'CNC' 'COH' 'CPI' 'DELL' 
'GE'
 'GOLDPRICE' 'GV' 'GVT' 'HI' 'HML' 'HPS' 'HY' 'IBM' 'ID' 'IL' 'IN' 
'INF'
 'ING' 'INY' 'IO' 'ISL' 'IT' 'J' 'JKD' 'JKE' 'JPC' 'KB' 'KCC' 'KFT' 
'KIE'
 'KO' 'KOF' 'LBY' 'LCC' 'LCM' 'LF' 'LG' 'LM' 'M' 'MA' 'MAA' 'MD' 'MFL' 
'MM'
 'MPV' 'MY' 'Mkt_Rf' 'NEV' 'NIO' 'NP' 'NU' 'NYF' 'OI' 'OPK' 'PAF' 
'PFO'
 'PSJ' 'PZZA' 'Q' 'RH' 'RLV' 'Rf' 'Russ3000E_D' 'Russ3000E_X' 'S' 
'SBR'

http://canisius.edu/~yany/python/yanMonthly.pkl
http://canisius.edu/~yany/python/yanMonthly.pkl
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 'SCD' 'SEF' 'SI' 'SKK' 'SMB' 'STC' 'T' 'TA' 'TBAC' 'TEN' 'TK' 'TLT' 
'TOK'
 'TR' 'TZE' 'UHS' 'UIS' 'URZ' 'US_DEBT' 'US_GDP2009dollar'
 'US_GDP2013dollar' 'V' 'VC' 'VG' 'VGI' 'VO' 'VV' 'WG' 'WIFI' 'WMT' 
'WR'
 'XLI' 'XON' 'Y' 'YANG' 'Z' '^AORD' '^BSESN' '^CCSI' '^CSE' '^FCHI' 
'^FTSE'
 '^GSPC' '^GSPTSE' '^HSI' '^IBEX' '^ISEQ' '^JKSE' '^KLSE' '^KS11' 
'^MXX'
 '^NZ50' '^OMX' '^STI' '^STOXX50E' '^TWII']

To choose a specific security, the index of the dataset is compared with the ticker; see 
the following code for choosing IBM's monthly price data:

import scipy as sp
import pandas as pd
import numpy as np
n_stocks=10
x=pd.read_pickle('c:/temp/yanMonthly.pkl')
ibm=x[x.index=='IBM']
print(ibm.head(3))
print(ibm.tail(3))
          DATE  VALUE
NAME                 
IBM   19620131   2.36
IBM   19620228   2.34
          DATE   VALUE
NAME                  
IBM   20130930  185.18
IBM   20131031  179.21
IBM   20131104  180.27

The following program generates returns first, and then use ticker name as its 
corresponding column name instead of using a generate term, such as return. The 
reason is that we intend to choose several stocks and put them together side-by-side, 
that is, arranged by date:

import scipy as sp
import pandas as pd
import numpy as np
n_stocks=10
x=pd.read_pickle('c:/temp/yanMonthly.pkl')
def ret_f(ticker):
    a=x[x.index==ticker]
    p=sp.array(a['VALUE'])
    ddate=a['DATE']
    ret=p[1:]/p[:-1]-1
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    output=pd.DataFrame(ret,index=ddate[1:])
    output.columns=[ticker]
    return output
ret=ret_f('IBM')
print(ret.head())
               IBM
DATE              
19620228 -0.008475
19620330 -0.008547
19620430 -0.146552
19620531 -0.136364
19620629 -0.134503

Finally, we could construct an n-stock return matrix from yanMonthly.pkl:

import scipy as sp
import pandas as pd
import numpy as np
n_stocks=10
x=pd.read_pickle('c:/temp/yanMonthly.pkl')
x2=sp.unique(np.array(x.index))
x3=x2[x2<'ZZZZ']                       # remove all indices
sp.random.seed(1234567)
nonStocks=['GOLDPRICE','HML','SMB','Mkt_Rf','Rf','Russ3000E_D','US_
DEBT','Russ3000E_X','US_GDP2009dollar','US_GDP2013dollar']
x4=list(x3)

for i in range(len(nonStocks)):
    x4.remove(nonStocks[i])
k=sp.random.uniform(low=1,high=len(x4),size=n_stocks)
y,s=[],[]

for i in range(n_stocks):
    index=int(k[i])
    y.append(index)
    s.append(x4[index])
final=sp.unique(y)
print(s)

def ret_f(ticker):
    a=x[x.index==ticker]
    p=sp.array(a['VALUE'])
    ddate=a['DATE']
    ret=p[1:]/p[:-1]-1
    output=pd.DataFrame(ret,index=ddate[1:])
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    output.columns=[ticker]
    return output
final=ret_f(s[0])
for i in sp.arange(1,n_stocks):
    ret=ret_f(s[i])
    final=pd.merge(final,ret,left_index=True, right_index=True)

To randomly choose m stocks from a set of existing available stocks (n of them), see 
the command of scipy.random.uniform(low=1,high=len(x4),size=n_stocks).
Since n_stocks has a value of 10, we choose 10 stocks from len(x4). The output is 
shown here:

                IO         A        AA        KB      DELL        IN  
\
DATE                                                                   
20110930 -0.330976 -0.152402 -0.252006 -0.206395 -0.048679 -0.115332   
20111031  0.610994  0.185993  0.124464  0.192002  0.117690  0.237730   
20111130 -0.237533  0.011535 -0.066794 -0.106274 -0.002616 -0.090458   
20111230  0.055077 -0.068422 -0.135992 -0.102006 -0.072131 -0.065395   
20120131  0.212072  0.215972  0.173964  0.209317  0.178092  0.230321   

               INF       IBM       SKK        BC  
DATE                                              
20110930 -0.228456  0.017222  0.227586 -0.116382  
20111031  0.142429  0.055822 -0.305243  0.257695  
20111130 -0.038058  0.022314 -0.022372  0.057484  
20111230  0.059345 -0.021882 -0.024262 -0.030140  
20120131  0.079202  0.047379 -0.142131  0.182020

In finance, constructing an efficient frontier is always a challenging job. This is 
especially true with real-world data. In this section, we discuss the estimation of a 
variance-covariance matrix and its optimization, finding an optimal portfolio, and 
constructing an efficient frontier with stock data downloaded from Yahoo! Finance. 
When a return matrix is given, we could estimate its variance-covariance matrix. For 
a given set of weights, we could further estimate the portfolio variance. The formula 
to estimate the variance and standard deviation for returns from a single stock are 
given as follows:
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Here,  is the mean,  is the stock return for period i, and n is the number of returns. 
For an n-stock portfolio, we have the following formula to estimate its portfolio return:

Here,  is the portfolio return,  is the weight for stock i, and  is the stock i's 
return. This is true for the portfolio mean or expected portfolio return, see here:

The portfolio variance for an n-stock portfolio is defined here:

Here,  is the portfolio variance, n is the number of stocks in the portfolio,  is the 
weight of stock i, and  is the covariance between stocks i and j. Note that when i 
is the same as j,  is the variance, that is:

Understandably, a 2-stock portfolio is just a special case of an n-stock portfolio. 
Again, when the values of the return matrix and the weight vector are given, we can 
estimate their variance-covariance matrix and portfolio variance as follows:

import numpy as np
ret=np.matrix(np.
array([[0.1,0.2],[0.10,0.1071],[-0.02,0.25],[0.012,0.028],[0.06,0. 
262],[0.14,0.115]]))
print("return matrix")
print(ret)
covar=ret.T*ret
print("covar")
print(covar)
weight=np.matrix(np.array([0.4,0.6]))
print("weight ")
print(weight)
print("mean return")
print(weight*covar*weight.T)
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The key command used is ret.T*ret. ret.T is the transpose of a return matrix. 
Since the return matrix is 6 by 2 matrix, its transpose will be a 2 by 6 matrix. 
Thus, the result of a matrix multiplication of (2*6) and (6*2) will be (2*2). The 
corresponding outputs, such as return matrix, covariance matrix, weights, and 
portfolio variance, are given as follows:

return matrix
[[ 0.1     0.2   ]
 [ 0.1     0.1071]
 [-0.02    0.25  ]
 [ 0.012   0.028 ]
 [ 0.06    0.262 ]
 [ 0.14    0.115 ]]
covar
[[ 0.043744    0.057866  ]
 [ 0.057866    0.19662341]]
weight 
[[ 0.4  0.6]]
mean return
[[ 0.10555915]]

The second way to conduct a matrix multiplication is by using the spcipy.dot() 
function, see the following code:

import numpy as np
ret=np.matrix(np.
array([[0.1,0.2],[0.10,0.1071],[-0.02,0.25],[0.012,0.028],[0.06, 
0.262],[0.14,0.115]]))
covar=np.dot(ret.T,ret)
print("covar")
print(covar)

Constructing an optimal portfolio
In finance, we are dealing with a trade-off between risk and return. One of the 
widely used criteria is Sharpe ratio, which is defined as follows:
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The following program would maximize the Sharpe ratio by changing the weights 
of the stocks in the portfolio. The whole program could be divided into several parts. 
The input area is very simple, just several tickers in addition to the beginning and 
ending dates. Then, we define four functions, convert daily returns into annual ones, 
estimate a portfolio variance, estimate the Sharpe ratio, and estimate the last (that is, 
nth) weight when n-1 weights are estimated from our optimization procedure:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np
import pandas as pd
import scipy as sp
from scipy.optimize import fmin

1. Code for input area:
ticker=('IBM','WMT','C')   # tickers
begdate=(1990,1,1)         # beginning date 
enddate=(2012,12,31)       # ending date
rf=0.0003                  # annual risk-free rate

2. Code for defining a few functions:
# function 1: 
def ret_annual(ticker,begdate,enddte):
    x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
    logret =sp.log(x.aclose[1:]/x.aclose[:-1])
    date=[]
    d0=x.date
    for i in range(0,sp.size(logret)):
        date.append(d0[i].strftime("%Y"))
    y=pd.DataFrame(logret,date,columns=[ticker])
    return sp.exp(y.groupby(y.index).sum())-1

# function 2: estimate portfolio variance 
def portfolio_var(R,w):
    cor = sp.corrcoef(R.T)
    std_dev=sp.std(R,axis=0)
    var = 0.0
    for i in xrange(n):
        for j in xrange(n):
            var += w[i]*w[j]*std_dev[i]*std_dev[j]*cor[i, j]
    return var

# function 3: estimate Sharpe ratio
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def sharpe(R,w):
    var = portfolio_var(R,w)
    mean_return=sp.mean(R,axis=0)
    ret = sp.array(mean_return)
    return (sp.dot(w,ret) - rf)/sp.sqrt(var)

# function 4: for given n-1 weights, return a negative sharpe 
ratio
def negative_sharpe_n_minus_1_stock(w):
    w2=sp.append(w,1-sum(w))
    return -sharpe(R,w2)        # using a return matrix here!!!!!!

3. Code for generating a return matrix (annul return):

n=len(ticker)              # number of stocks
x2=ret_annual(*ticker[0],begdate,enddate) 
for i in range(1,n):
    x_=ret_annual(ticker[i],begdate,enddate) 
    x2=pd.merge(x2,x_,left_index=True,right_index=True)

# using scipy array format 
R = sp.array(x2)
print('Efficient porfolio (mean-variance) :ticker used')
print(ticker)
print('Sharpe ratio for an equal-weighted portfolio')
equal_w=sp.ones(n, dtype=float) * 1.0 /n 
print(equal_w)
print(sharpe(R,equal_w))

# for n stocks, we could only choose n-1 weights
w0= sp.ones(n-1, dtype=float) * 1.0 /n 
w1 = fmin(negative_sharpe_n_minus_1_stock,w0)
final_w = sp.append(w1, 1 - sum(w1))
final_sharpe = sharpe(R,final_w)
print ('Optimal weights are ')
print (final_w)
print ('final Sharpe ratio is ')
print(final_sharpe)
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In step 2, we estimate annual returns from daily returns. For the optimization, the 
most important function is the scipy.optimize.fmin() function. The first input for 
this minimization function is our objective function, negative_sharpe_n_minus_1. 
Our objective is to maximize a Sharpe Ratio. Since this is a minimization function, 
it is equivalent to minimize a negative Sharpe ratio. Another issue is that we need 
n weights to calculate a Sharpe ratio. However, since the summation of n weights is 
1, we have only n-1 weights as our choice variables. From the following output, we 
know that if we use a naïve equal-weighted strategy, the Sharpe ratio is 0.63. On the 
other hand, the Sharpe ratio for our optimal portfolio is 0.67:

Efficient porfolio (mean-variance) :ticker used
('IBM', 'WMT', 'C')
Sharpe ratio for an equal-weighted portfolio
[ 0.33333333  0.33333333  0.33333333]
0.634728319263
Optimization terminated successfully.
         Current function value: -0.669758
         Iterations: 31
         Function evaluations: 60
Optimal weights are 
[ 0.49703463  0.31044168  0.19252369]
final Sharpe ratio is 
0.66975823926

Constructing an efficient frontier with n 
stocks
Constructing an efficient frontier is always one of the most difficult tasks for 
finance instructors since the task involves matrix manipulation and a constrained 
optimization procedure. One efficient frontier could vividly explain the Markowitz 
Portfolio theory. The following Python program uses five stocks to construct an 
efficient frontier:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy as sp
from numpy.linalg import inv, pinv

1. Code for input area:
begYear,endYear = 2001,2013
stocks=['IBM','WMT','AAPL','C','MSFT']
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2. Code for defining two functions:
def ret_monthly(ticker):  #  function 1
    x = getData(ticker,(begYear,1,1),(endYear,12,31),asobject=True
,adjusted=True)
    logret=np.log(x.aclose[1:]/x.aclose[:-1]) 
    date=[]
    d0=x.date
    for i in range(0,np.size(logret)): 
        date.append(''.join([d0[i].strftime("%Y"),d0[i].
strftime("%m")]))
    y=pd.DataFrame(logret,date,columns=[ticker]) 
    return y.groupby(y.index).sum()

# function 2: objective function 
def objFunction(W, R, target_ret):
    stock_mean=np.mean(R,axis=0) 
    port_mean=np.dot(W,stock_mean)          # portfolio mean 
    cov=np.cov(R.T)                         # var-cov matrix
    port_var=np.dot(np.dot(W,cov),W.T)     # portfolio variance 
    penalty = 2000*abs(port_mean-target_ret)# penalty 4 deviation 
    return np.sqrt(port_var) + penalty     # objective function

3. Code for generating a return matrix R:
R0=ret_monthly(stocks[0])                   # starting from 1st 
stock 
n_stock=len(stocks)                         # number of stocks
for i in xrange(1,n_stock):                 # merge with other 
stocks 
    x=ret_monthly(stocks[i]) 
    R0=pd.merge(R0,x,left_index=True,right_index=True)
    R=np.array(R0)

4. Code for estimating optimal portfolios for a given return:
out_mean,out_std,out_weight=[],[],[] 
stockMean=np.mean(R,axis=0)
for r in np.linspace(np.min(stockMean),np.max(stockMean),num=100):
    W = np.ones([n_stock])/n_stock    # starting from equal 
weights 
    b_ = [(0,1) 
    for i in range(n_stock)]          # bounds, here no short 
    c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })#constraint
    result=sp.optimize.minimize(objFunction,W,(R,r),method='SLSQP'
,constraints=c_, bounds=b_)
    if not result.success:            # handle error raise 
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        BaseException(result.message)
    out_mean.append(round(r,4))       # 4 decimal places 
    std_=round(np.std(np.sum(R*result.x,axis=1)),6) 
    out_std.append(std_)
    out_weight.append(result.x)

5. Code for plotting the efficient frontier:
plt.title('Efficient Frontier')
plt.xlabel('Standard Deviation of the porfolio (Risk))') 
plt.ylabel('Return of the portfolio') 
plt.figtext(0.5,0.75,str(n_stock)+' stock are used: ') 
plt.figtext(0.5,0.7,' '+str(stocks))
plt.figtext(0.5,0.65,'Time period: '+str(begYear)+' ------ 
'+str(endYear)) 
plt.plot(out_std,out_mean,'--')
plt.show()

The key to understanding this program is its objective function under the title of 
# function 2: objective function. Our objective is for a given target portfolio mean or 
expected value, we would minimize our portfolio risk. The first part of the command 
line of return np.sqrt(port_var) + penalty, is the portfolio variance. There is 
no ambiguity about the first term. Now, let's turn to the second term called penalty, 
which is defined as the absolute deviation of the portfolio mean from our target mean 
times a big number. This is a quite popular way to define our objective function by 
using an unconstrained optimization procedure. An alternative way is to apply an 
optimization procedure with constraints. The output graph is presented as follows:
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In one of the previous programs, our objective function is to maximize a Sharpe ratio. 
From the previous chapter, we know that when the portfolio under consideration 
is not all our wealth, Sharpe ratio might not be a good measure. Viewed as a 
modification to the Sharpe ratio, the Treynor ratio is defined here:

Here, the left-hand side is Treynor ratio,  is the mean portfolio return,  is the 
risk-free rate, and  is the portfolio beta. The only modification is that the sigma 
(total risk) is replaced by beta (market risk).

In the following program, Treynor ratio will be our objective function:

import matplotlib.pyplot as plt
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import numpy as np
import pandas as pd
import scipy as sp
from scipy.optimize import fmin

# Step 1: input area
ticker=('IBM','WMT','C')   # tickers
begdate=(1990,1,1)         # beginning date 
enddate=(2012,12,31)       # ending date
rf=0.0003                  # annual risk-free rate
betaGiven=(0.8,0.4,0.3)    # given beta's 

# Step 2: define a few functions

# function 1: 
def ret_annual(ticker,begdate,enddte):
    x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
    logret =sp.log(x.aclose[1:]/x.aclose[:-1])
    date=[]
    d0=x.date
    for i in range(0,sp.size(logret)):
        date.append(d0[i].strftime("%Y"))
    y=pd.DataFrame(logret,date,columns=[ticker])
    return sp.exp(y.groupby(y.index).sum())-1

# function 2: estimate portfolio beta 
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def portfolioBeta(betaGiven,w):
    #print("betaGiven=",betaGiven,"w=",w)
    return sp.dot(betaGiven,w)
# function 3: estimate Treynor
def treynor(R,w):
    betaP=portfolioBeta(betaGiven,w)
    mean_return=sp.mean(R,axis=0)
    ret = sp.array(mean_return)
    return (sp.dot(w,ret) - rf)/betaP

# function 4: for given n-1 weights, return a negative Sharpe ratio
def negative_treynor_n_minus_1_stock(w):
    w2=sp.append(w,1-sum(w))
    return -treynor(R,w2)        # using a return matrix here!!!!!!

# Step 3: generate a return matrix (annul return)
n=len(ticker)                    # number of stocks
x2=ret_annual(ticker[0],begdate,enddate) 
for i in range(1,n):
    x_=ret_annual(ticker[i],begdate,enddate) 
    x2=pd.merge(x2,x_,left_index=True,right_index=True)
# using scipy array format 
R = sp.array(x2)
print('Efficient porfolio (Treynor ratio) :ticker used')
print(ticker)
print('Treynor ratio for an equal-weighted portfolio')
equal_w=sp.ones(n, dtype=float) * 1.0 /n 
print(equal_w)
print(treynor(R,equal_w))

# for n stocks, we could only choose n-1 weights
w0= sp.ones(n-1, dtype=float) * 1.0 /n 
w1 = fmin(negative_treynor_n_minus_1_stock,w0)
final_w = sp.append(w1, 1 - sum(w1))
final_treynor = treynor(R,final_w)
print ('Optimal weights are ')
print (final_w)
print ('final Sharpe ratio is ')
print(final_treynor)
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The output is shown here:

Another argument against using standard deviation in the Sharpe ratio is that it 
considers the deviations in both directions, below and above the mean. Nevertheless, 
we know that investors worry more about the downside risk (deviation below mean 
return). The second issue for the Sharpe ratio is that for the numerator, we compare 
mean returns with a risk-free rate. Nevertheless, for the denominator, the deviations 
are from the mean return instead of the same risk-free rate. To overcome those two 
shortcomings, a so-called Lower Partial Standard Deviation (LPSD) is developed. 
Assume we have n returns and one risk-free rate (Rf). Assume further that there are 
m returns that are less than this risk-free rate. We estimate LPSP by using only those 
m returns and it is defined here:

The following program shows how to estimate LPSD for a given set of returns:

import scipy as sp
import numpy as np
mean=0.15;
Rf=0.01
std=0.20
n=200
sp.random.seed(3412)
x=sp.random.normal(loc=mean,scale=std,size=n)
def LPSD_f(returns, Rf):
    y=returns[returns-Rf<0]  
    m=len(y)
    total=0.0
    for i in sp.arange(m):
        total+=(y[i]-Rf)**2
    return total/(m-1)
answer=LPSD_f(x,Rf)
print("LPSD=",answer)
('LPSD=', 0.022416749724544906)
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Similar to Sharpe ratio and Treynor ratio, the Sortino ratio is defined as follows:

The following program would maximize Sortino ratio for a few given stocks:

import scipy as sp
import numpy as np
import pandas as pd
from scipy.optimize import fmin
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
#
# Step 1: input area
ticker=('IBM','WMT','C')   # tickers
begdate=(1990,1,1)         # beginning date 
enddate=(2012,12,31)       # ending date
rf=0.0003                  # annual risk-free rate
#
# Step 2: define a few functions
# function 1: 
def ret_annual(ticker,begdate,enddte):
    x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
    logret =sp.log(x.aclose[1:]/x.aclose[:-1])
    date=[]
    d0=x.date
    for i in range(0,sp.size(logret)):
        date.append(d0[i].strftime("%Y"))
    y=pd.DataFrame(logret,date,columns=[ticker])
    return sp.exp(y.groupby(y.index).sum())-1

# function 2: estimate LPSD
def LPSD_f(returns, Rf):
    y=returns[returns-Rf<0]  
    m=len(y)
    total=0.0
    for i in sp.arange(m):
        total+=(y[i]-Rf)**2
    return total/(m-1)

# function 3: estimate Sortino
def sortino(R,w):
    mean_return=sp.mean(R,axis=0)
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    ret = sp.array(mean_return)
    LPSD=LPSD_f(R,rf)
    return (sp.dot(w,ret) - rf)/LPSD

# function 4: for given n-1 weights, return a negative sharpe ratio
def negative_sortino_n_minus_1_stock(w):
    w2=sp.append(w,1-sum(w))
    return -sortino(R,w2)        # using a return matrix here!!!!!!

# Step 3: generate a return matrix (annul return)
n=len(ticker)              # number of stocks
x2=ret_annual(ticker[0],begdate,enddate) 
for i in range(1,n):
    x_=ret_annual(ticker[i],begdate,enddate) 
    x2=pd.merge(x2,x_,left_index=True,right_index=True)

# using scipy array format 
R = sp.array(x2)
print('Efficient porfolio (mean-variance) :ticker used')
print(ticker)
print('Sortino ratio for an equal-weighted portfolio')
equal_w=sp.ones(n, dtype=float) * 1.0 /n 
print(equal_w)
print(sortino(R,equal_w))
# for n stocks, we could only choose n-1 weights
w0= sp.ones(n-1, dtype=float) * 1.0 /n 
w1 = fmin(negative_sortino_n_minus_1_stock,w0)
final_w = sp.append(w1, 1 - sum(w1))
final_sortino = sortino(R,final_w)
print ('Optimal weights are ')
print (final_w)
print ('final Sortino ratio is ')
print(final_sortino)

Here is the corresponding output:
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Modigliani and Modigliani (1997) propose another performance measure. Their 
benchmark is a specified market index. Let's use S&P500 index as an example. 
Assume that our portfolio has a higher risk and a higher return compared with the 
S&P500 market index:

Here is their two-step approach:

1. Form a new portfolio with two weights w for our original portfolio and (1-
w) for a risk-free investment. The new portfolio would have the risk as the 
SP500 market index:

Actually, the weight of w will be given by the following formula:

2. Calculate the portfolio mean returns by applying the following formula:

The final judgment is whether this new risk-adjusted portfolio is bigger or less than 
S&P500 mean return. The following Python program achieves this:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import scipy as sp

begdate=(2012,1,1)
enddate=(2016,12,31)
ticker='IBM'

def ret_f(ticker):  #  function 1
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    x = getData(ticker,begdate,enddate,asobject=True,adjusted=True)
    ret=x.aclose[1:]/x.aclose[:-1]-1 
    ddate=x['date'][1:]
    y=pd.DataFrame(ret,columns=[ticker],index=ddate) 
    return y.groupby(y.index).sum()

a=ret_f(ticker)
b=ret_f("^GSPC")
c=pd.merge(a,b,left_index=True, right_index=True)
print(c.head())
mean=sp.mean(c)
print(mean)
cov=sp.dot(c.T,c)
print(cov)

The output is shown here:

There are different weighting schemes to estimate the portfolio returns. The 
commonly used ones are value-weighed, equal-weighted, and price-weighted. When 
estimating certain indices, the value-weighted is also called market capitalization 
weighted. For example, S&P500 returns are value-weighted and Dow Jones 
Industrial Average is price-weighed. The equal-weighted is the simplest one:
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Here,  is the portfolio return at time t,  is the stock i's return at time t, and n  
is the number of stocks in the portfolio. Here is a very simple example, assume that 
we have two stocks in our portfolio. Last year stock A had a return of 20% while 
stock B had a -10%, what is an equal-weighted return based on those two values? 
The answer is 5%. For a value-weighted index, the key is the weight , see the 
following formula:

Here vi is the value of our investment for ith stock,  is the total value of our 
portfolio. Assume that we have a 2-stock portfolio. Last year, stock A (B) has a return 
of 20% (-10%). If our investment for stocks A and B are 90% versus 10%, what is 
their value-weighted return last year? The answer is 17% (0.9*0.2+0.1*(-0.1)). For a 
market index, such as S&P5000, vi will be the market capitalization of stock i and the 
summation of all 500 stocks' market capitalizations will be the market value of the 
index portfolio. When estimating the value-weighed market index, the small stocks 
would have little impact since their weights are so tiny. Here is a simple example by 
using yanMonthly.pkl, downloadable at http://canisius.edu/~yany/python/
yanMonthly.pkl:

import scipy as sp
import pandas as pd
x=pd.read_pickle("c:/temp/yanMonthly.pkl")
def ret_f(ticker):
    a=x[x.index==ticker]
    p=sp.array(a['VALUE'])
    ddate=a['DATE'][1:]
    ret=p[1:]/p[:-1]-1
    out1=pd.DataFrame(p[1:],index=ddate)
    out2=pd.DataFrame(ret,index=ddate)
    output=pd.merge(out1,out2,left_index=True, right_index=True)
    output.columns=['Price_'+ticker,'Ret_'+ticker]
    return output
a=ret_f("IBM")
b=ret_f('WMT')
c=pd.merge(a,b,left_index=True, right_index=True)
print(c.head())

http://canisius.edu/~yany/python/yanMonthly.pkl
http://canisius.edu/~yany/python/yanMonthly.pkl
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Here is the output:

Since there are just two stocks, we could manually calculate a few days for several 
weighting schemes. Let's use the last observation, January 1973, as an example 
and assume that we have 100 shares of IBM and 200 shares of Walmart. The 
equal-weighted monthly return is -0.08 (0.04-0.2)/2). For a value-weighted one, we 
estimate two weights and assume that we use the previous price to estimate those 
weights. The total value is 100*7.04 + 200*0.05= 714. Thus w1= 0.9859944 (704/714) 
and w2=0.0140056. The value-weighted return is 0.0366, that is, 0.9859944*0.04 + 
0.0140056*(-0.2). For a price-weighted portfolio, we have the same format as a value-
weighted one. The major difference is how to define its weights:

Here,  is the price of ith stock. In a sense, a price-weighted portfolio could be 
viewed as we only have one share for each stock in our portfolio for the same 2-stock 
portfolio. Last year, stock A (B) has a return of 20% (-10%). If the price of stock 
A (B) is $10 ($90), then the price-weighted portfolio return would be -7%, that is, 
0.2*(10/100)-0.1*(90/100). It is obvious that stocks with a higher unit price command 
a higher weight. Based on the preceding results for IBM and Walmart, the two 
weights for the price-weighted scheme are 0.9929478; that is, 7.04/(7.04+0.05) and 
0.007052186. Thus, the price-weighted portfolio return in that month is 0.03830747 
and 0.9929478*0.04+0.007052186*(-0.2).

There are a few twists when estimating portfolio or index returns. The first one is 
whether returns include dividends and other distributions. For example, the CRSP 
database has EWRETD and EWRETX. EWRETD is defined as equal-weighed market 
returns based on stock returns including dividend, that is, total return. EWRETX is 
defined as equal-weighted market returns without dividends or other distributions. 
Similarly, for value-weighed returns, there exists VWRETD and VWRETX. The second 
twist is that it is common practice to use previous period's market capitalizations as 
weights instead of the current ones.
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Appendix A – data case #5 - which industry 
portfolio do you prefer?
Please go through the following objectives:

1. Understand the definitions of 49 industries.
2. Learn how to download data from Prof. French's Data Library.
3. Understand the utility function, see here.
4. Find out which industry is optimal for different types of investors.
5. Learn how to draw an indifference curve (for just one optimal portfolio).

Procedure:

6. Go to Professor French's Data Library at:http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data_library.html.

http://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.1952.tb01525.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.1952.tb01525.x/full
http://www.scipy-lectures.org/advanced/mathematical_optimization/
http://www.scipy-lectures.org/advanced/mathematical_optimization/
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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7. Click CSV on the right-hand side of 49 Industry Portfolios, see the following 
screenshot:

8. Estimate returns and variances for both value-weighted and equal-weighed 
industry portfolios.

9. Estimate the utility function for three types of investors with A=1, 2, and 4:

Here U is the utility function, E(R) is the expected portfolio return and we 
could use its mean to approximate, A is the risk-averse coefficient, and σ2 is 
the variance of the portfolio.

10. Choose one result, for example, the optimal value-weighted portfolio for an 
investor who has a value of 1 for A, draw an indifference curve.

11. Comment on your results.

From http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_
Library/det_49_ind_port.html, we could find the definition of those  
49 industries.

Appendix B – data case #6 - replicate S&P500 
monthly returns
To finish this data case, your school has subscribed to the CRSP database.

Objectives:

1. Understand the concepts of equal-weighted and value weighed market 
index.

2. Write a Python program to replicate sp500 monthly returns.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_49_ind_port.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_49_ind_port.html
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3. Comment on your results.

Source of data: CRSP
sp500monthly.pkl

sp500add.pkl

stockMonthly.pkl

For the sp500monthly.pkl, see the following few observations:

import pandas as pd
x=pd.read_pickle("c:/temp/sp500monthly.pkl")
print(x.head())
print(x.tail())
      DATE    VWRETD    EWRETD    VWRETX    EWRETX  SP500INDEX  
SP500RET   N
0  19251231       NaN       NaN       NaN       NaN       12.46       
NaN  89
1  19260130 -0.001780  0.006457 -0.003980  0.003250       12.74  
0.022472  89
2  19260227 -0.033290 -0.039970 -0.037870 -0.042450       12.18 
-0.043950  89
3  19260331 -0.057700 -0.067910 -0.062000 -0.073270       11.46 
-0.059110  89
4  19260430  0.038522  0.031441  0.034856  0.027121       11.72  
0.022688  89
          DATE    VWRETD    EWRETD    VWRETX    EWRETX  SP500INDEX  
SP500RET \
1076  20150831 -0.059940 -0.052900 -0.062280 -0.054850     1972.18 
-0.062580   
1077  20150930 -0.024530 -0.033490 -0.026240 -0.035550     1920.03 
-0.026440   
1078  20151030  0.083284  0.073199  0.081880  0.071983     2079.36  
0.082983   
1079  20151130  0.003317  0.002952  0.000771  0.000438     2080.41  
0.000505   
1080  20151231 -0.015180 -0.025550 -0.017010 -0.027650     2043.94 
-0.017530

For sp500add.pkl, see the following few observations:

import pandas as pd
x=pd.read_pickle("c:/temp/sp500add.pkl")
print(x.head())
print(x.tail())
  PERMNO  DATEADDED  DAYDELETED
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0   10006   19570301    19840718
1   10030   19570301    19690108
2   10049   19251231    19321001
3   10057   19570301    19920702
4   10078   19920820    20100128
      PERMNO  DATEADDED  DAYDELETED
1847   93002   20140508    20151231
1848   93089   20151008    20151231
1849   93096   20121203    20151231
1850   93159   20120731    20151231
1851   93422   20100701    20150630

For the last dataset called stockMonthly.pkl, see a few observations from it:

import pandas as pd
x=pd.read_pickle("c:/temp/stockMonthly.pkl")
print(x.head())
print(x.tail())

The output is shown here:

         Date    Return  Volume   Price  SharesOutStanding
permno                                                        
10000  1985-12-31       NaN     NaN     NaN                NaN
10000  1986-01-31       NaN  1771.0 -4.3750             3680.0
10000  1986-02-28 -0.257140   828.0 -3.2500             3680.0
10000  1986-03-31  0.365385  1078.0 -4.4375             3680.0
10000  1986-04-30 -0.098590   957.0 -4.0000             3793.0
             Date    Return     Volume     Price  SharesOutStanding
permno                                                             
93436  2014-08-29  0.207792  1149281.0  269.7000           124630.0
93436  2014-09-30 -0.100180  1329469.0  242.6799           125366.0
93436  2014-10-31 -0.004030  1521398.0  241.7000           125382.0
93436  2014-11-28  0.011667  1077170.0  244.5200           125382.0
93436  2014-12-31 -0.090420  1271222.0  222.4100           125382.0

Exercises
1. What is the assumption behind don't put all your eggs in one basket?
2.  What are the measures of risk?
3. How do you measure the co-moment between two stock returns?
4. Why it is argued that correlation is a better measure than covariance when 

we evaluate the co-movements between two stocks?
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5. For two stocks A and B, with two pairs of (σA, σB) and (βA,βB), which pair is 
important when comparing their expected returns? 

6. Is it true that variance and correlation of historical returns possess the  
same sign?

7. Find some inefficiency with the following code:
import scipy as sp
sigma1=0.02
sigma2=0.05
rho=-1
n=1000
portVar=10   # assign a big number
tiny=1.0/n
for i in sp.arange(n):
    w1=i*tiny
    w2=1-w1
    var=w1**2*sigma1**2 +w2**2*sigma2**2+2*w1*w2*rho*sigma1*sigma2
    if(var<portVar):
        portVar=var
        finalW1=w1
    #print(vol)
print("min vol=",sp.sqrt(portVar), "w1=",finalW1)

8. For a given set of σA, σB, and correlation (ρ), write a Python program to test 
whether we have a solution or not.

Test the equation of 

9. What are the differences between covariance and correlation? Write a Python 
program to find out results for a given set of returns.

10. The portfolio risk is defined here. What is the impact of correlation on a 
portfolio's risk?
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11. For several stocks such as MSFT, IBM, WMT, ^GSPC, C, A, and AA, estimate their 
variance-covariance and correlation matrices based on the last five-year 
monthly returns data, for example, over the last five years. Which two stocks 
are most strongly correlated?

12. Based on the latest five-year monthly data and daily data, what are the 
correlations between IBM and WMT? Are they the same?

13. Generate a variance-covariance matrix for a market index and several stocks. 
Their tickers are C, MSFT, IBM, WMT, AAPL, AF, AIG, AP, and ^GSPC.

14. Is correlation constant between stocks over time?

You could pick up a couple of stocks and then estimate 
correlations among them for several five-year windows.

15. Are larger stocks, measured by their market capitalization, more strongly 
correlated among themselves than the correlation of small stocks among 
themselves?

16. To form a portfolio, we have the following three stocks to choose from:
 ° Is it possible to form a 2-stock portfolio with zero portfolio risk?
 ° What are the weights of those two stocks (to form a risk-free portfolio)?

Stock Variance Stock Variance Stock Variance
A 0.0026 B 0.0418 C 0.0296

The corresponding correlation (coefficient) matrix is given here:

A B C
A 1.0 -1.0 0.0
B -1.0 1.0 0.7
C 0.0 0.7 1.0

1. When calculating variance or standard deviation, usually there are two 
definitions, based on population or based on a sample. The difference is the 
denominator. If based on population, we have the following formula:
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If based on a sample, we have the following formula:

1. Find out whether scipy.var() and spcipy.std() functions are based on a 
sample or based on population.

2. Write a Python program to estimate the expected portfolio returns for 20 
stocks by using your own weights and the latest 10 year data.

3. For 50 stocks, select at least five years of data. Estimate volatility for each 
stock, their average will be . Then form several equal-weighted 2-stock 
portfolios and estimate their volatilities. Their average will be our . 
Continue this way and  will be the average volatility for n-stock equal-
weighted portfolios. Draw a graph with n, the number of n-stock portfolios, 
as the x axis and the volatility of the n-stock portfolio  as the y axis. 
Comment on it.

4. Find an appropriate definition for industry. Choosing seven stocks from 
each industry, estimate their correlation matrix. Then do the same thing on 
another industry. Comment on your results.

5. Write a Python program to estimate the optimal portfolio construction by 
using 10 stocks.

6. Find the average of correlations for five industries, at least 10 stocks in each 
industry.

7. To estimate the volatility of a portfolio, we have two formulae: for a 2-stock 
portfolio and for an n-stock portfolio. Show that when n equals 2, we expand 
the formula to estimate the volatility of an n-stock portfolio; we end up with 
the same formula for a 2-stock portfolio.

8. Is the following statement correct? Prove or disapprove it.

Stock returns are uncorrelated.

9. Downloading one year IBM daily data and estimate its Sharpe ratio by using 
two methods: its definition, and write a sharpe() function in Python.
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10. Update yanMonthly.pkl, http://canisius.edu/~yany/python/
yanMonthly.pkl, see the following first and last several lines. Note that for 
stock, VALUE is monthly stock price, for Fama-French factors, VALUE is their 
factor, that is, their monthly portfolio returns:
import pandas as pd
x=pd.read_pickle('c:/temp/yanMonthly.pkl')
print(x.head(2))
print(x.tail(3))
              DATE   VALUE
NAME                       
000001.SS  19901231  127.61
000001.SS  19910131  129.97
           DATE    VALUE
NAME                    
^TWII  20130930  8173.87
^TWII  20131031  8450.06
^TWII  20131122  8116.78

11. For the Markowitz's optimization, only the first two moments are used. 
Why? What are the definitions of the third and fourth moments? What is the 
impact when those two moments are ignored? How do you include them?

12. Write a Python program to estimate equal-weighed and value-weighted 
monthly returns for 10 stocks from January 2nd, 2012 to December 31st, 2013. 
The data used is yanMonthly.pkl, http://canisius.edu/~yany/python/
yanMonthly.pkl. For value-weighed returns, the weight is the number of 
shares invested times the price of the previous month.

13. For this question, assume that your school has subscribed to the Center 
for Research in Security Prices (CRSP) database. Replicate VWRETD and 
EWRETD in CRSP. Note that the monthly CRSP dataset should be used. A few 
observations from a dataset called stockMonthly.pkl are shown here:
import pandas as pd
x=pd.read_pickle("c:/temp/stockMonthly.pkl")
print(x.head())
print(x.tail())

The output is shown here:
         Date    Return  Volume   Price  SharesOutStanding
permno                                                        
10000  1985-12-31       NaN     NaN     NaN                NaN
10000  1986-01-31       NaN  1771.0 -4.3750             3680.0
10000  1986-02-28 -0.257140   828.0 -3.2500             3680.0
10000  1986-03-31  0.365385  1078.0 -4.4375             3680.0

http://canisius.edu/~yany/python/yanMonthly.pkl
http://canisius.edu/~yany/python/yanMonthly.pkl
http://canisius.edu/~yany/python/yanMonthly.pkl
http://canisius.edu/~yany/python/yanMonthly.pkl
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10000  1986-04-30 -0.098590   957.0 -4.0000             3793.0
             Date    Return     Volume     Price  
SharesOutStanding
permno                                                             
93436  2014-08-29  0.207792  1149281.0  269.7000           
124630.0
93436  2014-09-30 -0.100180  1329469.0  242.6799           
125366.0
93436  2014-10-31 -0.004030  1521398.0  241.7000           
125382.0
93436  2014-11-28  0.011667  1077170.0  244.5200           
125382.0
93436  2014-12-31 -0.090420  1271222.0  222.4100           
125382.0

14. Write a Python program to complete Modigliani and Modigliani (1997) 
performance test.

15. For several performance measures such as Sharpe ratio, Treynor ratio, and 
Sortino ratio, see here, the benefits and costs are compared by dividing them:

On the other hand, the utility function, see the following formula, also 
balances the benefits with the costs by choosing their difference:

Compare those two approaches. Could we have a more general form to 
combine those two ways?
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16. Estimating the Sharpe ratio, Treynor, and Sortino ratio for the Fama-French 
49 industries. The risk-free rate could be found at http://finance.yahoo.
com/bonds. Alternatively, the risk-free rate from ffMonthly.pkl, http://
canisius.edu/~yany/python/ffMonthly.pkl, could be used. The dataset 
used is ff49industries.pkl, which is downloadable at http://canisius.
edu/~yany/python/ff49industries.pkl. A few lines are shown here:
import pandas as pd
x=pd.read_pickle("c:/temp/ff49industries.pkl")
print(x.head(2))
          Agric    Food     Soda     Beer     Smoke    Toys     
Fun    \
192607     2.37     0.12   -99.99    -5.19     1.29     8.65     
2.50   
192608     2.23     2.68   -99.99    27.03     6.50    16.81    
-0.76   
          Books    Hshld    Clths   ...       Boxes    Trans    
Whlsl  \
192607    50.21    -0.48     8.08   ...        7.70     1.94   
-23.79   
192608    42.98    -3.58    -2.51   ...       -2.38     4.88     
5.39   
          Rtail    Meals    Banks    Insur    RlEst    Fin      
Other  
192607     0.07     1.87     4.61    -0.54     2.89    -4.85     
5.20  
192608    -0.75    -0.13    11.83     2.57     5.30    -0.57     
6.76  
[2 rows x 49 columns]

Summary
In this chapter, we first explained various concepts related to portfolio theory, such 
as covariance and correlation for a pair of stocks and for a portfolio. After that, we 
discussed various risk measures for individual stocks or portfolios, such as the 
Sharpe ratio, Treynor ratio, and Sortino ratio, how to minimize portfolio risks based 
on those measures (ratios), how to set up an objective function, how to choose an 
efficient portfolio for a given set of stocks, and how to construct an efficient frontier.

For the next chapter, Chapter 10, Options and Futures, we will explain some basic 
concepts first. Then, we will discuss the famous Black-Scholes-Merton options model. 
In addition, various trading strategies involving options will be discussed in detail.

http://finance.yahoo.com/bonds
http://finance.yahoo.com/bonds
http://canisius.edu/~yany/python/ffMonthly.pkl
http://canisius.edu/~yany/python/ffMonthly.pkl
http://canisius.edu/~yany/python/ff49industries.pkl
http://canisius.edu/~yany/python/ff49industries.pkl
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Options and Futures
In modern finance, the option theory (including futures and forwards) and its 
applications play an important role. Many trading strategies, corporate incentive 
plans, and hedging strategies include various types of options. For example, many 
executive incentive plans are based on stock options. Assume that an importer 
located in the US has just ordered a piece of machinery from England with a 
payment of £10 million in three months. The importer has a currency risk (or 
exchange rate risk). If the pound depreciates against the US dollar, the importer 
would be better off since he/she pays less US dollars to buy £10 million. On the 
contrary, if the pound appreciates against the US dollar, then the importer would 
suffer a loss. There are several ways that the importer could avoid or reduce such 
a risk: buy pounds right now, enter a futures market to buy pounds with a fixed 
exchange rate determined today, or long a call option with a fixed exercise price. 
In this chapter, we will explain the option theory and its related applications. In 
particular, the following topics will be covered:

• How to hedge currency risk, a market-wide short-term downturn
• Payoff and profit/loss functions for calls and puts and their graphical 

representations
• European versus American options
• Normal distribution, standard normal distribution, and cumulative  

normal distribution
• Black-Scholes-Merton option model with/without dividend
• Various trading strategies and their visual presentations, such as covered 

call, straddle, butterfly, and calendar spread
• Delta, gamma, and other Greeks
• The put-call parity and its graphical representation
• Graphical representation for a one-step and a two-step binomial tree model
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• Using the binomial tree method to price both European and American options
• Implied volatility, volatility smile and skewness

Options theory is an integral part of finance theory. It is difficult to image that 
a finance student would not understand it. However, it is quite demanding to 
comprehend the theory thoroughly. Many finance-major students view options 
theory as rocket science, since it involves how to solve various differential equations. 
In order to satisfy as many readers as possible, in this chapter we avoid complex 
mathematical derivations.

An option would give the option buyer a right to buy or sell something in the future 
with a fixed price determined today. If the buyer has a right to buy something in 
the future, it is called a call option. If the option buyer is entitled to sell something, 
it is called a put option. Since there are two persons (sides) for each transaction, the 
buyer pays to acquire a right, while the seller receives cash inflow today to bear an 
obligation. Unlike options, a futures contract would give the buyer and seller both 
rights and obligations. Unlike options with an initial cash flow from buyer to seller, 
for a futures contract, usually there is no initial cash flow. Forward contracts are 
quite similar to future contracts with a few exceptions. In this chapter, these two 
types of contracts (futures and forwards) are not distinguished. A forward contract 
is easier to analyze than a future contract. If a reader wants a more in-depth analysis, 
he/she should consult other related textbooks.

Introducing futures
Before discussing the basic concepts and formulas related to futures, let's review 
the concept of continuously compounded interest rates. In Chapter 3, Time Value of 
Money, we learned that the following formula could be applied to estimate the future 
value of a given present value:

Here, FV is the future value, PV is the present value, R is the effective period rate and 
n is the number of periods. For example, assume that the Annual Percentage Rate 
(APR) is 8%, compounded semiannually. If we deposit $100 today, what is its future 
value in two years? The following code shows the result:

import scipy as ps
pv=100
APR=0.08
rate=APR/2.0
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n=2
nper=n*2
fv=ps.fv(rate,nper,0,pv)
print(fv)

The output is shown here:

-116.985856

The future value is $116.99. In the preceding program, the effective semiannual 
rate is 4% since the APR is 8% compounded semiannually. In options theory, risk-
free rates and dividend yields are defined as continuously compounded. It is easy 
to derive the relationship between an effective (or APR) rate and a continuously 
compounded rate. The second way to estimate a future value for a given present 
value is shown here:

Here, Rc is the continuously compounded rate and T is the number of years. In 
other words, when applying Equation (1), we could have many combinations, 
such as annual effective rate and the number of years, effective monthly rate and 
number of months, and the like. However, this is not true for Equation (2), which has 
only one pair: continuously compounded rate and the number of years. To derive 
the relationship between one effective rate and its corresponding continuously 
compounded rate, we recommend the following simple approach: choose $1 as our 
present value and 1 year as our investment horizon. Then apply the previous two 
equations and set them equal. Assume that we know that the effective semiannual 
rate is given, 4% in the preceding case. What is its equivalent Rc?

We equate them to have the following equation:
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Taking the natural log on both sides of the previous equation, we have the following 
solution:

With a simple generalization of the preceding approach, we end up with the 
following formula to convert an effective rate to its corresponding continuously 
compounded rate:

Here, m is the compounding frequency per year: m=1, 2, 4, 12, 52, 365 for annual, 
semiannual, quarterly, monthly, weekly, and daily, respectively. Reffective is APR 
divided by m. If an APR with related compounding frequency is given, we have the 
following equivalent converting formula:

On the other hand, it is quite easy to derive the formula to estimate an effective rate 
from a given continuous rate:

To verify the preceding equation, see the following codes:

import scipy as sp
Rc=2*log(1+0.04)
print(sp.exp(Rc/2)-1
0.040000000000000036

Similarly, we have the following formula to estimate the APR from an Rc:
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For a futures contract, let's use the preceding example of an importer in the US who 
is going to pay £10 million in three months. Usually, there are two ways to present 
an exchange rate: value of the first currency per unit of the second currency, and the 
opposite. Let's treat US as domestic and England as foreign, and the exchange rate is 
quoted in dollars per pound. Assume that today the exchange rate is £1 = 1.25 USD, 
the domestic interest rate is 1% and the foreign interest rate (in England) is 2%. The 
following codes show how much we need today in terms of pounds and US dollars:

import scipy as sp
amount=5
r_foreign=0.02
T=3./12.
exchangeRateToday=1.25
poundToday=5*sp.exp(-r_foreign*T)
print("Pound needed today=", poundToday)
usToday=exchangeRateToday*poundToday
print("US dollar needed today", usToday)
('Pound needed today=', 4.9750623959634117)
('US dollar needed today', 6.2188279949542649)

The result shows that we would need £4.975 million today to satisfy the payment 
of £5 million in three months, since we could deposit £4.975 million in a bank to 
earn extra interest (at 1%). If the importer has no pounds, they could spend $6.2188 
million US dollars to purchase the amount of pounds today. Alternatively, the 
importer could long a future contract (or a few future contracts) to purchase pounds 
in three months with a fixed exchange rate determined today. The forward rate 
(future exchange rate) is given here:

Here, F is the future price (in this case future exchange rate determined today), S0  
is the spot price (in this case today's exchange rate), Rd is the domestic risk-free  
rate compounded continuously, Rf is the foreign deposit rate compounded 
continuously and T is the maturity in years. The following Python program shows 
the future price today:

import scipy as sp
def futuresExchangeRate(s0,rateDomestic,rateForeign,T):
    futureEx=s0*sp.exp((rateDomestic-rateForeign)*T)
return futureEx

# input area
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s0=1.25
rHome=0.01
rForeigh=0.02
T=3./12.
#
futures=futuresExchangeRate(s0,rHome,rForeigh,T)
print("futures=",futures)

The output is shown here:

('futures=', 1.246878902996825)

Based on the result, the exchange rate in three months should be 1.2468789 US 
dollars per pound. In other words, US dollars should have depreciated against the 
British pound. The reason is based on the two interest rates. Here is the logic based 
on the no arbitrage principle. Assume that we have $1.25 USD today. We have two 
choices: deposit in a US bank to enjoy 2%, or exchange it for 1 pound and deposit 
it in a foreign bank, enjoying 1%. Assume further, if the future exchange rate is not 
1.246879, we would have an arbitrate opportunity. Just assume that the futures price 
(for exchange rate) is $1.26 indicating that the pound is overvalued relative to the 
US dollar. An arbitrator would buy low and sell high, that is, short futures. Assume 
that we have one pound obligation in three months. Here is the arbitrage strategy: 
borrow $1.25 (USD) and sell one pound in three months with a future price of $1.26. 
At the end of three months, here is the profit of our arbitrage:

import scipy as sp
obligationForeign=1.0           # how much to pay in 3 months
f=1.26                          # future price
s0=1.25                         # today's exchange rate 
rHome=0.01
rForeign=0.02
T=3./12.
todayObligationForeign=obligationForeign*sp.exp(-rForeign*T)
usBorrow=todayObligationForeign*s0  
costDollarBorrow=usBorrow*sp.exp(rHome*T)
profit=f*obligationForeign-costDollarBorrow
print("profit in USD =", profit)

The output is shown here:

('profit in USD =', 0.013121097003174764)
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The profit is 0.15 USD. If the future price is lower than 1.246878902996825, an 
arbitrager would take an opposite position, that is, long a future contract. For stocks 
with no dividend payment before the expiry date, we have the following future price:

Here F is the futures price, S0 is the current stock price, Rf is the continuously 
compounded risk-free rate, yield is the dividend yield continuously compounded. 
For known discrete dividends before a maturity date, we have the following formula:

Here, PV(D) is the present value of all dividends before the expiry date. Futures 
could be used as a hedging tool or for speculation. Assume that a mutual fund 
manager is worried about the market's potential negative movement in a short 
term. Assume further that his/her portfolio is positively correlated with the market 
portfolio, such as S&P500 index. Thus, he/she should short futures on S&P500. Here 
is a related formula:

Here, n is the number of futures contracts to long or short, βtarget is the target beta, 
βp is the beta of our current portfolio, Vp is the value of the portfolio, and VF is the 
value of one futures contract. If n is less (bigger) than zero, it means a short (long) 
position. Here is an example. Assume John Doe is managing a portfolio worth $50 
million today and his portfolio has a beta of 1.10 with S&P500. He is worried that the 
market might go down in the next six months. It is not feasible to sell his portfolio or 
part of it because of the transaction costs. Assume that in the short term, his target 
beta is zero. For each point of S&P500, the price is $250. Since today's S&P500 is 
2297.41, the value of one futures contract is $5,743,550. The number of contracts John 
should short (or long) is given here:

import scipy as ps
# input area
todaySP500index=2297.42
valuePortfolio=50e6    
betaPortfolio=1.1
betaTarget=0
#
priceEachPoint=250  
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contractFuturesSP500=todaySP500index*priceEachPoint
n=(betaTarget-betaPortfolio)*valuePortfolio/contractFuturesSP500
print("number of contracts SP500 futures=",n)

The output is shown here:

('number of contracts SP500 futures=', -95.75959119359979)

A negative value indicates a short position. John Doe should short 96 S&P500 futures 
contracts. This is consistent with common sense, since the portfolio is positively 
correlated with the S&P500 index. The following program shows the profit or loss 
with and without hedging when the S&P500 index level falls 97 points:

# input area

import scipy as sp
sp500indexToday=2297.42
valuePortfolio=50e6    
betaPortfolio=1.1
betaTarget=0
sp500indexNmonthsLater=2200.0
#
priceEachPoint=250  
contractFuturesSP500=sp500indexToday*priceEachPoint
n=(betaTarget-betaPortfolio)*valuePortfolio/contractFuturesSP500
mySign=sp.sign(n)
n2=mySign*sp.ceil(abs(n))
print("number of contracts=",n2)
# hedging result
v1=sp500indexToday
v2=sp500indexNmonthsLater
lossFromPortfolio=valuePortfolio*(v2-v1)/v1
gainFromFutures=n2*(v2-v1)*priceEachPoint
net=gainFromFutures+lossFromPortfolio
print("loss from portfolio=", lossFromPortfolio)
print("gain from futures contract=", gainFromFutures)
print("net=", net)

The related output is shown here:

('number of contracts=', -96.0)
('loss from portfolio=', -2120204.403200113)
('gain from futures contract=', 2338080.0000000019)
('net=', 217875.59679988865)
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From the last three lines, we know that without hedging, the loss in portfolio value 
would be $2.12 million. On the other hand, after shorting 96 S&P500 futures contracts, 
the net loss is only $217,876 after the S&P500 index falls 98 points in six months. With 
a few different potential S&P500 index levels, we could find out their related hedging 
and no-hedging results. Such a hedging strategy is usually called portfolio insurance.

Payoff and profit/loss functions for call 
and put options
An option gives its buyer the right to buy (call option) or sell (put option) something 
in the future to the option seller at a predetermined price (exercise price). For 
example, if we buy a European call option to acquire a stock for X dollars, such as 
$30, at the end of three months our payoff on maturity day will be the one calculated 
using the following formula:

Here,  is the stock price at the maturity date (T), the exercise price is X (X=30 
in this case). Assume that three months later the stock price is $25. We would not 
exercise our call option to pay $30 in exchange for the stock since we could buy the 
same stock with $25 in the open market. On the other hand, if the stock price is $40, 
we will exercise our right to reap a payoff of $10, that is, buy the stock at $30 and sell 
it at $40. The following program presents the payoff function for a call:

>>>def payoff_call(sT,x):
        return (sT-x+abs(sT-x))/2

Applying the payoff function is straightforward:

>>> payoff_call(25,30)
0
>>> payoff_call(40,30)
10

The first input variable, stock price at the maturity T, could be an array as well:

>> import numpy as np
>> x=20
>> sT=np.arange(10,50,10)
>>> sT
array([10, 20, 30, 40])
>>> payoff_call(s,x)
array([  0.,   0.,  10.,  20.])
>>>
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To create a graphic presentation, we have the following codes:

import numpy as np
import matplotlib.pyplot as plt
s = np.arange(10,80,5)
x=30
payoff=(abs(s-x)+s-x)/2
plt.ylim(-10,50)
plt.plot(s,payoff)
plt.title("Payoff for a call (x=30)")
plt.xlabel("stock price")
plt.ylabel("Payoff of a call")
plt.show()

The graph is shown here:
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The payoff for a call option seller is the opposite of its buyer. It is important to 
remember that this is a zero-sum game: you win, I lose. For example, an investor 
sold three call options with an exercise price of $10. When the stock price is $15 on 
the maturity, the option buyer's payoff is $15, while the total loss to the option writer 
is $15 as well. If the call premium (option price) is c, the profit/loss function for a 
call option buyer is the difference between her payoff and her initial investment (c). 
Obviously, the timing of cash-flows of paying an option premium upfront and its 
payoff at maturity day is different. Here, we ignore the time value of money since 
maturities are usually quite short.

For a call option buyer:

For a call option seller:

The following graph shows the profit/loss functions for call option buyer and seller:

import scipy as sp
import matplotlib.pyplot as plt
s = sp.arange(30,70,5)
x=45;c=2.5
y=(abs(s-x)+s-x)/2 -c
y2=sp.zeros(len(s))
plt.ylim(-30,50)
plt.plot(s,y)
plt.plot(s,y2,'-.')
plt.plot(s,-y)
plt.title("Profit/Loss function")
plt.xlabel('Stock price')
plt.ylabel('Profit (loss)')
plt.annotate('Call option buyer', xy=(55,15), xytext=(35,20),
             arrowprops=dict(facecolor='blue',shrink=0.01),)
plt.annotate('Call option seller', xy=(55,-10), xytext=(40,-20),
             arrowprops=dict(facecolor='red',shrink=0.01),)
plt.show()
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A graphical representation is shown here:

A put option gives its buyer a right to sell a security (commodity) to the put option 
buyer in the future at a predetermined price, X. Here is its payoff function:

Here, ST is the stock price at maturity and X is the exercise price (strike price). For a 
put option buyer, the profit/loss function is given here:

The profit/loss function for a put option seller is just the opposite:

The related program and graph for the profit and loss functions for a put option 
buyer and a seller are shown here:

import scipy as sp
import matplotlib.pyplot as plt
s = sp.arange(30,70,5)
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x=45;p=2;c=2.5
y=c-(abs(x-s)+x-s)/2 
y2=sp.zeros(len(s)) 
x3=[x, x]
y3=[-30,10]
plt.ylim(-30,50)
plt.plot(s,y) 
plt.plot(s,y2,'-.') 
plt.plot(s,-y) 
plt.plot(x3,y3)
plt.title("Profit/Loss function for a put option") 
plt.xlabel('Stock price')
plt.ylabel('Profit (loss)')
plt.annotate('Put option buyer', xy=(35,12), xytext=(35,45), arrowprop
s=dict(facecolor='red',shrink=0.01),)
plt.annotate('Put option seller', xy=(35,-10), xytext=(35,-25), arrowp
rops=dict(facecolor='blue',shrink=0.01),)
plt.annotate('Exercise price', xy=(45,-30), xytext=(50,-20), arrowprop
s=dict(facecolor='black',shrink=0.01),)
plt.show()

The graph is shown here:
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European versus American options
A European option can be exercised only on maturity day, while an American option 
can be exercised any time before or on its maturity day. Since an American option 
could be held until it matures, its price (option premium) should be higher than or 
equal to its European counterpart:

An import difference is that for a European option, we have a close form solution, 
that is, the Black-Scholes-Merton option model. However, we don't have a close-
form solution for an American option. Fortunately, we have several ways to price 
an American option. Later in the chapter, we show how to use the Binomial-tree 
method, also called the CRR method, to price an American option.

Understanding cash flows, types of options, 
rights and obligations
We know that for each business contract, we have two sides: buyer versus seller. 
This is true for an option contract as well. A call buyer will pay upfront (cash output) 
to acquire a right. Since this is a zero-sum game, a call option seller would enjoy an 
upfront cash inflow and assumes an obligation.

The following table presents those positions (buyer or seller), directions of the initial 
cash flows (inflow or outflow), the option buyer's rights (buy or sell) and the option 
seller's obligations (that is, to satisfy the option seller's desires):

Buyer

(long position)

Seller

(short position)

European

Options

American

Options
Call A right to buy a security 

(commodity) at a  
pre-fixed price

An obligation to sell a 
security (commodity) at 
a pre-fixed price

Can be 
exercised 
on maturity 
day only

Can be
exercised 
any time 
before or 
on maturity 
day

Put A right to sell a security 
with a pre-fixed price

An obligation to buy

Cash
Flow

Upfront cash outflow Upfront cash inflow

Table 10.1 Long, short positions, initial cash flows, and right versus obligation
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Black-Scholes-Merton option model on 
non-dividend paying stocks
The Black-Scholes-Merton option model is a closed-form solution to price a 
European option on a stock which does not pay any dividends before its maturity 
date. If we use  or the price today, X for the exercise price, r for the continuously 
compounded risk-free rate, T for the maturity in years,  for the volatility of the 
stock, the closed-form formulae for a European call (c) and put (p) are:

Here, N() is the cumulative standard normal distribution. The following Python 
codes represent the preceding equations to evaluate a European call:

from scipy import log,exp,sqrt,stats
def bs_call(S,X,T,r,sigma):
    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))
    d2 = d1-sigma*sqrt(T)
return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

In the preceding program, the stats.norm.cdf() is the cumulative normal 
distribution, that is, N() in the Black-Scholes-Merton option model. The current stock 
price is $40, the strike price is $42, the time to maturity is six months, the risk-free 
rate is 1.5% compounded continuously, and the volatility of the underlying stock is 
20% (compounded continuously). Based on the preceding codes, the European call is 
worth $1.56:

>>>c=bs_call(40.,42.,0.5,0.015,0.2) 
>>>round(c,2)
1.56
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Generating our own module p4f
We could combine many small Python progams as one program, such as p4f.py. For 
instance, the preceding Python program called bs_call() function is included. Such 
a collection of programs offers several benefits. First, when we use the bs_call() 
function, we don't have to type those five lines. To save space, we only show a few 
functions included in p4f.py. For brevity, we remove all comments included for 
each function. Those comments are designed to help future users when issuing the 
help() function, such as help(bs_call()):

def bs_call(S,X,T,rf,sigma):
    from scipy import log,exp,sqrt,stats
    d1=(log(S/X)+(rf+sigma*sigma/2.)*T)/(sigma*sqrt(T))
    d2 = d1-sigma*sqrt(T)
    return S*stats.norm.cdf(d1)-X*exp(-rf*T)*stats.norm.cdf(d2)

def binomial_grid(n):
    import networkx as nx 
    import matplotlib.pyplot as plt 
    G=nx.Graph() 
    for i in range(0,n+1):     
        for j in range(1,i+2):         
            if i<n:             
                G.add_edge((i,j),(i+1,j))
                G.add_edge((i,j),(i+1,j+1)) 
    posG={}    #dictionary with nodes position 
    for node in G.nodes():     
        posG[node]=(node[0],n+2+node[0]-2*node[1]) 
    nx.draw(G,pos=posG)      

def delta_call(S,X,T,rf,sigma):
    from scipy import log,exp,sqrt,stats
    d1=(log(S/X)+(rf+sigma*sigma/2.)*T)/(sigma*sqrt(T))
    return(stats.norm.cdf(d1))

def delta_put(S,X,T,rf,sigma):
    from scipy import log,exp,sqrt,stats
    d1=(log(S/X)+(rf+sigma*sigma/2.)*T)/(sigma*sqrt(T))
    return(stats.norm.cdf(d1)-1)

To apply the Black-Scholes-Merton call option model, we simply use the  
following codes:

>>>import p4f
>>>c=p4f.bs_call(40,42,0.5,0.015,0.2) 
>>>round(c,2)
1.56
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The second advantage is to save space and make our programming simpler. Later in 
the chapter, this point will become clearer when we use a function called binomial_
grid(). From now onward, when a function is discussed the first time, we will offer 
the complete codes. However, when the program is used again and the program is 
quite complex, we will call it indirectly via p4f. To find out our working directory, 
use the following codes:

>>>import os
>>>print os.getcwd()

European options with known dividends
Assume that we have a known dividend d1 distributed at time T1, T1<T, where T is 
our maturity date. We can modify the original Black-Scholes-Merton option model 
by replacing S0 with S, where :

In the preceding example, if we have a known dividend of $1.5 delivered in one 
month, what is the price of the call?

>>>import p4f
>>>s0=40
>>>d1=1.5
>>>r=0.015
>>>T=6/12
>>>s=s0-exp(-r*T*d1)
>>>x=42
>>>sigma=0.2 
>>>round(p4f.bs_call(s,x,T,r,sigma),2)
1.18
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The first line of the program imports the module called p4f which contains the call 
option model. The result shows that the price of the call is $1.18, which is lower than 
the previous value ($1.56). It is understandable since the price of the underlying 
stock would drop roughly by $1.5 in one month. Because of this, the chance that we 
could exercise our call option will be smaller, that is, less likely to go beyond $42. The 
preceding argument is true for multiple known dividends distributed before T, that 
is, .

Various trading strategies
In the following table, we summarize several commonly used trading strategies 
involving various types of options:

Names Description Direction 
of initial 
cash-flow

Expectation of 
future price 
movement

Bull spread 
with calls

Buy a call (x1) sell a call (x2) [ x1< x2 ] Outflow Rise

Bull spread 
with puts

Buy a put (x1), sell a put (x2) [ x1< x2 ] Inflow Rise

Bear spread 
with puts

Buy a put (x2), sell a put (x1) [ x1 < x2 ] Outflow Fall

Bear spread 
with calls

Buy a call (x2), sell a call (x1) [x1 < x2 ] Inflow Fall

Straddle Buy a call & sell a put with the same x Outflow Rise or fall
Strip Buy two puts and a call (with the same x) Outflow Prob (fall) > prob 

(rise)
Strap Buy two calls and one put (with the same x) Outflow Prob (rise)> 

prob(fall)
Strangle Buy a call (x2) and buy a put (x1) [x1 < x2 ] Outflow Rise or fall
Butterfly 
with calls

Buy two calls (x1,x3) and sell two calls (x2) 
[x2=(x1+x3)/2]

Outflow Stay around x2

Butterfly 
with puts

Buy two puts (x1,x3) and sell two puts (x2) 
[x2=(x1+x3)/2]

Stay around x2

Calendar 
spread

Sell a call (T1) and buy a call (T2) with the 
same strike price and T1<T2

Outflow

Table 10.2 Various trading strategies
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Covered-call – long a stock and short a call
Assume that we purchase 100 shares of stock A, with a price of $10 each. Thus, the 
total cost is $1,000. If at the same time we write a call contract, one contract is worth 
100 shares, at a price of $20. Thus, our total cost will be reduced by $20. Assume 
further that the exercise price is $12. The graphic presentation of our profit and loss 
function is given here:

import matplotlib.pyplot as plt 
import numpy as np
sT = np.arange(0,40,5) 
k=15;s0=10;c=2
y0=np.zeros(len(sT))
y1=sT-s0                    # stock only
y2=(abs(sT-k)+sT-k)/2-c     # long a call 
y3=y1-y2                    # covered-call 
plt.ylim(-10,30)
plt.plot(sT,y1) 
plt.plot(sT,y2) 
plt.plot(sT,y3,'red')
plt.plot(sT,y0,'b-.') 
plt.plot([k,k],[-10,10],'black')
plt.title('Covered call (long one share and short one call)') 
plt.xlabel('Stock price')
plt.ylabel('Profit (loss)')
plt.annotate('Stock only (long one share)', xy=(24,15),xytext=(15,20),
arrowprops=dict(facecolor='blue',shrink=0.01),)
plt.annotate('Long one share, short a call', xy=(10,4), xytext=(9,25), 
arrowprops=dict(facecolor='red',shrink=0.01),)
plt.annotate('Exercise price= '+str(k), xy=(k+0.2,-10+0.5))
plt.show()
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The related graph showing the positions of a stock only, call, and covered-call is 
given here. Obviously, when the stock price is under $17 (15 +2), the covered-call  
is better than long a share:

Straddle – buy a call and a put with the same 
exercise prices
Let's look at the simplest scenario. A firm faces an uncertain event next month. The 
issue is that we are not sure about its direction, that is, a good event or bad one. To 
take advantage of such an opportunity, we could u a call and buy a put with the 
same exercise prices. This means that we will benefit either way: the stock moves up 
or down. Assume further that the exercise price is $30. The payoff of such a strategy 
is given here:

import matplotlib.pyplot as plt 
import numpy as np
sT = np.arange(30,80,5)
x=50;    c=2; p=1
straddle=(abs(sT-x)+sT-x)/2-c + (abs(x-sT)+x-sT)/2-p 
y0=np.zeros(len(sT))
plt.ylim(-6,20) 
plt.xlim(40,70) 
plt.plot(sT,y0) 
plt.plot(sT,straddle,'r')
plt.plot([x,x],[-6,4],'g-.')
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plt.title("Profit-loss for a Straddle") 
plt.xlabel('Stock price') 
plt.ylabel('Profit (loss)')
plt.annotate('Point 1='+str(x-c-p), xy=(x-p-c,0), xytext=(x-p-c,10),
arrowprops=dict(facecolor='red',shrink=0.01),) 
plt.annotate('Point 2='+str(x+c+p), xy=(x+p+c,0), xytext=(x+p+c,13),
arrowprops=dict(facecolor='blue',shrink=0.01),) 
plt.annotate('exercise price', xy=(x+1,-5))
plt.annotate('Buy a call and buy a put with the same exercise 
price',xy=(45,16))
plt.show()

The preceding graph shows whichever way the stock goes, we would profit. Could 
we lose? Obviously, when the stock does not change much, our expectation fails to 
materialize.

Butterfly with calls
When buying two calls with the exercises price of x1 and x3 and selling two calls 
with the exercise price of x2, where x2=(x1+x2)/2, with the same maturity for the 
same stock, we call it a butterfly. Its profit-loss function is shown here:

import matplotlib.pyplot as plt 
import numpy as np
sT = np.arange(30,80,5) 
x1=50;    c1=10
x2=55;    c2=7
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x3=60;    c3=5
y1=(abs(sT-x1)+sT-x1)/2-c1 
y2=(abs(sT-x2)+sT-x2)/2-c2 
y3=(abs(sT-x3)+sT-x3)/2-c3 
butter_fly=y1+y3-2*y2 
y0=np.zeros(len(sT))
plt.ylim(-20,20) 
plt.xlim(40,70) 
plt.plot(sT,y0) 
plt.plot(sT,y1) 
plt.plot(sT,-y2,'-.') 
plt.plot(sT,y3)
plt.plot(sT,butter_fly,'r') 
plt.title("Profit-loss for a Butterfly") 
plt.xlabel('Stock price')
plt.ylabel('Profit (loss)')
plt.annotate('Butterfly', xy=(53,3), xytext=(42,4), arrowprops=dict(fa
cecolor='red',shrink=0.01),)
plt.annotate('Buy 2 calls with x1, x3 and sell 2 calls with x2', 
xy=(45,16))
plt.annotate('    x2=(x1+x3)/2', xy=(45,14)) 
plt.annotate('    x1=50, x2=55, x3=60',xy=(45,12)) 
plt.annotate('    c1=10,c2=7, c3=5', xy=(45,10)) 
plt.show()

The related graph is shown here:
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The relationship between input values and  
option values
When the volatility of an underlying stock increases, both its call and put values 
increase. The logic is that when a stock becomes more volatile, we have a better 
chance to observe extreme values, that is, we have a better chance to exercise our 
option. The following Python program shows this relationship:

import numpy as np
import p4f as pf
import matplotlib.pyplot as plt
s0=30
T0=0.5
sigma0=0.2
r0=0.05
x0=30
sigma=np.arange(0.05,0.8,0.05)
T=np.arange(0.5,2.0,0.5)
call_0=pf.bs_call(s0,x0,T0,r0,sigma0)
call_sigma=pf.bs_call(s0,x0,T0,r0,sigma)
call_T=pf.bs_call(s0,x0,T,r0,sigma0)
plt.title("Relationship between sigma and call, T and call")
plt.plot(sigma,call_sigma,'b')
plt.plot(T,call_T,'r')
plt.annotate('x=Sigma, y=call price', xy=(0.6,5), xytext=(1,6), arrowp
rops=dict(facecolor='blue',shrink=0.01),)
plt.annotate('x=T(maturity), y=call price', xy=(1,3), xytext=(0.8,1), 
arrowprops=dict(facecolor='red',shrink=0.01),)
plt.ylabel("Call premium")
plt.xlabel("Sigma (volatility) or T(maturity) ")
plt.show()
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The corresponding graph is shown here:

Greeks
Delta  is defined as the derivative of the option to its underlying security price. 
The delta of a call is defined here:

The delta of a European call on a non-dividend-paying stock is defined as:
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The program of delta_call() is quite simple. Since it is included in the p4f.py, we 
could call it easily:

>>>>from p4f import *
>>> round(delta_call(40,40,1,0.1,0.2),4)
0.7257

The delta for a European put on a non-dividend-paying stock is:

>>>>from p4f import *
>>> round(delta_put(40,40,1,0.1,0.2),4)
-0.2743

Gamma is the rate of change of delta with respect to price, as shown in this formula:

For a European call (or put), its gamma is shown here, where :

The mathematical definitions of Greek letters for a European call and put are given 
in the following table:

Table 10.1 Mathematical definitions of Greek letters
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Note that in the table, 

Obviously, very few people can remember these formulae. Here is a very simple 
approach, based on their definition:

Table 10.2 A simple approach to estimating Greek letters

How to remember?

• Delta: First order derivative
• Gamma: Second order derivative
• Theta: Time (T)
• Vega: Volatility (V)
• Rho: Rate (R)

For example, based on delta's definition, we know that it is the ratio of c2 - c1 and 
s2 - s1. Thus, we could generate a small number to generate those two pairs; see 
the following codes:

from scipy import log,exp,sqrt,stats
tiny=1e-9
S=40
X=40
T=0.5
r=0.01
sigma=0.2

def bsCall(S,X,T,r,sigma):



Chapter 10

[ 359 ]

    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))
    d2 = d1-sigma*sqrt(T)
    return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

def delta1(S,X,T,r,sigma):
    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))
    return stats.norm.cdf(d1)

def delta2(S,X,T,r,sigma):
    s1=S
    s2=S+tiny
    c1=bsCall(s1,X,T,r,sigma)
    c2=bsCall(s2,X,T,r,sigma)
    delta=(c2-c1)/(s2-s1)
    return delta

print("delta (close form)=", delta1(S,X,T,r,sigma))
print("delta (tiny number)=", delta2(S,X,T,r,sigma))
('delta (close form)=', 0.54223501331161406)
('delta (tiny number)=', 0.54223835949323917)

Based on the last two values, the difference is quite small. We could apply this 
method to other Greek letters, see one end of chapter problems.

Put-call parity and its graphic 
presentation
Let's look at a call with an exercise price of $20, a maturity of three months and a 
risk-free rate of 5%. The present value of this future $20 is given here:

>>>x=20*exp(-0.05*3/12)   
>>>round(x,2)
19.75
>>>

In three months, what will be the wealth of our portfolio which consists of a call 
on the same stock plus $19.75 cash today? If the stock price is below $20, we don't 
exercise the call and keep the cash. If the stock price is above $20, we use our cash of 
$20 to exercise our call option to own the stock. Thus, our portfolio value will be the 
maximum of those two values: stock price in three months or $20, that is, max(s,20).
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On the other hand, how about a portfolio with a stock plus a put option with an 
exercise price of $20? If the stock price falls by $20, we exercise the put option and 
get $20. If the stock price is above $20, we simply keep the stock. Thus, our portfolio 
value will be the maximum of those two values: stock price in three months or $20, 
that is, max(s,20).

Thus, for both portfolios we have the same terminal wealth of max(s,20). Based on the 
no-arbitrage principle, the present values of those two portfolios should be equal. We 
call this put-call parity:

When the stock has known dividend payments before its maturity date, we have the 
following equality:

Here, D is the present value of all dividends before their maturity date (T). The 
following Python program offers a graphic presentation of the put-call parity:

import pylab as pl 
import numpy as np 
x=10
sT=np.arange(0,30,5) 
payoff_call=(abs(sT-x)+sT-x)/2 
payoff_put=(abs(x-sT)+x-sT)/2 
cash=np.zeros(len(sT))+x

def graph(text,text2=''): 
    pl.xticks(())
    pl.yticks(())
    pl.xlim(0,30)
    pl.ylim(0,20) 
    pl.plot([x,x],[0,3])
    pl.text(x,-2,"X");
    pl.text(0,x,"X")
    pl.text(x,x*1.7, text, ha='center', va='center',size=10, alpha=.5) 
    pl.text(-5,10,text2,size=25)
    
pl.figure(figsize=(6, 4))
pl.subplot(2, 3, 1); graph('Payoff of call');       pl.plot(sT,payoff_
call) 
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pl.subplot(2, 3, 2); graph('cash','+');             pl.plot(sT,cash)
pl.subplot(2, 3, 3); graph('Porfolio A ','=');   
pl.plot(sT,cash+payoff_call)
pl.subplot(2, 3, 4); graph('Payoff of put ');       pl.plot(sT,payoff_
put) 
pl.subplot(2, 3, 5); graph('Stock','+');       pl.plot(sT,sT)
pl.subplot(2, 3, 6); graph('Portfolio B','=');   pl.plot(sT,sT+payoff_
put) 
pl.show()

The output is shown here:

The put-call ratio represents the perception of investors jointly towards the future. If 
there is no obvious trend, that is, we expect a normal future, then the put-call ratio 
should be close to one. On the other hand, if we expect a much brighter future, the 
ratio should be lower than one.

The following code shows a ratio of this type over the years. First, we have to 
download the data from CBOE.

Perform the following steps:

1. Go to http://www.cboe.com/.
2. Click on Quotes & Data in the menu bar.
3. Find put call ratio, that is, http://www.cboe.com/data/putcallratio.

aspx.
4. Click on CBOE Total Exchange Volume and Put/Call Ratios (11-01-2006 to 

present) under Current.

For the data, readers can download it at http://canisius.
edu/~yany/data/totalpc.csv.

http://www.cboe.com/
http://www.cboe.com/data/putcallratio.aspx
http://www.cboe.com/data/putcallratio.aspx
http://canisius.edu/~yany/data/totalpc.csv
http://canisius.edu/~yany/data/totalpc.csv
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The following codes shows the trends of a call-put ratio:

import pandas as pd
import scipy as sp
from matplotlib.pyplot import *
infile='c:/temp/totalpc.csv'
data=pd.read_csv(infile,skiprows=2,index_col=0,parse_dates=True)
data.columns=('Calls','Puts','Total','Ratio') 
x=data.index
y=data.Ratio 
y2=sp.ones(len(y)) 
title('Put-call ratio') 
xlabel('Date') 
ylabel('Put-call ratio') 
ylim(0,1.5)
plot(x, y, 'b-')
plot(x, y2,'r') 
show()

The related graph is shown here:
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The put-call ratio for a short period with  
a trend
Based on the preceding program, we could choose a shorter period with a trend, as 
shown in the following code:

import scipy as sp
import pandas as pd
from matplotlib.pyplot import * 
import matplotlib.pyplot as plt 
from datetime import datetime 
import statsmodels.api as sm

data=pd.read_csv('c:/temp/totalpc.csv',skiprows=2,index_col=0,parse_
dates=True)
data.columns=('Calls','Puts','Total','Ratio') 
begdate=datetime(2013,6, 1) 
enddate=datetime(2013,12,31)
data2=data[(data.index>=begdate) & (data.index<=enddate)] 
x=data2.index
y=data2.Ratio 
x2=range(len(x)) 
x3=sm.add_constant(x2) 
model=sm.OLS(y,x3) 
results=model.fit()

#print results.summary() 
alpha=round(results.params[0],3) 
slope=round(results.params[1],3) 
y3=alpha+sp.dot(slope,x2) 
y2=sp.ones(len(y))
title('Put-call ratio with a trend') 
xlabel('Date') 
ylabel('Put-call ratio') 
ylim(0,1.5)
plot(x, y, 'b-')
plt.plot(x, y2,'r-.')
plot(x,y3,'y+')
plt.figtext(0.3,0.35,'Trend: intercept='+str(alpha)+',slope='+str(slo
pe)) 
show()
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The corresponding graph is shown here:

Binomial tree and its graphic 
presentation
The binomial tree method was proposed by Cox, Ross, and Robinstein in 1979. 
Because of this, it is also called the CRR method. Based on the CRR method, we have 
the following two-step approach. First, we draw a tree, such as the following one-
step tree. Assume that our current stock value is S. Then, there are two outcomes of 
Su and Sd, where u>1 and d<1, see the following code:

import matplotlib.pyplot as plt 
plt.xlim(0,1) 
plt.figtext(0.18,0.5,'S')
plt.figtext(0.6,0.5+0.25,'Su')
plt.figtext(0.6,0.5-0.25,'Sd')

plt.annotate('',xy=(0.6,0.5+0.25), xytext=(0.1,0.5), arrowprops=dict(f
acecolor='b',shrink=0.01))
plt.annotate('',xy=(0.6,0.5-0.25), xytext=(0.1,0.5), arrowprops=dict(f
acecolor='b',shrink=0.01))
plt.axis('off')
plt.show()
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The graph is shown here:

Obviously, the simplest tree is a one-step tree. Assume that today's price is $10, the 
exercise price is $11, and a call option will mature in six months. In addition, assume 
that we know that the price will have two outcomes: moving up (u=1.15) or moving 
down (d=0.9). In other words, the final values are either $11 or $9. Based on such 
information, we have the following graph showing the prices for such a one-step 
binomial tree:

The codes to generate the preceding graph are shown here.

The codes are based on the codes at https://pypi.python.org/pypi/PyFi:

import networkx as nx
import matplotlib.pyplot as plt 
plt.figtext(0.08,0.6,"Stock price=$20") 
plt.figtext(0.75,0.91,"Stock price=$22") 

https://pypi.python.org/pypi/PyFi
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plt.figtext(0.75,0.87,"Option price=$1")
plt.figtext(0.75,0.28,"Stock price=$18") 
plt.figtext(0.75,0.24,"Option price=0") 
n=1
def binomial_grid(n): 
    G=nx.Graph()
    for i in range(0,n+1):
        for j in range(1,i+2): 
            if i<n:
                G.add_edge((i,j),(i+1,j))
                G.add_edge((i,j),(i+1,j+1))
    posG={}
    for node in G.nodes(): 
        posG[node]=(node[0],n+2+node[0]-2*node[1])
    nx.draw(G,pos=posG) 
binomial_grid(n)
plt.show()

In the preceding program, we generate a function called binomial_grid() since we 
will call this function many times later in the chapter. Since we know beforehand 
that we will have two outcomes, we can choose an appropriate combination of stock 
and call options to make our final outcome with certainty, that is, the same terminal 
values. Assume that we choose an appropriate delta shares of underlying security 
plus one call to have the same terminal value at the end of one period, that is, 

.

Thus,  . This means that if we long 0.4 shares and short one call 
option, our final wealth will be the same, 0.4*11.5-1 =3.6 when stock moves up or 
0.4*9=3.6 when the stock moves down. Assume further that if the continuously 
compounded risk-free is 0.12%, then the value of today's portfolio will be equivalent 
to the discounted future certain value of 4.5, that is, 0.4*10 – c=pv(3.6). That is, 

. If using Python, we have the following result:

>>>round(0.4*10-exp(-0.012*0.5)*3.6,2)
0.42
>>>
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For a two-step binomial tree, we have the following codes:

import p4f
plt.figtext(0.08,0.6,"Stock price=$20")
plt.figtext(0.08,0.56,"call =7.43")
plt.figtext(0.33,0.76,"Stock price=$67.49")
plt.figtext(0.33,0.70,"Option price=0.93")
plt.figtext(0.33,0.27,"Stock price=$37.40")
plt.figtext(0.33,0.23,"Option price=14.96")
plt.figtext(0.75,0.91,"Stock price=$91.11")
plt.figtext(0.75,0.87,"Option price=0")
plt.figtext(0.75,0.6,"Stock price=$50")
plt.figtext(0.75,0.57,"Option price=2")
plt.figtext(0.75,0.28,"Stock price=$27.44")
plt.figtext(0.75,0.24,"Option price=24.56")
n=2
p4f.binomial_grid(n)

Based on the CRR method, we have the following procedure:

1. Draw a n-step tree.
2. At the end of n-step, estimate terminal prices.
3. Calculate the option value at each node based on the terminal price, exercise, 

call or put.
4. Discount it back one step, that is, from nth to nth-1, according to the risk-

neutral probability.
5. Repeat the previous step until we find the final value at step 0. The formulas 

for u, d, p are given here:
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Here, u is the up movement, d is the down movement,  is the volatility of the 
underlying security, r is the risk-free rate,  is the step, that is, , T is the 
maturity in years, n is the number of steps, q is the dividend yield, and p is the  
risk-neutral probability of an up movement. The binomial_grid() function is 
based on the functions shown under the one-step binomial tree graphic presentation. 
Again, as we mentioned before, this function is included in the grand master file 
called p4fy.py. The output graph is shown here. One obvious result is that the 
preceding Python program is very simple and straight forward. Here, let us use a 
two-step binomial tree to explain the whole process. Assume that the current stock 
price is $10, the exercise price is $10, the maturity is three months, the number of 
steps is two, the risk-free rate is 2%, and the volatility of the underlying security is 
0.2. The following Python codes would generate a two-step tree:

import p4f
from math import sqrt,exp 
import matplotlib.pyplot as plt
s=10
r=0.02
sigma=0.2
T=3./12
x=10
n=2
deltaT=T/n
q=0 
u=exp(sigma*sqrt(deltaT))
d=1/u 
a=exp((r-q)*deltaT)
p=(a-d)/(u-d) 
su=round(s*u,2);
suu=round(s*u*u,2) 
sd=round(s*d,2)
sdd=round(s*d*d,2) 
sud=s

plt.figtext(0.08,0.6,'Stock '+str(s)) 
plt.figtext(0.33,0.76,"Stock price=$"+str(su)) 
plt.figtext(0.33,0.27,'Stock price='+str(sd)) 
plt.figtext(0.75,0.91,'Stock price=$'+str(suu)) 
plt.figtext(0.75,0.6,'Stock price=$'+str(sud)) 
plt.figtext(0.75,0.28,"Stock price="+str(sdd)) 
p4f.binomial_grid(n)
plt.show()
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The tree is shown here:

Now, we use the risk-neutral probability to discount each value one step backward. 
The codes and the graph are given here:

import p4f
import scipy as sp
import matplotlib.pyplot as plt
s=10;x=10;r=0.05;sigma=0.2;T=3./12.;n=2;q=0    # q is dividend yield 
deltaT=T/n    # step
u=sp.exp(sigma*sp.sqrt(deltaT)) 
d=1/u
a=sp.exp((r-q)*deltaT) 
p=(a-d)/(u-d)
s_dollar='S=$'
c_dollar='c=$' 
p2=round(p,2)
plt.figtext(0.15,0.91,'Note: x='+str(x)+', r='+str(r)+', deltaT='+str(
deltaT)+',p='+str(p2))
plt.figtext(0.35,0.61,'p')
plt.figtext(0.65,0.76,'p')
plt.figtext(0.65,0.43,'p')
plt.figtext(0.35,0.36,'1-p')
plt.figtext(0.65,0.53,'1-p')
plt.figtext(0.65,0.21,'1-p')
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# at level 2 
su=round(s*u,2);
suu=round(s*u*u,2) 
sd=round(s*d,2);
sdd=round(s*d*d,2) 
sud=s
c_suu=round(max(suu-x,0),2) 
c_s=round(max(s-x,0),2) 
c_sdd=round(max(sdd-x,0),2) 
plt.figtext(0.8,0.94,'s*u*u') 
plt.figtext(0.8,0.91,s_dollar+str(suu)) 
plt.figtext(0.8,0.87,c_dollar+str(c_suu)) 
plt.figtext(0.8,0.6,s_dollar+str(sud)) 
plt.figtext(0.8,0.64,'s*u*d=s') 
plt.figtext(0.8,0.57,c_dollar+str(c_s)) 
plt.figtext(0.8,0.32,'s*d*d') 
plt.figtext(0.8,0.28,s_dollar+str(sdd)) 
plt.figtext(0.8,0.24,c_dollar+str(c_sdd))

# at level 1
c_01=round((p*c_suu+(1-p)*c_s)*sp.exp(-r*deltaT),2) 
c_02=round((p*c_s+(1-p)*c_sdd)*sp.exp(-r*deltaT),2)

plt.figtext(0.43,0.78,'s*u') 
plt.figtext(0.43,0.74,s_dollar+str(su)) 
plt.figtext(0.43,0.71,c_dollar+str(c_01)) 
plt.figtext(0.43,0.32,'s*d') 
plt.figtext(0.43,0.27,s_dollar+str(sd)) 
plt.figtext(0.43,0.23,c_dollar+str(c_02))
# at level 0 (today)

c_00=round(p*sp.exp(-r*deltaT)*c_01+(1-p)*sp.exp(-r*deltaT)*c_02,2) 
plt.figtext(0.09,0.6,s_dollar+str(s)) 
plt.figtext(0.09,0.56,c_dollar+str(c_00)) 
p4f.binomial_grid(n)
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The tree is shown here:

Here, we explain a few values shown in the preceding graph. At the highest node 
(s*u*u), since the terminal stock price is 11.52 and the exercise price is 10, the call 
value is 1.52 (11.52-10). Similarly, at node s*u*d=s the call value is 0 since 10-10=0. 
For a call value of 0.8, we have the following verification:

>>>p
0.5266253390068362
>>>deltaT
0.125
>>>v=(p*1.52+(1-p)*0)*exp(-r*deltaT)
>>>round(v,2)
0.80
>>>

Binomial tree (CRR) method for European 
options
The following codes are for the binomial-tree method to price a European option:

def binomialCallEuropean(s,x,T,r,sigma,n=100):
    from math import exp,sqrt 
    deltaT = T /n
    u = exp(sigma * sqrt(deltaT)) 
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    d = 1.0 / u
    a = exp(r * deltaT)
    p = (a - d) / (u - d)
    v = [[0.0 for j in xrange(i + 1)]  for i in xrange(n + 1)] 
    for j in xrange(i+1):
        v[n][j] = max(s * u**j * d**(n - j) - x, 0.0) 
    for i in xrange(n-1, -1, -1):
        for j in xrange(i + 1):
            v[i][j]=exp(-r*deltaT)*(p*v[i+1][j+1]+(1.0-p)*v[i+1][j]) 
    return v[0][0]

To apply the function, we give it a set of input values. For comparison, the result 
based on the Black-Scholes-Merton option model is shown here as well:

>>> binomialCallEuropean(40,42,0.5,0.1,0.2,1000) 
2.278194404573134
>>> bs_call(40,42,0.5,0.1,0.2) 
2.2777803294555348
>>>

Binomial tree (CRR) method for American 
options
Unlike the Black-Scholes-Merton option model, which can only be applied to 
European options, the binomial tree (CRR method) can be used to price American 
options. The only difference is that we have to consider the early exercise:

def binomialCallAmerican(s,x,T,r,sigma,n=100):
    from math import exp,sqrt
    import numpy as np
    deltaT = T /n
    u = exp(sigma * sqrt(deltaT)) 
    d = 1.0 / u
    a = exp(r * deltaT)
    p = (a - d) / (u - d)
    v = [[0.0 for j in np.arange(i + 1)] for i in np.arange(n + 1)] 
    for j in np.arange(n+1):
        v[n][j] = max(s * u**j * d**(n - j) - x, 0.0) 
    for i in np.arange(n-1, -1, -1):
        for j in np.arange(i + 1):
            v1=exp(-r*deltaT)*(p*v[i+1][j+1]+(1.0-p)*v[i+1][j]) 
            v2=max(v[i][j]-x,0)           # early exercise 
            v[i][j]=max(v1,v2)
    return v[0][0]
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The key difference between pricing an American call option and pricing a European 
is its early exercise opportunity. In the preceding program, the last several lines 
reflect this. For each node, we estimate two values: v1 is for the discounted value 
and v2 is the payoff from an early exercise. We choose a higher value, max(v1, v2). 
If using the same set of values to apply this binomial tree to price an American call, 
we have the following value. It is understandable the final result is higher than a 
European call counterpart:

>>> call=binomialCallAmerican(40,42,0.5,0.1,0.2,1000)
>>> round(call,2)
2.28
>>>

Hedging strategies
After selling a European call, we could hold  shares of the same stock to hedge 
our position. This is named a delta hedge. Since the delta  is a function of 
the underlying stock (S), to maintain an effective hedge we have to rebalance our 
holding constantly. This is called dynamic hedging. The delta of a portfolio is the 
weighted deltas of individual securities in the portfolio. Note that when we short a 
security, its weight will be negative:

Assume that a US importer will pay £10 million in three months. He or she is 
concerned with a potential depreciation of the US dollar against the pound. There 
are several ways to hedge such a risk: buy pounds now, enter a futures contract 
to buy £10 million in three months with a fixed exchange rate, or buy call options 
with a fixed exchange rate as its exercise price. The first choice is costly since the 
importer does not need pounds today. Entering a future contract is risky as well 
since an appreciation of the US dollar would cost the importer extra money. On the 
other hand, entering a call option will guarantee a maximum exchange rate today. 
At the same time, if the pound depreciates, the importer will reap the benefits. Such 
activities are called hedging since we take the opposite position of our risks.
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For the currency options, we have the following equations:

Here,  is the exchange rate in US dollars per foreign currency,  is the domestic 
risk-free, rate and  is the foreign country's risk-free rate.

Implied volatility
From the previous sections, we know that for a set of input variables—S (the present 
stock price), X (the exercise price), T (the maturity date in years), r (the continuously 
compounded risk-free rate), and sigma (the volatility of the stock, that is, the 
annualized standard deviation of its returns)—we could estimate the price of a 
call option based on the Black-Scholes-Merton option model. Recall that to price a 
European call option, we have the following Python code of five lines:

def bs_call(S,X,T,r,sigma):
    from scipy import log,exp,sqrt,stats
d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))
d2 = d1-sigma*sqrt(T)
return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

After entering a set of five values, we can estimate the call price as follows:

>>>bs_call(40,40,0.5,0.05,0.25)
3.3040017284767735
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On the other hand, if we know S, X, T, r, and c, how can we estimate sigma? Here, 
sigma is our implied volatility. In other words, if we are given a set values such as 
S=40, X=40, T=0.5, r=0.05, and c=3.30, we should find out the value of sigma, and it 
should be equal to 0.25. In this chapter, we will learn how to estimate the implied 
volatility. Actually, the underlying logic to figure out the implied volatility is very 
simple: trial and error. Let's use the previous example as an illustration. We have five 
values—S=40, X=40, T=0.5, r=0.05, and c=3.30. The basic design is that after inputting 
100 different sigmas, plus the first four input values shown earlier, we have 100 
call prices. The implied volatility is the sigma that achieves the smallest absolute 
difference between the estimated call price and 3.30. Of course, we could increase the 
number of trials to achieve a higher precision, that is, more decimal places.

Alternatively, we could adopt another conversion criterion: we stop when the 
absolute difference between our estimated call price and the given call value is less 
than a critical value, such as 1 cent, that is, |c-3.30|<0.01. Since it is not a good idea 
to randomly pick up 100 or 1,000 different sigmas, we systematically choose those 
values, that is, use a loop by selecting those sigmas systematically. Next, we will 
discuss two types of loops: a for loop and a while loop. Implied volatility function 
based on a European call. Ultimately, we could write a function to estimate the 
implied volatility based on a European call. To save space, we remove all comments 
and examples from the program as shown:

def implied_vol_call(S,X,T,r,c):
    from scipy import log,exp,sqrt,stats
    for i in range(200):
        sigma=0.005*(i+1)
        d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))
        d2 = d1-sigma*sqrt(T)
        diff=c-(S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2))
        if abs(diff)<=0.01:
            return i,sigma, diff

With a set of input values, we could apply the previous program easily as follows:

>>>implied_vol_call(40,40,0.5,0.05,3.3)
 (49, 0.25, -0.0040060797372882817)
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Similarly, we could estimate an implied volatility based on a European put option 
model. In the following program, we design a function named implied_vol_put_
min(). There are several differences between this function and the previous one. 
First, the current function depends on a put option instead of a call. Thus, the last 
input value is a put premium instead of a call premium. Second, the conversion 
criterion is that an estimated price and the given put price have the smallest 
difference. In the previous function, the conversion criterion is when the absolute 
difference is less than 0.01. In a sense, the current program will guarantee an implied 
volatility while the previous program does not guarantee an output:

def implied_vol_put_min(S,X,T,r,p):
    from scipy import log,exp,sqrt,stats 
    implied_vol=1.0
    min_value=100.0
    for i in xrange(1,10000): 
        sigma=0.0001*(i+1)
        d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T)) 
        d2 = d1-sigma*sqrt(T)
        put=X*exp(-r*T)*stats.norm.cdf(-d2)-S*stats.norm.cdf(-d1) 
        abs_diff=abs(put-p)
        if abs_diff<min_value: 
            min_value=abs_diff 
            implied_vol=sigma 
            k=i
        put_out=put
    print ('k, implied_vol, put, abs_diff') 
    return k,implied_vol, put_out,min_value

Let's use a set of input values to estimate the implied volatility. After that, we will 
explain the logic behind the previous program. Assume S=40, X=40, T=12 months, 
r=0.1, and the put price is $1.50, as shown in the following code:

>>>implied_vol_put_min(40,40,1.,0.1,1.501)
k, implied_vol, put, abs_diff
(1999, 0.2, 12.751879946129757, 0.00036735530273501737)

The implied volatility is 20 percent. The logic is that we assign a big value, such as 
100, to a variable called min_value. For the first sigma with a value of 0.0002, we 
have an almost zero put value. Thus, the absolute difference is 1.50, which is smaller 
than 100. Because of this, our min_value variable will be replaced with the value 
1.50. We continue this way until we go through the loop. For the recorded minimum 
value, its corresponding sigma will be our implied volatility. We could optimize 
the previous program by defining some intermediate values. For example, in the 
previous program, we estimate ln(S/X) 10,000 times. Actually, we define a new 
variable such as log_S_over_X, estimate its value just once, and use it 10,000 times. 
This is true for sigma*sigma/2., and sigman*sqrt(T):
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Binary-search
To estimate the implied volatility, the logic underlying the earlier methods is to 
run the Black-Scholes-Merton option model 100 times and choose the sigma value 
that achieves the smallest difference between the estimated option price and the 
observed price. Although the logic is easy to understand, such an approach is not 
efficient since we need to call the Black-Scholes-Merton option model a few hundred 
times. To estimate a few implied volatilities, such an approach would not pose any 
problems. However, under two scenarios, such an approach is problematic. First, 
if we need higher precision, such as sigma=0.25333, or we have to estimate several 
million implied volatilities, we need to optimize our approach. Let's look at a simple 
example. Assume that we randomly pick up a value between one and 5,000. How 
many steps do we need to match this value if we sequentially run a loop from one to 
5,000? A binomial search is the log(n) worst-case scenario when linear search is the n 
worst case scenario. Thus, to search a value from one to 5,000, a linear search would 
need 5,000 steps (average 2,050) in a worst-case scenario, while a binary search 
would need 12 steps (average six) in a worst-case scenario. The following Python 
program performs a binary search:

def binary_search(x, target, my_min=1, my_max=None):
    if my_max is None:
       my_max = len(x) - 1
    while my_min <= my_max:
      mid = (my_min + my_max)//2
      midval = x[mid]
      if midval < target:
          my_min = my_mid + 1
      elif midval > target:
          my_max = mid - 1
      else:
          return mid
    raise ValueError

The following program shows its application for searching an implied volatility:

from scipy import log,exp,sqrt,stats
S=42;X=40;T=0.5;r=0.01;c=3.0
def bsCall(S,X,T,r,sigma):
    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T)) 
    d2 = d1-sigma*sqrt(T)
    return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)
#
def impliedVolBinary(S,X,T,r,c):
    k=1
    volLow=0.001
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    volHigh=1.0
    cLow=bsCall(S,X,T,r,volLow)
    cHigh=bsCall(S,X,T,r,volHigh)
    if cLow>c or cHigh<c:
        raise ValueError
    while k ==1:
        cLow=bsCall(S,X,T,r,volLow)
        cHigh=bsCall(S,X,T,r,volHigh)
        volMid=(volLow+volHigh)/2.0
        cMid=bsCall(S,X,T,r,volMid)
        if abs(cHigh-cLow)<0.01:
            k=2
        elif cMid>c:
            volHigh=volMid
        else:
            volLow=volMid
    return volMid, cLow, cHigh
#
print("Vol,     cLow,      cHigh")
print(impliedVolBinary(S,X,T,r,c))
Vol,     cLow,      cHigh
(0.16172778320312498, 2.998464657758511, 3.0039730848624977)

Based on the result, the implied volatility is 16.17%. In the preceding program, the 
conversion condition, when the program should stop, is the difference between two 
call options. Readers could set up other conversion conditions. To avoid an infinitive 
loop, we have a screen condition of:

    if cLow>c or cHigh<c:
        raise ValueError

Retrieving option data from Yahoo! 
Finance
There are many sources of option data that we can use for our investments, research 
or teaching. One of them is Yahoo! Finance.

To retrieve option data for IBM, we have the following procedure:

1. Go to http://finance.yahoo.com.
2. Type IBM in the search box.
3. Click on Options in the navigation bar.

http://finance.yahoo.com
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The related page is http://finance.yahoo.com/quote/IBM/options?p=IBM. A 
screenshot of this web page is as follows:

Volatility smile and skewness
Obviously, each stock should possess one value for its volatility. However, when 
estimating implied volatility, different strike prices might offer us different implied 
volatilities. More specifically, the implied volatility based on out-of-the-money 
options, at-the-money options, and in-the-money options might be quite different. 
Volatility smile is the shape going down then up with the exercise prices, while 
the volatility skewness is downward or upward sloping. The key is that investors' 
sentiments and the supply and demand relationship have a fundamental impact 
on the volatility skewness. Thus, such a smile or skewness provides information on 
whether investors, such as fund managers, prefer to write calls or puts, as shown in 
the following code:

import datetime
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.finance import quotes_historical_yahoo_ochl as getData

# Step 1: input area
infile="c:/temp/callsFeb2014.pkl"
ticker='IBM'
r=0.0003                          # estimate
begdate=datetime.date(2010,1,1)   # this is arbitrary 
enddate=datetime.date(2014,2,1)   # February 2014

# Step 2: define a function 
def implied_vol_call_min(S,X,T,r,c): 
    from scipy import log,exp,sqrt,stats 
    implied_vol=1.0

http://finance.yahoo.com/quote/IBM/options?p=IBM
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    min_value=1000
    for i in range(10000): 
        sigma=0.0001*(i+1)
        d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T)) 
        d2 = d1-sigma*sqrt(T)
        c2=S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2) 
        abs_diff=abs(c2-c)
        if abs_diff<min_value: 
            min_value=abs_diff 
            implied_vol=sigma 
            k=i
    return implied_vol

# Step 3: get call option data 
calls=pd.read_pickle(infile)
exp_date0=int('20'+calls.Symbol[0][len(ticker):9])  # find expiring 
date
p = getData(ticker, begdate,enddate,asobject=True, adjusted=True)
s=p.close[-1]                    # get current stock price 
y=int(exp_date0/10000)
m=int(exp_date0/100)-y*100
d=exp_date0-y*10000-m*100
exp_date=datetime.date(y,m,d)    # get exact expiring date 
T=(exp_date-enddate).days/252.0  # T in years

# Step 4: run a loop to estimate the implied volatility 
n=len(calls.Strike)   # number of strike
strike=[]             # initialization
implied_vol=[]        # initialization
call2=[]              # initialization
x_old=0               # used when we choose the first strike 

for i in range(n):
    x=calls.Strike[i]
    c=(calls.Bid[i]+calls.Ask[i])/2.0
    if c >0:
        print ('i=',i,'',    c='',c)
        if x!=x_old:
            vol=implied_vol_call_min(s,x,T,r,c)
            strike.append(x)
            implied_vol.append(vol)
            call2.append(c)
            print x,c,vol
            x_old=x

# Step 5: draw a smile 
plt.title('Skewness smile (skew)') 
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plt.xlabel('Exercise Price') 
plt.ylabel('Implied Volatility')
plt.plot(strike,implied_vol,'o')
plt.show()

Note that the .pickle dataset can be downloaded at  
http://canisus.edu/~yan/python/callsFeb2014.pkl.

The graph related to volatility smile is shown here:
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Appendix A – data case 6: portfolio insurance
Portfolio insurance is a method of hedging a portfolio of stocks against market risk 
by short selling stock index futures. This hedging technique is frequently used by 
institutional investors when the market direction is uncertain or volatile. Assume that 
you manage one of the industry portfolios with a current value of $50 million. If you 
expect the whole market to be quite volatile in next three months--in other words, the 
market might go down significantly--what might be our choices at the moment?

• Alternative #1: Sell stocks right now and buy them back in a few months
• Alternative #2: Sell S&P500 index futures

Obviously, the first alternative is costly because of the transaction cost:

1. Get five industry portfolios:
1. To retrieve Fama-French five-industry portfolio, go to Prof. French's 

Data Library.
2. Go to http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data_library.html.
3. Search for the keyword Industry; see the following screenshot:

4. Download the data and estimate beta for those five industries. Let's 
see what happens when the market is down one point. Here is 
today's S&P500 level:

5. If the market goes down one point, the long position (S&P500 futures 
contract) would lose $250, while the short position would gain $250. 
The size of one futures contract on S&P500 is index level *250.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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6. If we want to hedge our $5 portfolio, we should short n futures 
contracts. For the specification, see http://www3.canisius.
edu/~yany/doc/sp500futures.pdf:

Here, Vp is the portfolio value, βp is the portfolio beta, and the index level is 
the S&P500 index level. Applying the preceding formula, we should short 
ten futures contracts. Assume, in three months, it is 2090.4, that is, ten points 
down. Since we know that beta is a measure of market risk, assume that 
annul risk-free rate is 1%, that is, 0.25% for three months.

2. Estimate the portfolio beta by applying the following linear regression:

3. Identify several moments when the market falls dramatically.
You can use a business cycle Python dataset called:

import pandas as pd
x=pd.read_pickle("c:/temp/businessCycle.pkl")
print(x.head())
print(x.tail())
date             
1926-10-01  1.000
1926-11-01  0.846
1926-12-01  0.692
1927-01-01  0.538
1927-02-01  0.385
   cycle
date             
2009-02-01 -0.556
2009-03-01 -0.667
2009-04-01 -0.778
2009-05-01 -0.889
2009-06-01 -1.000

http://www3.canisius.edu/~yany/doc/sp500futures.pdf
http://www3.canisius.edu/~yany/doc/sp500futures.pdf
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Note that -1 means deep in recession, while 1 means the 
economy is expanding.

4. Estimate the loss with and without a hedging strategy. What is the loss  
of your portfolio? What is the gain if you short one future contract of  
S&P500 future?

5. Repeat the whole processing that we have 1,000 shares of IBM, 2,000 shares 
of DELL, and 5,000 shares of Citi Group, and 7,000 shares of IBM.

 ° What is the total market value today?
 ° What is the portfolio beta? [note: you can use the latest five-year 

monthly data to estimate beta]
 ° If we want to hedge our portfolio by using S&P500 futures contracts, 

how many contracts should we long (short)?
 ° If the market down by 5%, what is our portfolio loss and what is the 

gain in terms of our hedging position?

The following formula is a general one:

Here, n is the number of contracts, β* is our target beta, VF is the value of one futures 
contract. Vp and βp are defined previously. If n is positive (negative), it means a long 
(short) position. In the preceding case for using S&P500 futures, VF=S&P500 index 
level *250.

Think about market timing by using S&P500 futures to change 
your portfolio beta for bad times.

Exercises
1. If the APR is 5% compounded quarterly, what is its equivalent continuously 

compounded rate?
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2. The value of a portfolio is $4.77 million today with a beta of 0.88. If the 
portfolio manager explains the market will surge in the next three months 
and s/he intends to increase her/ his portfolio beta from 0.88 to 1.20 in just 
three months by using S&P500 futures, how many contracts should s/he 
long or short? If the S&P500 index increases by 70 points what will be her/
his gain or loss? How about if the S&P500 falls by 50 points instead?

3. Write a Python program to price a call option.
4. Explain the empty shell method when writing a complex Python program.
5. Explain the logic behind the so-called comment-all-out method when writing 

a complex Python program.
6. Explain the usage of the return value when we debug a program.
7. When we write the CND (cumulative standard normal distribution), we 

could define a1, a2, a3, a4, and a5 separately. What are the differences 
between the following two approaches?

 ° Current approach: (a1,a2,a3,a4
,a5)=(0.31938153,-0.356563782,1.781477937,-1.821255978,1.330274429)

8. An alternative approach:
 ° a1=0.31938153
 ° a2=-0.356563782
 ° a3=1.781477937
 ° a4=-1.821255978
 ° a5=1.330274429

9. What is the difference between an American call and a European call?
10. What is the unit of rf in the Black-Scholes-Merton option model?
11. If we are given an annual rate of 3.4% compounded semi-annually, what is 

the value of rf we should use for the Black-Scholes-Merton option model?
12. How do you use options to hedge?
13. How do you treat predetermined cash dividends to price a European call?
14. Why is an American call worth more than a European call?
15. Assume you are a mutual manager and your portfolio's β is strongly 

correlated with the market. You are worried about the short-term fall of the 
market. What could you do to protect your portfolio?
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16. The current price of stock A is $38.5, the strike prices for a call and a put are 
both $37. If the continuously compounded risk-free rate is 3.2%, maturity is 
three months, and the volatility of stock A is 0.25, what are the prices for a 
European call and put?

17. Use the put-call parity to verify the preceding solutions.
18. When the strike prices for call and put in 9.11) are different, can we apply the 

put-call parity?
19. For a set of input values, such as S=40, X=40, T=3/12=0.25, r=0.05 and 

sigma=0.20, using the Black-Scholes-Merton option model, we can estimate 
the value of the call. Now keep all parameters constant except S (current price 
of a stocks); show the relationship, a graph is better, between calls and S.

20. What are the definitions of effective annual rate, effect semi annual rate, and 
risk-free rate for the call option model? Assume the current annual risk-free 
rate is 5 percent, compounded semi annually, which value should we use as 
our input value for the Black-Scholes-Merton call option model?

21. What is the call premium when the stock is traded at $39, the exercise price 
is $40, the maturity date is three months, the risk-free rate is 3.5 percent, 
compounding continuously, and the volatility is 0.15 per year?

22. Repeat the previous exercise for when the risk-free rate is still 3.5 percent per 
year but compounded semi annually.

23. What are the advantages and disadvantages of using others' programs?
24. How do you debug others' programs?
25. Write a Python program to convert any given APR compounded m times per 

year, to a continuously compounded interest rate.
26. How do you improve the accuracy of the cumulative normal distribution?
27. What is the relationship between APR and Rc, a continuously compounded 

rate?
28. For a stock with the current stock price of $52.34, what is its call price 

if the exercise price is the same as its current stock price, matures in six 
months with a 0.16 annual volatility, and the risk-free rate is 3.1 percent, 
compounded continuously?

29. For a set of S, X, T, r, and sigma, we could estimate a European call option 
by using those 13 lines of Python codes. When the current stock price, S, 
increases while other input values are the same, will the call price increase or 
decrease? Why?

30. Show the preceding result graphically.
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31. When the exercise price, X, increases, the value of a call will fall.  
Is this true? Why?

 ° If other input values are constant, the value of the call premium will 
increase if the sigma of the stock increases. Is this true? Why?

32. For a set of input values of S, X, T, r, and sigma, we could use the codes in 
this chapter to price a European call option, that is, C. On the other hand, if 
we observe a real-world price of a call premium (Cobs) with a set of values 
S, X, T, and r, we could estimate an implied volatility (sigma). Specify a trial-
and-error method to roughly estimate the implied volatility (if a new learner 
does not get this question, it is perfectly fine since we will devote a whole 
chapter to discussing how to do it).

33. According to so-called put-call parity, which holds that a call option with 
enough cash at maturity (X dollar) is equivalent to holding a put option with 
a share of the underlying stock in hand--here, both call and put options have 
the same exercise price (X) with the same maturity (T) and both are European 
options--if the stock price is $10, exercise price is $11, maturity is six months, 
and risk-free rate is 2.9 percent, compounded semi annually, what is the price 
of a European put option?

Summary
In this chapter, first we have explained many basic concepts related to portfolio 
theory, such as covariance,correlation, the formulas on how to calculate variance of a 
2-stock portfolio and variance of an n-stock portfolio. After that, we have discussed 
various risk measures for individual stocks or portfolios, such as Sharpe ratio, 
Treynor ratio, Sortino ratio, how to minimize portfolio risk based on those measures 
(ratios), how to setup an objective function, how to choose an efficient portfolio for a 
given set of stocks, and how to construct an efficient frontier. 

In the next chapter, we will discuss one of the most important theory in modern 
finance: options and futures. We will start from the basic concepts such as payoff 
functions for a call and for a put. Then we explain the related applications such 
as various trading strategies, corporate incentive plans, and hedging strategies 
including different types of options and futures.
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Value at Risk
In finance, implicitly or explicitly, rational investors always consider a trade-
off between risk and returns. Usually, there is no ambiguity to measure returns. 
However, in terms of risk, we have numerous different measures such as using 
variance and standard deviation of returns to measure the total risk, individual 
stocks' beta, or portfolio beta to measure market risk. In the previous chapters, we 
know that the total risk has two components: market risk and firm-specific risks. To 
balance between the benefit of return and the cost of risk, many measures can be 
applied, such as the Sharpe ratio, Treynor ratio, Sortino ratio, and M2 performance 
measure (Modigliani and Modigliani performance measure). All of those risk 
measures or ratios have a common format: a trade-off between benefits expressed as 
risk-premium and risk expressed as a standard deviation, or beta, or Lower Partial 
Standard Deviation (LPSD). On the other hand, those measures do not consider a 
probability distribution. In this chapter, a new risk measure called Value at Risk 
(VaR) will be introduced and applied by using real-world data. In particular, the 
following topics will be covered:

• Introduction to VaR
• Review of density and cumulative functions of a normal distribution
• Method I—Estimating VaR based on the normality assumption
• Conversion from 1-day risk to n-day risk, one-day VaR versus n-day VaR
• Normality tests
• Impact of skewness and kurtosis
• Modified VaR measure by using including skewness and kurtosis
• Method II—Estimating a VaR based on historical returns
• Linking two methods by using Monte Carlo simulation
• Backtesting and stress testing
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Introduction to VaR
Up to now, we have several ways to evaluate risk for an individual stock or a 
portfolio, such as variance, standard deviation of returns to measure the total risk, 
or beta to measure the market risk of a portfolio or individual stocks. On the other 
hand, many CEOs prefer a simple measure called Value at Risk (VaR), which has 
the simple definition given here:

"The maximum loss with a confidence level over a predetermined period."

From the preceding definition, it has three explicit factors plus one implied one. The 
implied factor or variable is our current position, or the value of our current portfolio 
or individual stock(s). The preceding statement offers the maximum possible loss in 
the future and this is the first factor. The second one is over a specific time period. 
Those two factors are quite common. However, the last factor is quite unique: with a 
confidence level or probability. Here are a few examples:

• Example #1: On February 7, 2017, we own 300 shares of International 
Business Machine's stocks worth $52,911. The maximum loss tomorrow, that 
is, February 8, 2017, is $ 1,951 with a 99% confidence level.

• Example #2: Our mutual fund has a value of $10 million today. The maximum 
loss over the next 3 months is $0.5 million at a 95% confidence level.

• Example #3: The value of our bank is $200 million. The VaR of our bank is 
$10m with a 1% probability over the next 6 months.

Usually, there are two methods to estimate a VaR. The first method is based on 
the assumption that our security or portfolio returns follow a normal distribution, 
while the second method depends on the ranking of the historical returns. Before 
discussing the first method, let's review the concepts with respect to a normal 
distribution. The density of a normal distribution is defined here:

Here, f(x) is the density function, x is an input variable, μ is the mean and σ is  
the standard deviation. One function called spicy.stats.norm.pdf() could be used to 
estimate the density. The function has three input values: x, μ, and σ. The following code 
calls this function and verifies the results manually according to the preceding formula:

import scipy.stats as stats
from scipy import sqrt, exp,pi
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d1=stats.norm.pdf(0,0.1,0.05)      
print("d1=",d1)
d2=1/sqrt(2*pi*0.05**2)*exp(-(0-0.1)**2/0.05**2/2)  # verify manually
print("d2=",d2) 
('d1=', 1.0798193302637611)
('d2=', 1.0798193302637611)

In the preceding code, we import the sqrt(), exp() functions plus pi to make 
our code simpler. Setting μ=0, and σ=1, the preceding general normal distribution 
density function collapses to a standard normal distribution; see its corresponding 
density function:

The default values for the second and third input values for the spicy.stats.norm.
pdf() function are zero and 1, respectively. In other words, with just one input 
value, it represents a standard normal distribution; see the following code and how 
to manually verify it:

from scipy import exp,sqrt,stats,pi
d1=stats.norm.pdf(0)
print("d1=",d1)
d2=1/sqrt(2*pi)           # verify manually
print("d2=",d2)
('d1=', 0.3989422804014327)
('d2=', 0.3989422804014327)

The following code generates a graph for a standard normal distribution where the 
spicy.stats.norm.pdf() function takes just one input:

import scipy as sp
import matplotlib.pyplot as plt
x = sp.arange(-3,3,0.1)
y=sp.stats.norm.pdf(x)
plt.title("Standard Normal Distribution")
plt.xlabel("X")
plt.ylabel("Y")
plt.plot(x,y)
plt.show()
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The graph is shown here:

For the VaR estimation, usually we would choose two confidence levels of 95% 
and 99%. For the 95% (99%) confidence level, we actually look at the left tail with a 
5% (1%) probability. The following graph illustrates the concept of VaR based on a 
standard normal distribution with a 95% confidence level:

import scipy as sp
from matplotlib import pyplot as plt
z=-2.325       # user can change this number 
xStart=-3.8    # arrow line start x
yStart=0.2     # arrow line start x
xEnd=-2.5      # arrow line start x
yEnd=0.05      # arrow line start x
def f(t):
    return sp.stats.norm.pdf(t) 

plt.ylim(0,0.45)
x = sp.arange(-3,3,0.1) 
y1=f(x)
plt.plot(x,y1)
x2= sp.arange(-4,z,1/40.) 
sum=0
delta=0.05



Chapter 11

[ 393 ]

s=sp.arange(-10,z,delta) 
for i in s:
    sum+=f(i)*delta

plt.annotate('area is '+str(round(sum,4)),xy=(xEnd,yEnd),xytext=(xStar
t,yStart), arrowprops=dict(facecolor='red',shrink=0.01))
plt.annotate('z= '+str(z),xy=(z,0.01)) 
plt.fill_between(x2,f(x2))
plt.show()

To generate a graph, three functions are applied. The purpose of the matplotlib.
pyplot.annotate() function is used to generate a text or an arrow with a text 
description at the end of the arrow. The str() function will convert a number into a 
string. matplotlib.pyplot.fill_between() will fill the specified area. The output 
graph is shown here:

Based on the assumption of normality, we have the following general form to 
estimate VaR:
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Here, VaR is our value at risk, position is the current market value of our portfolio, 
μperiod is the expected period return, z is a cut-off point depending on the confidence 
level, and σ is the volatility of our portfolio. For a normal distribution, z=2.33 for 
a 99% confidence level, and z=1.64 for a 95% confidence level. Since we could use 
scipy.stats.norm.ppf() to get the z value, the preceding equation could be 
rewritten as follows:

Compare the preceding two equations. A careful reader should notice that the 
signs in front of z are different. For the preceding equation, it has a positive sign 
instead of the negative one shown in the previous equation. The reason is that the z 
value estimated by applying scipy.stats.norm.ppf() would be negative; see the 
following code:

from scipy.stats import norm
confidence_level=0.99
z=norm.ppf(1-confidence_level)
print(z)
-2.32634787404

When the time period is short, such as 1 day, we could ignore the impact of μperiod. 
Therefore, we have the following simplest form:

The following program shows the 5% VaR of a hypothetical profit-and-loss 
probability density function:

import scipy as sp
import scipy as sp
from scipy.stats import norm
from matplotlib import pyplot as plt

confidence_level=0.95   # input 
z=norm.ppf(1-confidence_level) 
def f(t):
    return sp.stats.norm.pdf(t)
#
plt.ylim(0,0.5)
x = sp.arange(-7,7,0.1) 
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ret=f(x)
plt.plot(x,ret)
x2= sp.arange(-4,z,1/40.) 
x3=sp.arange(z,4,1/40.)
sum=0
delta=0.05
s=sp.arange(-3,z,delta) 
for i in s:
    sum+=f(i)*delta
note1='Red area to the left of the'
note2='dotted red line reprsesents'
note3='5% of the total area'
#
note4='The curve represents a hypothesis'
note5='profit/loss density function. The'
note6='5% VaR is 1.64 standard deviation'
note7='from the mean, i.e.,zero'
#
note8='The blue area to the righ of the'
note9='red dotted line represents 95%'
note10='of the returns space'
# this is for the vertical line
plt.axvline(x=z, ymin=0.1, ymax = 1, linewidth=2,ls='dotted', 
color='r')
plt.figtext(0.14,0.5,note1)
plt.figtext(0.14,0.47,note2)
plt.figtext(0.14,0.44,note3)
#
plt.figtext(0.5,0.85,note4)
plt.figtext(0.5,0.82,note5)
plt.figtext(0.5,0.79,note6)
plt.figtext(0.5,0.76,note7)
plt.annotate("",xy=(-2.5,0.08),xytext=(-2.5,0.18), arrowprops=dict(fac
ecolor='red',shrink=0.001))
#
plt.figtext(0.57,0.5,note8)
plt.figtext(0.57,0.47,note9)
plt.figtext(0.57,0.44,note10)
plt.annotate("",xy=(1.5,0.28),xytext=(4.5,0.28), arrowprops=dict(facec
olor='blue',shrink=0.001))
#
plt.annotate('z= '+str(z),xy=(2.,0.1)) 
plt.fill_between(x2,f(x2), color='red')
plt.fill_between(x3,f(x3), color='blue')
plt.title("Visual presentation of VaR, 5% vs. 95%")
plt.show()
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The related graph is shown here:

Here is the simplest example to estimate the maximum loss tomorrow. Assume that 
we have 1,000 shares of IBM's stock on February 7, 2017. What is the maximum loss 
tomorrow with a confidence level of 99%? To estimate the standard deviation of 
daily returns, we use the last 5 years' data. Actually, this is a decision variable. We 
could use 1-year data or multiple-year data. Each approach has its advantages and 
disadvantages. The standard deviation estimated based on a longer period would be 
more stable because we have a much larger sample size. However, some information 
in the remote past would definitely be outdated:

import numpy as np
import pandas as pd
from scipy.stats import norm
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
#
# input area
ticker='IBM'              # input 1
n_shares=1000             # input 2
confidence_level=0.99     # input 3
begdate=(2012,2,7)        # input 4
enddate=(2017,2,7)        # input 5
#
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z=norm.ppf(1-confidence_level) 
x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
print(x[0])
ret = x.aclose[1:]/x.aclose[:-1]-1
#
position=n_shares*x.close[0] 
std=np.std(ret)
#
VaR=position*z*std
print("Holding=",position, "VaR=", round(VaR,4), "tomorrow")
(datetime.date(2012, 2, 7), 2012, 2, 7, 734540.0, 167.75861437920275, 
168.543152, 169.23178870104016, 167.34020198573538, 3433000.0, 
168.543152)
('Holding=', 168543.152, 'VaR=', -4603.5087, 'tomorrow')

The objective of printing the first line of the data is to show the closing price is 
indeed on 2/7/2017. The value of our holding is $168,543 and its 1-day VaR is $4,604. 
The second example is about the VaR over a 10-day period. To convert a variance 
(standard deviation) on daily returns to an n-day variance (standard deviation), we 
have the following formulas:

For example, the annual volatility is equal to the daily volatility times the square 
root of 252 . In order to convert a daily mean return to an n-day 
mean return, we have the following formula:

Based on daily returns, we have the following general formulas for VaR with a 
confidence level to estimate an n-day VaR:
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The following code shows the VaR for holding 50 shares of Wal-Mart stocks, on the 
last day of 2016, over a 10-day period with a confidence level of 99%:

import numpy as np
import pandas as pd
from scipy.stats import norm
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
ticker='WMT'            # input 1
n_shares=50             # input 2
confidence_level=0.99   # input 3
n_days=10               # input 4
begdate=(2012,1,1)      # input 5
enddate=(2016,12,31)    # input 6

z=norm.ppf(confidence_level) 

x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
ret = x.aclose[1:]/x.aclose[:-1]-1 
position=n_shares*x.close[0] 
VaR=position*z*np.std(ret)*np.sqrt(n_days)
print("Holding=",position, "VaR=", round(VaR,4), "in ", n_days, 
"Days")
('Holding=', 2650.3070499999999, 'VaR=', 205.0288, 'in ', 10, 'Days')

On December 31, 2016, the value of our holding is $2,650. Our maximum loss is $205 
in the next 10 days with a confidence level of 99%. In the preceding program, based 
on daily returns, we estimate both daily mean return and the standard deviation. 
Then we convert them into a 10-day mean return and 10-day volatility. On the other 
hand, actually we could calculate a 10-day return directly. After 10-day returns 
available, the scipy.mean() and scipy.std() functions could be applied directly. 
In other words, we don't need to convert a daily mean and daily standard deviation 
into a 10-day mean and 10-day standard deviation. The related code is given here. To 
save space, the first 11 lines are not repeated:

x = getData(ticker, begdate, enddate,asobject=True, adjusted=True)
logret = np.log(x.aclose[1:]/x.aclose[:-1])

# method 2: calculate 10 day returns 
ddate=[]
d0=x.date
for i in range(0,np.size(logret)): 
    ddate.append(int(i/nDays))
y=pd.DataFrame(logret,ddate,columns=['retNdays']) 
retNdays=y.groupby(y.index).sum()
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#print(retNdays.head())
position=n_shares*x.close[0] 
VaR=position*z*np.std(retNdays)
print("Holding=",position, "VaR=", round(VaR,4), "in ", nDays, "Days")
('Holding=', 2650.3070499999999, 'VaR=', 209.1118, 'in ', 10, 'Days')

Our new result shows that the VaR is $209.11 compared with $205.03. The 
percentage of the underestimation is -0.01951126, about -2%. The following code 
estimate the VaR for the Fama-French five value-weighted industry portfolios with 
a monthly frequency. The dataset is available at the author's website, http://
canisius.edu/~yany/python/ff5VWindustryMonthly.pkl. Those five industries 
are Consumer, Manufacture, High Tech, Health, and Other. The first and last several 
lines are shown here:

import pandas as pd
x=pd.read_pickle("c:/temp/ff5VWindustryMonthly.pkl")
print(x.head())
print(x.tail())
         CNSMR   MANUF   HITEC   HLTH    OTHER
192607  0.0543  0.0273  0.0183  0.0177  0.0216
192608  0.0276  0.0233  0.0241  0.0425  0.0438
192609  0.0216 -0.0044  0.0106  0.0069  0.0029
192610 -0.0390 -0.0242 -0.0226 -0.0057 -0.0285
192611  0.0370  0.0250  0.0307  0.0542  0.0211
         CNSMR   MANUF   HITEC   HLTH    OTHER
201608 -0.0101  0.0040  0.0068 -0.0323  0.0326
201609 -0.0143  0.0107  0.0202  0.0036 -0.0121
201610 -0.0252 -0.0231 -0.0141 -0.0743  0.0059
201611  0.0154  0.0539  0.0165  0.0137  0.1083
201612  0.0132  0.0158  0.0163  0.0084  0.0293

The following program estimates their VaR with $1,000 invested in each industry 
portfolio with a 99% confidence level over the next period. Since the frequency is 
monthly, the fixed period will be the next month:

import pandas as pd
import scipy as sp
from scipy.stats import norm
#
confidence_level=0.99   # input 
position=([1000,1000,1000,1000,1000])
z=norm.ppf(1-confidence_level)
x=pd.read_pickle("c:/temp/ff5VWindustryMonthly.pkl")
#

http://canisius.edu/~yany/python/ff5VWindustryMonthly.pkl
http://canisius.edu/~yany/python/ff5VWindustryMonthly.pkl
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std=sp.std(x,axis=0)
mean=sp.mean(x,axis=0)
#
t=sp.dot(position,z)
VaR=t*std
#
# output area
print(sp.shape(x))
print("Position=",position)
print("VaR=")
print(VaR)
1086, 5)
('Position=', [1000, 1000, 1000, 1000, 1000])
VaR=
CNSMR   -122.952735
MANUF   -128.582446
HITEC   -129.918893
HLTH    -130.020356
OTHER   -149.851230
dtype: float64

The VaR for those five industries are $122.95, $128.58, $129.92, $130.02, and $149.85, 
respectively, for an equal holding of $1,000 invested in each industry. Comparing 
those values, we could see that the Consumer industry has the lowest risk while the 
industry defined as Other would have the highest maximum possible loss.

Normality tests
The first method to estimate VaR is based on a vital assumption that individual 
stock or portfolio returns follow a normal distribution. However, in the real world, 
we know that stock returns or portfolio returns do not necessarily follow a normal 
distribution. The following program tests whether Microsoft returns satisfy this 
assumption by using 5-year daily data:

from scipy import stats 
from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
import numpy as np 
# 
ticker='MSFT' 
begdate=(2012,1,1) 
enddate=(2016,12,31) 
#
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p =getData(ticker, begdate, enddate,asobject=True, adjusted=True) 
ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:] 
print 'ticker=',ticker,'W-test, and P-value' 
print(stats.shapiro(ret))
print( stats.anderson(ret))
ticker= MSFT W-test, and P-value
(0.9130843877792358, 3.2116320877511604e-26)
AndersonResult(statistic=14.629260310763584, critical_values=array([ 
0.574,  0.654,  0.785,  0.915,  1.089]), significance_level=array([ 
15. ,  10. ,   5. ,   2.5,   1. ]))

Our null hypothesis is that Microsoft stock daily returns following a normal 
distribution. Based on the preceding result, the null hypothesis is rejected since the 
F-value is much higher than the critical value of 1.089 if we choose a 1% significance 
level. Even if we reject the hypothesis based on just one stock, some might argue 
that portfolio returns might satisfy this assumption. The next program tests whether 
S&P500 daily returns follow a normal distribution. The ticker symbol for S&P500 
from Yahoo!Finance is ^GSPC:

import numpy as np 
from scipy import stats 
from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
#
ticker='^GSPC'    # ^GSPC is for S&P500
begdate=(2012,1,1) 
enddate=(2016,12,31) 
#
p =getData(ticker, begdate, enddate,asobject=True, adjusted=True) 
ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:] 
print 'ticker=',ticker,'W-test, and P-value' 
print(stats.shapiro(ret))
print( stats.anderson(ret) )
ticker= ^GSPC W-test, and P-value
(0.9743353128433228, 3.7362179458122827e-14)
AndersonResult(statistic=8.6962226557502618, critical_values=array([ 
0.574,  0.654,  0.785,  0.915,  1.089]), significance_level=array([ 
15. ,  10. ,   5. ,   2.5,   1. ]))

From the preceding results, we reject the normality assumption for S&P500. In other 
words, the market index, represented by S&P500 daily returns, does not follow a 
normal distribution.
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Skewness and kurtosis
Based on the normality assumption, a VaR estimation considers only the first two 
moments: mean and variance. If stock returns truly follow a normal distribution, 
those two moments would fully define their probability distribution. From the 
preceding sections, we know that this is not true. The first remedy is to include other 
higher moments in addition to the first two moments. The third and fourth moments 
are called skewness and kurtosis. For a stock or portfolio with n returns, skewness is 
estimated by the following formula:

Here, skewness is the skewness, Ri is the ith return,  is the mean return, n is the 
number of returns, and σ is the standard deviation of returns. The kurtosis reflects 
the impact of extreme values because a power of 4 is very high. The kurtosis is 
usually estimated by the following formula is:

For a standard moral distribution, it has a zero mean, unit variance, zero skewness, 
and its kurtosis is 3. Because of this, sometimes kurtosis is defined as the preceding 
equation minus 3:

Some textbooks distinguish those two definitions as kurtosis and excess kurtosis. 
However, others simply label the preceding formula as kurtosis as well. Thus, when 
we conduct a test to see whether the kurtosis of a time series is zero, we have to 
know which benchmark is used. The following program generates 5 million random 
numbers from a standard deviation and applies four functions to estimate those four 
moments, that is, mean, standard deviation, skewness, and kurtosis:

from scipy import stats,random
import numpy as np
np.random.seed(12345)
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n=5000000   
#
ret = random.normal(0,1,n)
print('mean    =', np.mean(ret))
print('std     =',np.std(ret))
print('skewness=',stats.skew(ret))
print('kurtosis=',stats.kurtosis(ret))
('mean    =', 0.00035852273706422504)
('std     =', 0.99983435063933623)
('skewness=', -0.00040545999711941665)
('kurtosis=', -0.001162270913658947)

Since the kurtosis is close to zero for random numbers drawn from a standard 
normal distribution, the scipy.stats.kurtosis() function should be based on 
Equation (11) instead of Equation (10).

Modified VaR
From the previous discussion, we know that based on the assumption, that stock 
returns follow a normal distribution. Because of this, the skewness and kurtosis 
of returns are both assumed to be zero. However, in the real world, skewness and 
excess kurtosis of many stock returns are not zero. As a consequence, the modified 
VaR was developed to utilize those four moments instead of just two; see the 
following definition:

Here, z is the value based on a normal distribution, S is the skewness, K is kurtosis, 
t is an intermediate variable, and the scipy.stats.ppf() function would offer a 
z-value for a given confidence level. The following program offers two VaRs based 
on the normality assumption and based on the preceding formula, that is, using all 
four moments. The number of shares is 500 at the end of year 2016. The stock tested 
is Walmart (WMT). The confidence level is 99% for a 1-day VaR:

import numpy as np
import pandas as pd
from scipy.stats import stats,norm
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from matplotlib.finance import quotes_historical_yahoo_ochl as getData
#
ticker='WMT'            # input 1
n_shares=500            # input 2
confidence_level=0.99   # input 3
begdate=(2000,1,1)      # input 4
enddate=(2016,12,31)    # input 5
#
# Method I: based on the first two moments
z=abs(norm.ppf(1-confidence_level)) x=getData(ticker,begdate,enddate,a
sobject=True,adjusted=True)
ret = x.aclose[1:]/x.aclose[:-1]-1
position=n_shares*x.close[0] 
mean=np.mean(ret)
std=np.std(ret)
VaR1=position*(mean-z*std)
print("Holding=",round(position,2), "VaR1=", round(VaR1,2), "for 1 day 
")
#
# Modified VaR: based on 4 moments
s=stats.skew(ret)
k=stats.kurtosis(ret)
t=z+1/6.*(z**2-1)*s+1/24.*(z**3-3*z)*k-1/36.*(2*z**3-5*z)*s**2
mVaR=position*(mean-t*std)
print("Holding=",round(position,2), "modified VaR=", round(mVaR,2), 
"for 1 day ")
('Holding=', 24853.46, 'VaR1=', -876.84, 'for 1 day ')
('Holding=', 24853.46, 'modified VaR=', -1500.41, 'for 1 day ')

Based on the last two lines, we have a VaR of $876.84 based on the normality and  
the modified VaR has a value of $1,500. The percentage difference of those two is 
42%. This result suggests that ignoring the skewness and kurtosis would understate 
VaR enormously.
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VaR based on sorted historical returns
We know that stock returns do not necessarily follow a normal distribution. An 
alternative is to use sorted returns to evaluate a VaR. This method is called VaR 
based on historical returns. Assume that we have a daily return vector called ret. We 
sort it from the smallest to the highest. Let's call the sorted return vector sorted_ret. 
For a given confidence level, the one-period VaR is given here:

Here, position is our wealth (value of our portfolio), confidence is the confidence level and 
n is the number of returns. The len() function shows the number of observations and 
the int() function takes the integer part of an input value. For example, if the length of 
the return vector is 200 and the confidence level is 99%, then the second value (200*0.01) 
of the sorted returns, from the smallest to the highest, times our wealth, will be our VaR. 
Obviously, if we have a longer time series, that is, more return observations, our final 
VaR would be more accurate. For owning 500 shares of Walmart, what is the maximum 
loss with a 99% confidence level the next day? First, let's look at several ways to sort our 
data. The first one uses the numpy.sort() function:

import numpy as np
a = np.array([[1,-4],[9,10]])
b=np.sort(a)                
print("a=",a)
print("b=",b)
('a=', array([[ 1, -4],
       [ 9, 10]]))
('b=', array([[-4,  1],
       [ 9, 10]]))

Here is the second way to sort by using Python's pandas module:

import pandas as pd
a = pd.DataFrame([[9,4],[9,2],[1,-1]],columns=['A','B'])
print(a)
# sort by A ascedning, then B descending 
b= a.sort_values(['A', 'B'], ascending=[1, 0])
print(b)
# sort by A and B, both ascedning 
c= a.sort_values(['A', 'B'], ascending=[1, 1])
print(c)
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For an easy comparison, those three datasets are put side by side. The left panel 
shows the original dataset. The middle one shows the result sorted by column A first 
in ascending order, then by column B in descending order. The right panel shows the 
result sorted by columns A then B, both in ascending order:

The next two programs compare two methods used to estimate VaR: based on the 
normality and based on sorting. To make our programs easier to understand, the 
time period is just 1 day:

#
z=norm.ppf(confidence_level) 
x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
ret = x.aclose[1:]/x.aclose[:-1]-1
#
position=n_shares*x.close[0] 
std=np.std(ret)
#
VaR=position*z*std
print("Holding=",position, "VaR=", round(VaR,4), "tomorrow")
('Holding=', 26503.070499999998, 'VaR=', 648.3579, 'tomorrow')

The formula used in the preceding program is VaR=position*z*sigma. The result tells 
us that the holding is $26,503 and its 1-day VaR is $648 with a 99% confidence level. 
The following program estimates the VaR for the same stock based on sorting:

ret = np.array(x.aclose[1:]/x.aclose[:-1]-1)
ret2=np.sort(ret) 
#
position=n_shares*x.close[0] 
n=np.size(ret2)
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leftTail=int(n*(1-confidence_level))
print(leftTail)
#
VaR2=position*ret2[leftTail]
print("Holding=",position, "VaR=", round(VaR2,4), "tomorrow")
('Holding=', 26503.070499999998, 'VaR=', -816.7344, 'tomorrow')

The result shows that the 1-day VaR is $817. Recall that the VaR based on the 
normality is $648. If the second method is more accurate, the first method 
underestimates our potential loss by 20%. This is a huge number in terms of risk 
evaluation! The following codes are for an n-day period based on sorting:

ret = x.aclose[1:]/x.aclose[:-1]-1
position=n_shares*x.close[0] 
#
# Method 1: based on normality 
mean=np.mean(ret)
std=np.std(ret)
meanNdays=(1+mean)**nDays-1
stdNdays=std*np.sqrt(nDays)
z=norm.ppf(confidence_level) 
VaR1=position*z*stdNdays
print("Holding=",position, "VaR1=", round(VaR1,0), "in ", nDays, 
"Days")
#
# method 2: calculate 10 day returns 
ddate=[]
d0=x.date
for i in range(0,np.size(logret)): 
    ddate.append(int(i/nDays))
y=pd.DataFrame(logret,index=ddate,columns=['retNdays']) 
logRet=y.groupby(y.index).sum()
retNdays=np.exp(logRet)-1
# 
VaR2=position*z*np.std(retNdays)
print("Holding=",position, "VaR2=", round(VaR2,0), "in ", nDays, 
"Days")
# 
# Method III
ret2=np.sort(retNdays) 
n=np.size(ret2)
leftTail=int(n*(1-confidence_level))
print(leftTail)
#
VaR3=position*ret2[leftTail]
print("Holding=",position, "VaR=", round(VaR3,0), "in ",nDays, "Days")
('Holding=', 24853.456000000002, 'VaR1=', 2788.0, 'in ', 10, 'Days')
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('Holding=', 24853.456000000002, 'VaR2=', 2223.0, 'in ', 10, 'Days')
4
('Holding=', 24853.456000000002, 'VaR=', 1301.0, 'in ', 10, 'Days')

There are two tricks in the preceding program. The first one is the summation of 
a daily log return will be a 10-day log return. Then we convert a log return to a 
percentage return. The second trick is how to generate a 10-day return. First, we 
generate groups by using the int() function, that is, int(i/nDays). Since nDays 
has a value of 10, int(i/10) would generate 10 zeros, ten ones, ten twos, and so on. 
The VaRs based on the three methods are $2,788, $2,223, and $1,301, respectively. 
Obviously, there are some issues with method 3. One of the concerns is that for 
n-day periods, we have only 428 observations, that is, the size of our sample might 
be too small. If we choose a 99% confidence interval, we have to choose the fourth 
lowest return in our calculation. This would definitely cause some issues here.

Simulation and VaR
In the previous sections, we have learned that there are two ways to estimate VaR for 
an individual stock or for a portfolio. The first method depends on the assumption 
that stock returns follow a normal distribution. The second one uses the sorted 
historical returns. What is the link between those two methods? Actually, Monte 
Carlo simulation could be served as a link. First, let's look at the first method based 
on the normality assumption. We have 500 Walmart shares on the last day of 2016. 
What is the VaR tomorrow if the confidence level is 99%?

#
position=n_shares*x.close[0] 
mean=np.mean(ret)
std=np.std(ret)
#
VaR=position*(mean+z*std)
print("Holding=",position, "VaR=", round(VaR,4), "tomorrow")
('Holding=', 26503.070499999998, 'VaR=', -641.2911, 'tomorrow')

The VaR is $641.29 for tomorrow with a confidence level of 99%. Here is how Monte 
Carlo simulation works. First, we calculate the mean and standard deviation based 
on daily returns. Since stock returns are assumed to follow a normal distribution, 
we could generate 5,000 returns with the same mean and standard deviation. If our 
confidence level is 99%, then the 50th return from the lowest sorted returns would be 
our cut-off point, 5000*0.01=50. The code is shown here:

#
position=n_shares*x.close[0] 
mean=np.mean(ret)
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std=np.std(ret)
#
n_simulation=5000
sp.random.seed(12345) 
ret2=sp.random.normal(mean,std,n_simulation) 
ret3=np.sort(ret2) 
m=int(n_simulation*(1-confidence_level))
VaR=position*(ret3[m])
print("Holding=",position, "VaR=", round(VaR,4), "tomorrow")
('Holding=', 26503.070499999998, 'VaR=', -627.3443, 'tomorrow')

Monte Carlo Simulation offers a quite similar value of $627.34 compared with 
$641.29 based on the formula.

VaR for portfolios
In Chapter 9, Portfolio Theory, it was shown that when putting many stocks in our 
portfolio, we could reduce or eliminate firm-specific risk. The formula to estimate an 
n-stock portfolio return is given here:

Here Rp,t is the portfolio return at time t, wi is the weight for stock i, and Ri, t is the 
return at time t for stock i. When talking about the expected return or mean, we have 
a quite similar formula:

Here,  is the mean or expected portfolio return,  is the mean or expected 
return for stock i. The variance of such an n-stock portfolio is given here:

Here,  is the portfolio variance, σi,j is covariance between stocks i and j; see the 
following formula:
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The correlation between stocks i and j, ρi,j, is defined here:

When stocks are not positively perfectively correlated, combining stocks would reduce 
our portfolio risk. The following program shows that the VaR of the portfolio is not 
simply the summation or weighted VaR of individual stocks within the portfolio:

from matplotlib.finance import quotes_historical_yahoo_ochl as getData

# Step 1: input area
tickers=('IBM','WMT','C')  # tickers
begdate=(2012,1,1)         # beginning date 
enddate=(2016,12,31)       # ending date
weight=(0.2,0.5,0.3)       # weights
confidence_level=0.99      # confidence level 
position=5e6               # total value
#
z=norm.ppf(confidence_level) 
# Step 2: define a function
def ret_f(ticker,begdate,enddte):
    x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
    ret=x.aclose[1:]/x.aclose[:-1]-1
    d0=x.date[1:]
    return pd.DataFrame(ret,index=d0,columns=[ticker])
# Step 3
n=np.size(tickers)
final=ret_f(tickers[0],begdate,enddate)
for i in np.arange(1,n):
    a=ret_f(tickers[i],begdate,enddate)
    if i>0:
        final=pd.merge(final,a,left_index=True,right_index=True)
#
# Step 4: get porfolio returns
portRet=sp.dot(final,weight)
portStd=sp.std(portRet)
portMean=sp.mean(portRet)
VaR=position*(portMean-z*portStd)
print("Holding=",position, "VaR=", round(VaR,2), "tomorrow")

# compare
total2=0.0
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for i in np.arange(n):
    stock=tickers[i]
    ret=final[stock]
    position2=position*weight[i]
    mean=sp.mean(ret)
    std=sp.std(ret)
    VaR=position2*(mean-z*std)
    total2+=VaR
    print("For ", stock, "with a value of ", position2, "VaR=", 
round(VaR,2))
print("Sum of three VaR=",round(total2,2))
('Holding=', 5000000.0, 'VaR=', -109356.22, 'tomorrow')
('For ', 'IBM', 'with a value of ', 1000000.0, 'VaR=', -27256.67)
('For ', 'WMT', 'with a value of ', 2500000.0, 'VaR=', -60492.15)
('For ', 'C', 'with a value of ', 1500000.0, 'VaR=', -59440.77)
('Sum of three VaR=', -147189.59)

The VaR for our current portfolio of $5 million is $109,356. However, the summation 
of the VaR for those three stocks based on our weights is $147,190. This result verifies 
the diversification effect by choosing different stocks.

Backtesting and stress testing
In finance, a stress test could be viewed as an analysis or simulation designed to 
determine the ability of a given financial instrument, such as a VaR to deal with an 
economic crisis. Since the first method to estimate a VaR is based on the assumption 
that stock returns following a normal distribution, its accuracy depends how far, 
in the real world, stock returns deviate from this assumption. A key component 
to the implementation of model-based risk management is model validation. That 
is, we need some way to determine whether the model chosen is accurate and 
performs consistently. This step is quite important both to firms and their regulators. 
According to Lopez (2000), we have the following table:

Name Objectives Methods
Backtesting Compare observed 

outcomes with a model's 
expected output

Forecast evaluation established empirical 
issue with a large academic literature

Stress testing Examples a model's 
expected outcomes under 
extreme conditions

• Projection analysis
• Outlier analysis
• Scenario analysis and case studies

Table 11.1 Backtesting versus stress testing
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Assume that we use just 1 year's data to estimate 1-day VaR with a 99% confidence 
level for holding 1,000 shares of IBM on February 7, 2017. The program is  
shown here:

#
position=n_shares*x.close[0] 
mean=np.mean(ret)
z=norm.ppf(1-confidence_level)
std=np.std(ret)
#
VaR=position*(mean+z*std)
print("Holding=",position, "VaR=", round(VaR,4), "tomorrow")
print("VaR/holding=",VaR/position)
(datetime.date(2016, 2, 8), 2016, 2, 8, 736002.0, 121.65280462310274, 
122.598996, 123.11070921267809, 119.84731962624865, 7364000.0, 
122.598996)
('Holding=', 122598.996, 'VaR=', -3186.5054, 'tomorrow')
('VaR/holding=', -0.025991284652254254)

Based on the preceding result, our holding is $122,599 and the maximum loss next 
day is $3,187. Remember that the confidence level is 99% and it means that during 
this 1-year period, we should expect about 2.5 violations (0.01*252). The value of 
252 is the number of trading days within 1 year. The following program shows the 
number of violations:

VaR=-3186.5054            # from the previous program
position=122598.996       # from the previous program
#('Holding=', 122598.996, 'VaR=', -3186.5054, 'tomorrow')
#('VaR/holding=', -0.025991284652254254)
#
z=norm.ppf(1-confidence_level) 
x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
print("first day=",x[0])
ret = x.aclose[1:]/x.aclose[:-1]-1
#
cutOff=VaR/position 
n=len(ret)
ret2=ret[ret<=cutOff]
n2=len(ret2)
print("n2=",n2)
ratio=n2*1./(n*1.)
print("Ratio=", ratio)
('first day=', (datetime.date(2016, 2, 8), 2016, 2, 8, 
736002.0, 121.65280462310274, 122.598996, 123.11070921267809, 
119.84731962624865, 7364000.0, 122.598996))
('n2=', 4)
('Ratio=', 0.015873015873015872)
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Again, we expect to see 2.5 violations based on our model. However, we have four. 
Based on a 99% confidence level, we expected that returns worse than -2.599% 
should be around 1%. Unfortunately, based on 1 year's data, this ratio is 1.58%. 
If based on 55 years' historical data for this specific stock, the frequency of worse 
returns than this ratio is more than double, 3.66% versus 1%. This indicates that the 
underlying model underestimates the potential maximum loss.

Expected shortfall
In the previous sections, we have discussed many issues related to VaR, such as 
its definition and how to estimate it. However, one major concern with VaR is that 
it depends on the shape of the distribution of the underlying security or portfolio. 
If the assumption of normality is close to hold, then VaR is a reasonable measure. 
Otherwise, we might underestimate the maximum loss (risk) if we observe a fat tail. 
Another problem is that the shape of the distribution after a VaR is hit is ignored. If 
we have a fatter left tail than a normal distribution describes, then our VaR would 
underestimate the true risk. The opposite is true: if the left tail is thinner than the 
normal distribution, our VaR would overestimate the true risk. Expected shortfall 
(ES) is the expected loss if a VaR is hit, and it is defined here:

Here, ES is the expected shortfall and α is our significant level, such as 1% or 5%. 
Based on the assumption of normality, for our Python presentation, we have the 
following formula:

The expected shortfall could be estimated in the following way:

The following program shows how to generate returns from a normal distribution, 
then estimates both the VaR and ES:

import scipy as sp
import scipy.stats as stats
x = sp.arange(-3,3,0.01)
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ret=stats.norm.pdf(x)
confidence=0.99
position=10000
z=stats.norm.ppf(1-confidence)
print("z=",z)
zES=-stats.norm.pdf(z)/(1-confidence)
print("zES=", zES)
std=sp.std(ret)
VaR=position*z*std
print("VaR=",VaR)
ES=position*zES*std
print("ES=",ES)

Similarly, we could derive the formula to estimate the expected shortfall based on 
historical returns. In a sense, the expected shortfall is the average loss based on 
returns with a lower value than the VaR threshold. Assume that we have n return 
observations. The expected shortfall could be defined as follows:

Here, ES is the expected shortfall, position is the value of our portfolio, m is the 
number of observations which are worse than our cut-off point specified by the 
given confidence level, Ii is a dummy variable which takes a value of 1 for returns 
less than Rcutoff and zero otherwise, Ri is the ith return, Rcutoff is the cutoff return 
determined by a given confidence level, n is the number of total return observations, 
m is the number of returns less than the cutoff return. For example, if we have 1,000 
observations and the confidence level is 99%, then the cutoff return will be the 
10th observation of the returns sorted from the lowest to the highest. The expected 
shortfall will be the average loss of those 10 worst scenarios.

Assume that on the last day of 2016, we own 500 shares of Walmart stocks. Assume 
that we care about the next day's maximum loss with a confidence level of 99%. 
Based on the ranking of historical returns, what is the VaR and the expected 
shortfall? The following code offers an answer:

x=getData(ticker,begdate,enddate,asobject=True,adjusted=True)
ret = np.array(x.aclose[1:]/x.aclose[:-1]-1)
ret2=np.sort(ret) 
#
position=n_shares*x.close[0] 
n=np.size(ret2)
m=int(n*(1-confidence_level))
print("m=",m)
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#
sum=0.0
for i in np.arange(m):
    sum+=ret2[i]
ret3=sum/m
ES=position*ret3
print("Holding=",position, "Expected Shortfall=", round(ES,4), 
"tomorrow")
('m=', 12)
('Holding=', 26503.070499999998, 'Expected Shortfall=', -1105.1574, 
'tomorrow')

Since there are 11 returns are less the 12th returns, the expected shortfall will be the 
average of those 12 returns times our portfolio market value on the evaluation day:

Appendix A – data case 7 – VaR estimation for 
individual stocks and a portfolio
There are three objectives of this dataset:

• Understand the concepts and methodology related to a VaR
• Estimate a VaR for individual stocks
• Estimate a VaR for a portfolio

The question is: What are your VaRs for each stock and for an equal-weighted 
portfolio over 10 days for a 99% confidence interval? Assume that the data period is 
from February 7, 2012 to February 7, 2017 and you have a $1m investment (position 
in Equation 1):

i Company name Ticker Industry
1 Microsoft Corporation MSFT Application software
2 Apple Inc. AAPL Personal computer
3 Home Depot, Inc. HD Home improvement services
4 Citigroup Inc. C Money Center Banks
5 Wal-Mart Stores, Inc. WMT Discount, variety stores
6 General Electric Corporation GE Technology

The concrete steps are given here:

1. Retrieve the daily data from Yahoo! Finance.
2. Estimate the daily returns.
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3. Apply the following formula to estimate the VaR:

4. Estimate the VaR based on sorted historical returns.
5. If possible, use VBA, R, SAS, or Matlab to automate the process.

The most commonly used parameters for the VaR are 1% and 5% probabilities (99% 
and 95% confidence levels) and 1-day and 2-week horizons. Based on the assumption 
of normality, we have the following general form:

Here, position is the current market value of our portfolio, µperiod is the expected 
period return, z is the cut-off point depending on a confidence level, and σ is the 
volatility. For a normal distribution, z=2.33 for a 99% confidence level and z=1.64 for 
a 95% confidence level. When the time period is short, such as 1 day, we could ignore 
the impact of µperiod. Thus, we have the simplest form:

Estimate the VaR based on the normality assumption.

If the underlying security follows a normal distribution, the VaR formula will be  
as follows:

For 99% and 95% confidence levels, Equation (5) becomes the following formulas:

Confidence level Formula
99%

95%
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Estimation of an n-day VaR depends on how to calculate the n-day return and 
standard deviation. Transformations are based on the following equation between 
the variances of different frequencies:

For example, the annual volatility is equal to the daily volatility times the square 
root of 252 . Based on the daily return, we have the following 
general formulas for the VaR with a 99% or a 95% confidence level:

Here,  is the expected daily returns, n is the number of days,  is the 
daily volatility,  is an n-day volatility, confident is the confidence level, such 
as 99% or 95%, and p is the position. If we don't know the expected returns and we 
assume the expected mean return is the same as the realized mean return, then we 
have the following formulas instead:

For the confidence levels of 99% and 95%, we have the following:
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Exercises
1. What is the simplest definition of a VaR? What are the differences between a 

VaR and variance and standard deviation and beta?
2. Assume that we have a plan to form a two-stock portfolio. The confidence 

level is 99% and number of period is 10 days. If the VaR for the first stock is 
x while the VaR for the second stock is y, is the portfolio VaR the weighted 
individual stock's VaR, that is, VaR(portfolio) = wA*x + wB*y, where WA is the 
weight for stock A while wB is the weight for stock B? Explain.

3. Do IBM's returns follow a normal distribution? Are their skewness and 
kurtosis zero and 3 (excess kurtosis is zero)?

4. What are the values of skewness and kurtosis for a normal distribution? 
Generate n random numbers by using rnorm() to support your conclusion.

5. Write a Python function to estimate mean, standard deviation, skewness,  
and kurtosis of a given ticker; for example, moments4("ticker",begdate,e
nddate).

6. Assuming that we own 134 shares of Microsoft; what is the total value today? 
What is the maximum loss tomorrow with a 95% confidence level? What is 
the value if our holding period is 1 month instead of 1 day?

7. Repeating the last question of 11.4 by using a monthly return instead of a 
daily return, is the answer different from that in 11.4?

8. Our portfolio has 100 shares of IBM, and 300 shares of Microsoft. What is the 
VaR with a 99% confidence level for our 1-day holding period?

9. To estimate a VaR for Dell over 1 month, we could convert the daily VaR  
to a monthly VaR or calculate the VaR from the monthly data directly. Are  
they different?

http://www.frbsf.org/economic-research/files/lopezbktesting.pdf
http://www.frbsf.org/economic-research/files/lopezbktesting.pdf
https://en.wikipedia.org/wiki/Value_at_risk
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10. When we estimate a VaR, we could use different time periods, such as over 
the past year or past 5 years. Does this make a difference? Use a few tickers 
to explore and comment on your results.

11. Comment on the different VaR approaches, such as those based on the 
normality assumption, historical returns, and the modified VaR.

12. If a fund has a 10% invested in IBM, 12% with Google, and the rest with 
Walmart, what is the volatility of the portfolio?

13. If the weights are 10% for IBM stocks, 12% for Dell, 20% for Walmart, and  
the rest of them for a long-term Treasury 10-year bond, what is the volatility  
of the portfolio?

14. Based on 11.11, if the portfolio value is $10 million, what is the VaR with a 
99% confidence level over the next 6 months?

15. Use a 99% confidence level and 10 trading days as your holding period to 
estimate a VaR based on the historical returns method: 100 shares IBM, 200 
shares Citigroup, 200 shares Microsoft, and 400 shares Walmart.

16. Is it true that a VaR based on a normality assumption is usually less than a 
VaR based on historical returns?

You could use a rolling window to a stock to show your 
result (answer). Alternatively, you could use several stocks.

17. Based on the code for the skewness, write a Python function for kurtosis. 
Compare your function with the function of scipy.stats.kurtosis().

18. If our holding period is not 1 day, what is the format (formulas) to estimate a 
VaR based on our historical returns?

19. If the holding period is 2 weeks (10 trading days), how do you estimate a 
VaR based on the historical return data?

20. What is the maximum possible loss (VaR) if our holdings for IBM, Dell, and 
Walmart stocks are 100, 200, and 500 shares, respectively? The confidence 
level is 99% and the holding period is 2 weeks.

21. Write a Python program to generate a VaR using historical value. The  
structure of the function will be VaR_historical(ticker, confidence_
level, n_days).
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Summary
In this chapter, an important risk measure called the Value at Risk (VaR) was 
discussed in detail. To estimate the VaR for individual stocks or portfolios, the two 
most popular methods are explained: based on the normality assumption and based 
on the sorting of historical returns. In addition, we have discussed the modified 
VaR method which considers the third and fourth moments in addition to the first 
two moments of returns. In Chapter 12, Monte Carlo Simulation, we explain how to 
apply simulation to finance, such as simulating stock price movements and returns, 
replicating the Black-Scholes-Merton options model, and pricing some exotic options.
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Monte Carlo Simulation
Monte Carlo Simulation is an extremely useful tool in finance. For example, because 
we can simulate stock price by drawing random numbers from a lognormal 
distribution, the famous Black-Scholes-Merton option model can be replicated. 
From Chapter 9, Portfolio Theory, we have learnt that by adding more stocks into a 
portfolio, the firm specific risk could be reduced or eliminated. Via simulation, we 
can see the diversification effect much clearly since we can randomly select 50 stocks 
from 5,000 stocks repeatedly. For capital budgeting, we can simulate over several 
dozen variables with uncertain future values. For those cases, simulation can be 
applied to generate many possible future outcomes, events, and various types of 
combinations. In this chapter, the following topics will be covered:

• Generating random numbers drawn from a normal, uniform, and Poisson 
distributions

• Estimating π value by using Monte Carlo simulation
• Simulate stock price movement with a lognormal distribution
• Constructing efficient portfolios and an efficient frontier
• Replicating the Black-Scholes-Merton option model by simulation
• Pricing several exotic options, such as lookback options with floating strikes
• Bootstrapping with/without replacements
• Long term expected return forecast
• Efficiency, Quasi Monte Carlo simulation, and Sobol sequence
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Importance of Monte Carlo Simulation
Monte Carlo Simulation, or simulation, plays a quite important role in finance with 
many applications. Assume that we intend to estimate Net Present Value (NPV) of 
a project. There are many uncertainties in the future, such as borrowing cost, price of 
our final products, raw materials, and so on. For just a few variables, we still could 
manage the task easily. However, if we face two dozen variables with uncertain 
future values, it is a headache to find a solution. Fortunately, Monte Carlo Simulation 
can be applied here. In Chapter 10, Options and Futures, we have learnt that the logic 
behind the Black-Scholes-Merton option models is the normality assumption for stock 
returns. Because of this, their closed-firm solution could be replicated by simulation. 
Another example is to randomly choose 50 stocks from 4,500 available stocks. Unlike 
vanilla options, such as the Black-Scholes-Merton model, there are no closed-form 
solutions for exotic options. Fortunately, we can use simulation to price some of them.

Generating random numbers from a 
standard normal distribution
Normal distributions play a central role in finance. A major reason is that many 
finance theories, such as option theory and their related applications, are based on 
the assumption that stock returns follow a normal distribution. The second reason 
is that if our econometric models are well designed, the error terms from the models 
should follow a zero-mean normal distribution. It is a common task that we need to 
generate n random numbers from a standard normal distribution. For this purpose, 
we have the following three lines of code:

import scipy as sp
x=sp.random.standard_normal(size=10)
print(x)
[-0.98350472  0.93094376 -0.81167564 -1.83015626 -0.13873015  
0.33408835
  0.48867499 -0.17809823  2.1223147   0.06119195]

The basic random numbers in SciPy/NumPy are created by Mersenne Twister 
PRNG in the numpy.random function. The random numbers for distributions in 
numpy.random are in cython/pyrex and are pretty fast. There is no chance that 
readers would get the same 10 random numbers shown here. We will explain how to 
generate the same set of random numbers pretty soon. Alternatively, we can use the 
following code:

>>>import scipy as sp
>>>x=sp.random.normal(size=10)
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This program is equivalent to the following one:

>>>import scipy as sp 
>>>x=sp.random.normal(0,1,10)

The first input is for mean, the second input is for standard deviation, and the last 
one is for the number of random numbers, that is, the size of our desired dataset. 
Comparing the previous two programs, obviously the default settings for mean 
and standard deviations are 0 and 1. We can use the help() function to find out 
the names of those three input variables. To save space, only the first few lines are 
shown here:

>>>help(sp.random.normal) 
Help on built-in function normal:
normal(...) 
normal(loc=0.0, scale=1.0, size=None)

Drawing random samples from a normal 
distribution
The probability density function of the normal distribution, first derived by De 
Moivre and 200 years later by both Gauss and Laplace independently, is often called 
the bell curve because of its characteristic shape; refer to the following graph:
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The density function for a standard normal distribution is given here:

Here, f(x) is the density function for a standard normal distribution, x is an input 
value, e is the exponential function, and π is 3.1415926. Here is the code to generate 
the preceding bell curve:

import scipy as sp
import scipy.stats as stats
import matplotlib.pyplot as plt
x = sp.arange(-3,3,0.01)
y=stats.norm.pdf(x)
plt.plot(x,y)
plt.title("A standard normal distribution")
plt.xlabel('x')
plt.ylabel('y')
plt.show()

Generating random numbers with a seed
Quite often, users want to produce the same set of random numbers repeatedly. 
For example, when a professor is explaining how to estimate the mean, standard 
deviation, skewness, and kurtosis of a set of random numbers, it is a good idea that 
students could generate exactly the same values as their instructor. Another example 
would be that when we are debugging our Python program to simulate a stock's 
movements, we might prefer to have the same intermediate results. For such cases, 
we use the scipy.random.seed() function as follows:

>>>import scipy as sp 
>>>sp.random.seed(12345) 
>>>x=sp.random.normal(0,1,20) 
>>>print x[0:5] 
[-0.20470766 0.47894334 -0.51943872 -0.5557303 1.96578057] 
>>>

Here, 12345 is a seed. The value of the seed is not important. The key is that the same 
seed leads to the same set of random values. The formula for a more general normal 
distribution is shown here:
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Here, f(x) is the density function for a normal distribution, x is an input value, e is the 
exponential function, μ is the mean, σ is the standard deviation.

Random numbers from a normal distribution
To generate n random numbers from a normal distribution, we have the  
following code:

>>>impimport scipy as sp 
>>>sp.random.seed(12345) 
>>>mean=0.05
>>>std=0.1
>>>n=50
>>>x=sp.random.normal(mean,std,n) 
>>>print(x[0:5])
[ 0.02952923 0.09789433 -0.00194387 -0.00557303 0.24657806]
>>>

The difference between this program and the previous one is that the mean is 0.05 
instead of 0, while the standard deviation is 0.1 instead of 1.

Histogram for a normal distribution
A histogram is used intensively in the process of analyzing the properties of datasets. 
To generate a histogram for a set of random values drawn from a normal distribution 
with specified mean and standard deviation, we have the following code:

import scipy as sp 
import matplotlib.pyplot as plt 
sp.random.seed(12345) 
mean=0.1
std=0.2
n=1000
x=sp.random.normal(mean,std,n) 
plt.hist(x, 15, normed=True) 
plt.title("Histogram for random numbers drawn from a normal 
distribution")
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plt.annotate("mean="+str(mean),xy=(0.6,1.5))
plt.annotate("std="+str(std),xy=(0.6,1.4))
plt.show()

The resultant graph is presented as follows:

Graphical presentation of a lognormal 
distribution
When stock returns follow a normal distribution, then its prices should follow a 
lognormal distribution. The definition of a lognormal distribution is as follows:

Here, f(x;μ,σ) is the density of a lognormal distribution, ln() is the natural log 
function. The following code shows three different lognormal distributions with 
three pairs of parameters, such as (0, 0.25), (0, 0.5), and (0, 1.0). The first parameter is 
for mean (μ), while the second one is for standard deviation, see the following code:

import scipy as sp
import numpy as np
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import matplotlib.pyplot as plt 
from scipy import sqrt,exp,log,pi
#
x=np.linspace(0.001,3,200)
mu=0 
sigma0=[0.25,0.5,1]
color=['blue','red','green'] 
target=[(1.2,1.3),(1.7,0.4),(0.18,0.7)]
start=[(1.8,1.4),(1.9,0.6),(0.18,1.6)]
#
for i in sp.arange(len(sigma0)):
    sigma=sigma0[i]
    y=1/(x*sigma*sqrt(2*pi))*exp(-(log(x)-mu)**2/(2*sigma*sigma))
    plt.annotate('mu='+str(mu)+', sigma='+str(sigma),xy=target[i],xyte
xt=start[i],arrowprops=dict(facecolor=color[i],shrink=0.01),) 
    plt.plot(x,y,color[i])
    plt.title('Lognormal distribution') 
    plt.xlabel('x')
    plt.ylabel('lognormal density distribution') 
#
plt.show()

The graph is shown here. Obviously, unlike a density of a normal distribution, the 
density function of a lognormal distribution is not symmetric:
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Generating random numbers from a 
uniform distribution
When randomly choosing m stocks from n available stocks, we can draw a set of 
random numbers from a uniform distribution. To generate 10 random numbers 
between 1 and 100 from a uniform distribution, we have the following code. To 
guarantee for the same set of numbers, the seed() function is used:

>>>import scipy as sp 
>>>sp.random.seed(123345) 
>>>x=sp.random.uniform(low=1,high=100,size=10) 

Again, low, high, and size are the three input names. The first one specifies the 
minimum, the second one specifies the high end, while the size gives the number  
of the random numbers we intend to generate. The first five numbers are shown  
as follows:

>>>print(x[0:5])
[ 30.32749021 20.58006409 2.43703988 76.15661293 75.06929084]
>>>

Next program randomly roll a dice with a value from 1, 2, and up to 6:

import random
def rollDice():
    roll = random.randint(1,6)
    return roll
i =1
n=10
result=[]
random.seed(123)
while i<n:
    result.append(rollDice())
    i+=1
print(result)
[1, 1, 3, 1, 6, 1, 4, 2, 6]

In the previous program, the random.seed() function is applied. Thus, any reader 
should get the same results shown by the last line.
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Using simulation to estimate the pi value
It is a good exercise to estimate π value by simulation. Let's draw a square with 2R as 
its side. If putting the largest circle inside the square, its radius will be R, described 
by the following equation:

On the other hand, the square is the product of its sides:

Dividing Equation (4) by Equation (5), we have the following result:

Reorganize it; we end up with the following equation:

In other words, the value of π will be 4* Scircle/Square. When running the simulation, 
we generate n pairs of x and y from a uniform distribution with a range of zero and 
0.5. Then we estimate a distance that is the square root of the summation of the 
squared x and y, that is, .

Obviously, when d is less than 0.5 (value of R), it will fall into the circle. We can 
imagine throwing a dart that falls into the circle. The value of the pi will take the 
following form:
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The following graph illustrates these random points within a circle and within  
a square:

The Python program to estimate the value of pi is presented as follows:

import scipy as sp 
n=100000
x=sp.random.uniform(low=0,high=1,size=n) 
y=sp.random.uniform(low=0,high=1,size=n) 
dist=sp.sqrt(x**2+y**2) 
in_circle=dist[dist<=1] 
our_pi=len(in_circle)*4./n
print ('pi=',our_pi)
print('error (%)=', (our_pi-sp.pi)/sp.pi)

The estimated pi value would change whenever we run the previous code, as shown 
in the following code, and the accuracy of its estimation depends on the number of 
trials, that is, n:

('pi=', 3.14168)
('error (%)=', 2.7803225891524895e-05)
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Generating random numbers from a 
Poisson distribution
To investigate the impact of private information, Easley, Kiefer, O'Hara, and 
Paperman (1996) designed a Probability of informed (PIN) trading measure that 
is derived based on the daily number of buyer-initiated trades and the number of 
seller-initiated trades. The fundamental aspect of their model is to assume that order 
arrivals follow a Poisson distribution. The following code shows how to generate n 
random numbers from a Poisson distribution:

import numpy as np
import scipy as sp 
import matplotlib.pyplot as plt 
x=sp.random.poisson(lam=1, size=100) 
#plt.plot(x,'o') 
a = 5. # shape 
n = 1000 
s = np.random.power(a, n) 
count, bins, ignored = plt.hist(s, bins=30) 
x = np.linspace(0, 1, 100) 
y = a*x**(a-1.) 
normed_y = n*np.diff(bins)[0]*y 
plt.title("Poisson distribution")
plt.ylabel("y")
plt.xlabel("x")
plt.plot(x, normed_y) 
plt.show()

The graph is shown here:
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Selecting m stocks randomly from n 
given stocks
Based on the preceding program, we could easily choose 20 stocks from 500 available 
securities. This is an important step if we intend to investigate the impact of the 
number of randomly selected stocks on the portfolio volatility, as shown in the 
following code:

import scipy as sp 
n_stocks_available=500 
n_stocks=20 
sp.random.seed(123345) 
x=sp.random.uniform(low=1,high=n_stocks_available,size=n_stocks)
y=[] 
for i in range(n_stocks): 
    y.append(int(x[i])) 
#print y 
final=sp.unique(y) 
print(final) 
print(len(final))
[  8  31  61  99 124 148 155 172 185 205 226 275 301 334 356 360 374 
379
 401 449]
20

In the preceding program, we select 20 numbers from 500 numbers. Since we have 
to choose integers, we might end up with less than 20 values, that is, some integers 
appear more than once after we convert real numbers into integers. One solution is to 
pick more than we need. Then choose the first 20 integers. An alternative is to use the 
randrange() and randint() functions. In the next program, we choose n stocks from 
all available stocks. First, we download a dataset from http://canisius.edu/~yany/
python/yanMonthly.pkl. Assume that the dataset is located under C:/temp/:

import scipy as sp
import numpy as np
import pandas as pd
#
n_stocks=10 
x=pd.read_pickle('c:/temp/yanMonthly.pkl') 
x2=sp.unique(np.array(x.index)) 
x3=x2[x2<'ZZZZ']                        # remove all indices 
sp.random.seed(1234567) 
nonStocks=['GOLDPRICE','HML','SMB','Mkt_Rf','Rf','Russ3000E_D','US_
DEBT','Russ3000E_X','US_GDP2009dollar','US_GDP2013dollar'] 
x4=list(x3) 

http://canisius.edu/~yany/python/yanMonthly.pkl
http://canisius.edu/~yany/python/yanMonthly.pkl
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#
for i in range(len(nonStocks)): 
    x4.remove(nonStocks[i]) 
#
k=sp.random.uniform(low=1,high=len(x4),size=n_stocks) 
y,s=[],[] 
for i in range(n_stocks): 
    index=int(k[i]) 
    y.append(index) 
    s.append(x4[index]) 
#
final=sp.unique(y) 
print(final) 
print(s)

In the preceding program, we remove non-stock data items. These non-stock items 
are a part of data items. First, we load a dataset called yanMonthly.pickle that 
includes over 200 stocks, gold price, GDP, unemployment rate, Small Minus Big 
(SMB), High Minus Low (HML), risk-free rate, price rate, market excess rate, and 
Russell indices.

One type of output formats from pandas is with a .pkl .png. Since x.index would 
present all indices for each observation, we need to use the unique() function to 
select all unique IDs. Since we only consider stocks to form our portfolio, we have to 
move all market indices and other non-stock securities, such as HML and US_DEBT. 
Because all stock market indices start with a carat (^), we use less than ZZZZ to 
remove them. For other IDs that are between A and Z, we have to remove them one 
after another. For this purpose, we use the .remove() function available for a list 
variable. The final output is shown as follows:

With/without replacements
Assume that we have the historical data, such as price and return, for a stock. 
Obviously, we could estimate their mean, standard deviation, and other related 
statistics. What are their expected annual mean and risk next year? The simplest, 
maybe naïve way is to use the historical mean and standard deviation. A better way 
is to construct the distribution of annual return and risk. This means that we have to 
find a way to use historical data more effectively to predict the future. In such cases, 
we could apply the bootstrapping methodology. For example, for one stock, we have 
its last 20-year monthly returns, that is, 240 observations.
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To estimate next year's 12 monthly returns, we need to construct a return 
distribution. First, we choose 12 returns randomly from the historical return set 
without replacements and estimate their mean and standard deviations. We repeat 
this procedure 5,000 times. The final output will be our return-standard distribution. 
Based on such a distribution, we can estimate other properties as well. Similarly, we 
can do so with replacements. One of the useful functions present in NumPy is called 
numpy.random.permutation(). Assume that we have 10 numbers from one to 10 
(inclusive of one and 10). We can call the numpy.random.permutation() function to 
reshuffle them as follows:

import numpy as np 
x=range(1,11) 
print(x) 
for i in range(5):
    y=np.random.permutation(x) 
#
print(y)

The output of this code is shown as follows:

Based on the numpy.random.permutation() function, we can define a function 
with three input variables: data, number of observations we plan to choose from the 
data randomly, and whether we choose to bootstrap with or without replacement, as 
shown in the following code:

import numpy as np 
def boots_f(data,n_obs,replacement=None):
    n=len(data) 
    if (n<n_obs):
        print "n is less than n_obs" 
    else: 
        if replacement==None:
            y=np.random.permutation(data) 
            return y[0:n_obs] 
        else:
            y=[] 
    #
    for i in range(n_obs): 
        k=np.random.permutation(data) 
        y.append(k[0]) 
    return y
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The constraint specified in the previous program is that the number of given 
observations should be larger than the number of random returns we plan to pick 
up. This is true for the bootstrapping without the replacement method. For the 
bootstrapping with the replacement method, we could relax this constraint; refer to 
the related exercise.

Distribution of annual returns
It is a good application to estimate annualized return distribution and represent 
it as a graph. To make our exercise more meaningful, we download Microsoft's 
daily price data. Then, we estimate its daily returns and convert them into annual 
ones. Based on those annual returns, we generate its distribution by applying 
bootstrapping with replacements 5,000 times, as shown in the following code:

import numpy as np 
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
# Step 1: input area
ticker='MSFT'          # input value 1 
begdate=(1926,1,1)      # input value 2 
enddate=(2013,12,31)    # input value 3 
n_simulation=5000       # input value 4
# Step 2: retrieve price data and estimate log returns
x=getData(ticker,begdate,enddate,asobject=True)
logret = sp.log(x.aclose[1:]/x.aclose[:-1])
# Step 3: estimate annual returns 
date=[]
d0=x.date
for i in range(0,sp.size(logret)): 
    date.append(d0[i].strftime("%Y"))
y=pd.DataFrame(logret,date,columns=['logret']) 
ret_annual=sp.exp(y.groupby(y.index).sum())-1 
ret_annual.columns=['ret_annual']
n_obs=len(ret_annual)
# Step 4: estimate distribution with replacement 
sp.random.seed(123577) 
final=sp.zeros(n_obs,dtype=float)
for i in range(0,n_obs):
    x=sp.random.uniform(low=0,high=n_obs,size=n_obs) 
    y=[]
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    for j in range(n_obs): 
        y.append(int(x[j]))
        z=np.array(ret_annual)[y] 
    final[i]=sp.mean(z)
# step 5: graph
plt.title('Mean return distribution: number of simulations ='+str(n_
simulation))
plt.xlabel('Mean return')
plt.ylabel('Frequency')
mean_annual=round(np.mean(np.array(ret_annual)),4) 
plt.figtext(0.63,0.8,'mean annual='+str(mean_annual)) 
plt.hist(final, 50, normed=True)
plt.show()

The corresponding graph is shown as follows:
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Simulation of stock price movements
We mentioned in the previous sections that in finance, returns are assumed to follow 
a normal distribution, whereas prices follow a lognormal distribution. The stock 
price at time t+1 is a function of the stock price at t, mean, standard deviation, and 
the time interval, as shown in the following formula:

In this formula, St + 1 is the stock price at t+1, ˆ μ is the expected stock return, t _ is 
the time interval (T t n_= ), T is the time (in years), n is the number of steps, ε is the 
distribution term with a zero mean, and σ is the volatility of the underlying stock. 
With a simple manipulation, equation (4) can lead to the following equation that we 
will use in our programs:

In a risk-neutral work, no investors require compensation for bearing risk. In other 
words, in such a world, the expected return on any security (investment) is the  
risk-free rate. Thus, in a risk-neutral world, the previous equation becomes the 
following equation:

If you want to learn more about the risk-neutral probability, refer to Options, Futures 
and Other Derivatives, 7th edition, John Hull, Pearson, 2009. The Python code to simulate 
a stock's movement (path) is as follows:

import scipy as sp 
import matplotlib.pyplot as plt
# input area
stock_price_today = 9.15 # stock price at time zero 
T =1.                    # maturity date (in years) 
n_steps=100.             # number of steps 
mu =0.15                 # expected annual return 
sigma = 0.2              # annualized volatility
sp.random.seed(12345)    # fixed our seed 
n_simulation = 5         # number of simulations 
dt =T/n_steps 
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#
S = sp.zeros([n_steps], dtype=float) 
x = range(0, int(n_steps), 1) 
for j in range(0, n_simulation): 
    S[0]= stock_price_today 
    for i in x[:-1]: 
        e=sp.random.normal() 
        S[i+1]=S[i]+S[i]*(mu-0.5*pow(sigma,2))*dt+sigma*S[i]*sp.
sqrt(dt)*e; 
    plt.plot(x, S)
#
plt.figtext(0.2,0.8,'S0='+str(S[0])+',mu='+str(mu)+',sigma='+str(sig
ma)) 
plt.figtext(0.2,0.76,'T='+str(T)+', steps='+str(int(n_steps))) 
plt.title('Stock price (number of simulations = %d ' % n_simulation 
+')') 
plt.xlabel('Total number of steps ='+str(int(n_steps))) 
plt.ylabel('stock price') 
plt.show()

To make our graph more readable, we deliberately choose just five simulations. Since 
the scipy.random.seed() function is applied, you can replicate the following graph 
by running the previous code. The graph is shown here:
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Graphical presentation of stock prices at 
options' maturity dates
Up to now, we have discussed that options are really path-independent, which 
means the option prices depend on terminal values. Thus, before pricing such an 
option, we need to know the terminal stock prices. To extend the previous program, 
we have the following code to estimate the terminal stock prices for a given set 
of values: S0 (initial stock price), n_simulation (number of terminal prices), T 
(maturity date in years), n_steps (number of steps), mu (expected annual stock 
returns), and sigma (volatility):

import scipy as sp 
import matplotlib.pyplot as plt
from scipy import zeros, sqrt, shape 
#input area
S0 = 9.15               # stock price at time zero 
T =1.                   # years
n_steps=100.            # number of steps 
mu =0.15                # expected annual return 
sigma = 0.2             # volatility (annual) 
sp.random.seed(12345)   # fix those random numbers 
n_simulation = 1000     # number of simulation 
dt =T/n_steps 
#
S = zeros([n_simulation], dtype=float) 
x = range(0, int(n_steps), 1) 
for j in range(0, n_simulation): 
    tt=S0 
    for i in x[:-1]: 
        e=sp.random.normal() 
        tt+=tt*(mu-0.5*pow(sigma,2))*dt+sigma*tt*sqrt(dt)*e; 
        S[j]=tt 
#
plt.title('Histogram of terminal price') 
plt.ylabel('Number of frequencies') 
plt.xlabel('Terminal price') 
plt.figtext(0.5,0.8,'S0='+str(S0)+',mu='+str(mu)+',sigma='+str(sigma)) 
plt.figtext(0.5,0.76,'T='+str(T)+', steps='+str(int(n_steps))) 
plt.figtext(0.5,0.72,'Number of terminal prices='+str(int(n_
simulation))) 
plt.hist(S) 
plt.show()



Monte Carlo Simulation

[ 440 ]

The histogram of our simulated terminal prices is shown as follows:

As we mentioned in Chapter 9, Portfolio Theory, in order to generate two correlated 
random number time series, there are two step involved: generate two random time 
series x1 and x2 with a zero-correlation; and then apply the following formulae:

Here, ρ is the predetermined correlation between those two time series. Now, y1 and 
y2 are correlated with a predetermined correlation. The following Python program 
will implement the preceding approach:

import scipy as sp
sp.random.seed(123)
n=1000
rho=0.3
x1=sp.random.normal(size=n)
x2=sp.random.normal(size=n)
y1=x1
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y2=rho*x1+sp.sqrt(1-rho**2)*x2
print(sp.corrcoef(y1,y2))
[[ 1.          0.28505213]
 [ 0.28505213  1.        ]]

Replicating a Black-Scholes-Merton call 
using simulation
After knowing the terminal prices, we can estimate the payoff for a call if the  
exercise price is given. The mean of those discounted payoffs using the risk-free rate 
as our discount rate will be our call price. The following code helps us estimate the 
call price:

import scipy as sp 
from scipy import zeros, sqrt, shape 
#
S0 = 40.              # stock price at time zero 
X= 40.                # exercise price 
T =0.5                # years 
r =0.05               # risk-free rate 
sigma = 0.2           # annualized volatility 
n_steps=100          # number of steps 
#
sp.random.seed(12345) # fix those random numbers 
n_simulation = 5000   # number of simulation 
dt =T/n_steps 
call = sp.zeros([n_simulation], dtype=float) 
x = range(0, int(n_steps), 1) 
for j in range(0, n_simulation): 
    sT=S0 
    for i in x[:-1]: 
        e=sp.random.normal() 
        sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sqrt(dt)) 
        call[j]=max(sT-X,0) 
#
call_price=sp.mean(call)*sp.exp(-r*T) 
print('call price = ', round(call_price,3))

The estimated call price is $2.748. The same logic applies to pricing a put option.
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Exotic option #1 – using the Monte Carlo 
Simulation to price average
Up to now, we have discussed European and American options in Chapter 9, 
Portfolio Theory. The Black- Scholes-Merton Option Model, which is also called a 
vanilla option. One of the characters is path independent. On the other hand, exotic 
options are more complex since they might have several triggers relating to the 
determination of their payoffs. For example, a refinery is worried about the oil, its 
major raw material, and price movement in the next three months. They plan to 
hedge the potential price jumps in crude oil. The company could buy a call option. 
However, since the firm consumes a huge amount of crude oil every day, naturally 
it cares more about the average price instead of just the terminal price on which a 
vanilla call option depends. For such cases, average options will be more effective. 
Average options are a type of Asian options. For an average option, its payoff is 
determined by the average underlying prices over some preset period of time. There 
are two types of averages: arithmetic average and geometric average. The payoff 
function of an Asian call (average price) is given as follows:

The payoff function of an Asian put (average price) is given here:

Asian options are one of the basic forms of exotic options. Another advantage of 
Asian options is that their costs are cheaper compared to European and American 
vanilla options since the variation of an average will be much smaller than a terminal 
price. The following Python program is for an Asian option with an arithmetic 
average price:

import scipy as sp
s0=40.                 # today stock price 
x=40.                  # exercise price 
T=0.5                  # maturity in years 
r=0.05                 # risk-free rate 
sigma=0.2              # volatility (annualized) 
sp.random.seed(123)    # fix a seed here 
n_simulation=100       # number of simulations 
n_steps=100.           # number of steps
# 
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dt=T/n_steps 
call=sp.zeros([n_simulation], dtype=float) 
for j in range(0, n_simulation): 
    sT=s0 
    total=0 
    for i in range(0,int(n_steps)): 
         e=sp.random.normal()
         sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt)) 
         total+=sT 
         price_average=total/n_steps 
    call[j]=max(price_average-x,0) 
#
call_price=sp.mean(call)*sp.exp(-r*T) 
print('call price based on average price = ', round(call_price,3))
('call price based on average price = ', 1.699)

Based on the preceding result, the call premium for this average price call is $1.70.

Exotic option #2 – pricing barrier options 
using the Monte Carlo Simulation
Unlike the Black-Scholes-Merton option model's call and put options, which are 
path-independent, a barrier option is path-dependent. A barrier option is similar in 
many ways to an ordinary option except a trigger exists. An in option starts its life 
worthless unless the underlying stock reaches a predetermined knock-in barrier. 
On the contrary, an out barrier option starts its life active and turns useless when a 
knock-out barrier price is breached. In addition, if a barrier option expires inactive, 
it may be worthless, or there may be a cash rebate paid out as a fraction of the 
premium. The four types of barrier options are given as follows:

• Up-and-out: In this barrier option, the price starts from down a barrier level. 
If it reaches the barrier, it is knocked out.

• Down-and-out: In this barrier option, the price starts from higher a barrier. If 
it reaches the barrier, it is knocked out.

• Up-and-in: In this barrier option, the price starts down a barrier and has to 
reach the barrier to be activated.

• Down-and-in: In this barrier option, the price starts higher a barrier and has 
to reach the barrier to be activated.
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The next Python program is for an up-and-out barrier option with a European call:

import scipy as sp 
from scipy import log,exp,sqrt,stats 
#
def bsCall(S,X,T,r,sigma):
    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T)) 
    d2 = d1-sigma*sqrt(T)
    return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)
#
def up_and_out_call(s0,x,T,r,sigma,n_simulation,barrier):
    n_steps=100. 
    dt=T/n_steps 
    total=0 
    for j in sp.arange(0, n_simulation): 
        sT=s0 
        out=False
        for i in range(0,int(n_steps)): 
            e=sp.random.normal() 
            sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt)) 
            if sT>barrier: 
               out=True 
        if out==False: 
            total+=bsCall(s0,x,T,r,sigma) 
    return total/n_simulation

The basic design is that we simulate the stock movement n times, such as 100 times. 
For each simulation, we have 100 steps. Whenever the stock price reaches the barrier, 
the payoff will be zero. Otherwise, the payoff will be a vanilla European call. The 
final value will be the summation of all call prices that are not knocked out, divided 
by the number of simulations, as shown in the following code:

s0=40.              # today stock price 
x=40.               # exercise price 
barrier=42          # barrier level 
T=0.5               # maturity in years 
r=0.05              # risk-free rate 
sigma=0.2           # volatility (annualized) 
n_simulation=100    # number of simulations 
sp.random.seed(12)  # fix a seed
#
result=up_and_out_call(s0,x,T,r,sigma,n_simulation,barrier) 
print('up-and-out-call = ', round(result,3))
('up-and-out-call = ', 0.937)
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Based on the preceding result, we know that the call price for this up and out-call  
is $0.94.

Liking two methods for VaR using 
simulation
In the previous chapter, Chapter 11, Value at Risk, we learnt that we could apply two 
methods to estimate a VaR for an individual stock or for a portfolio: it depends on 
the normality assumption and based on the ranking of historical returns. Monte 
Carlo Simulation could link those two methods, see the following code:

import numpy as np
import numpy as np
import scipy as sp
import pandas as pd
from scipy.stats import norm
#
position=1e6              # portfolio value
std=0.2                   # volatility
mean=0.08                 # mean return
confidence=0.99           # confidence level
nSimulations=50000        # number of simulations
# Method I
z=norm.ppf(1-confidence)
VaR=position*(mean+z*std)
print("Holding=",position, "VaR=", round(VaR,2), "tomorrow")
#
# Method II: Monte Carlo simulaiton 
sp.random.seed(12345) 
ret2=sp.random.normal(mean,std,nSimulations) 
ret3=np.sort(ret2) 
m=int(nSimulations*(1-confidence))
VaR2=position*(ret3[m])
print("Holding=",position, "VaR2=", round(VaR2,2), "tomorrow")
('Holding=', 1000000.0, 'VaR=', -385270.0, 'tomorrow')
('Holding=', 1000000.0, 'VaR2=', -386113.0, 'tomorrow')

Monte Carlo Simulation offers a result of $386,113 compared with $385,270 based on 
the formula for a $1 million of portfolio value today.
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Capital budgeting with Monte Carlo 
Simulation
As we mentioned at the beginning of this chapter, we can use Monte Carlo 
Simulation to capital budgeting when the number of variables has many different 
values. Our objective is to estimate the NPV for a given budget by discounting all  
of its future free cash flow:

Here, NPV is the Net Present Value of one proposal, FCF0 will be the free cash flow 
at time zero, FCFt will be free cash flow at the end of year I, R is the discount rate. 
The formula to calculate free cash flows at the end of year t is given here:

Here, FCTt is Free Cash Flow at year t, Dt is depreciation of year t, CaptExt is the net 
capital expenditure at year t, NWC is for Net working capital, which is the current 
asset minus current liability, Δ means change. Let's look at a simple one. Assume that 
the company buys one price of long term equivalent with a total cost of 0.5 million 
with a life of five years:

Items 0 1 2 3 4 5
Price 0 28 28 28 28 28
Unit 0 100000 100000 100000 100000 100000
Sales 0 2800000 2800000 2800000 2800000 2800000
Cost of goods sold 0 840000 840000 840000 840000 840000
Other costs 0 100000 100000 100000 100000 100000
Selling, general and adm 15000 15000 15000 15000 15000 15000
R&D 20000
Depreciation 1000000 1000000 1000000 1000000 1000000
EBIT -35000 845000 845000 845000 845000 845000
Tax 35% -12250 295750 295750 295750 295750 295750
NI -47250 1140750 1140750 1140750 1140750 1140750
Add depreciation -47250 2140750 2140750 2140750 2140750 2140750

Table 12.1 Cash flows every year
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We have the following equivalent code:

import scipy as sp
nYear=5                 # number of years
costEquipment=5e6       # 5 million 
n=nYear+1               # add year zero
price=28                # price of the product
units=100000            # estimate number of units sold 
otherCost=100000        # other costs
sellingCost=1500        # selling and administration cost 
R_and_D=200000          # Research and development
costRawMaterials=0.3    # percentage cost of raw materials
R=0.15                  # discount rate
tax=0.38                # corporate tax rate
#
sales=sp.ones(n)*price*units
sales[0]=0              # sales for 1st year is zero
cost1=costRawMaterials*sales
cost2=sp.ones(n)*otherCost
cost3=sp.ones(n)*sellingCost
cost4=sp.zeros(n)
cost4[0]=costEquipment
RD=sp.zeros(n)
RD[0]=R_and_D                     # assume R&D at time zero
D=sp.ones(n)*costEquipment/nYear  # straight line depreciation 
D[0]=0                            # no depreciation at time 0
EBIT=sales-cost1-cost2-cost3-cost4-RD-D
NI=EBIT*(1-tax)
FCF=NI+D                         # add back depreciation
npvProject=sp.npv(R,FCF)         # estimate NPV
print("NPV of project=",round(npvProject,0))
('NPV of project=', 1849477.0)

The NPV of this project is $1,848,477. Since it is positive, we should accept that the 
proposal if our criterion is based on the NPV rule. Now, let's add some uncertainty. 
Assume that we have three uncertainties: price, unit of products expected to sell, and 
discount rates, see the following code:

import scipy as sp
import matplotlib.pyplot as plt
nYear=5                 # number of years
costEquipment=5e6       # 5 million 
n=nYear+1               # add year zero
otherCost=100000        # other costs
sellingCost=1500        # selling and administration cost 
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R_and_D=200000          # Research and development
costRawMaterials=0.3    # percentage cost of raw materials
tax=0.38                # corporate tax rate
thousand=1e3            # unit of thousand 
million=1e6             # unit of million 
#
# three uncertainties: price, unit and discount rate
nSimulation=100         # number of simulation
lowPrice=10             # low price
highPrice=30            # high price
lowUnit=50*thousand     # low units expected to sell 
highUnit=200*thousand   # high units expected to sell 
lowRate=0.15            # lower discount rate
highRate=0.25           # high discount rate 
#
n2=nSimulation
sp.random.seed(123)
price0=sp.random.uniform(low=lowPrice,high=highPrice,size=n2)
units0=sp.random.uniform(low=lowUnit,high=highUnit,size=n2)
R0=sp.random.uniform(lowRate,highRate,size=n2)
#
npv=[]
for i in sp.arange(nSimulation):
    units=sp.ones(n)*units0[i]
    price=price0[i]
    R=R0[i]
    sales=units*price
    sales[0]=0              # sales for 1st year is zero
    cost1=costRawMaterials*sales
    cost2=sp.ones(n)*otherCost
    cost3=sp.ones(n)*sellingCost
    cost4=sp.zeros(n)
    cost4[0]=costEquipment
    RD=sp.zeros(n)
    RD[0]=R_and_D                     # assume R&D at time zero
    D=sp.ones(n)*costEquipment/nYear  # straight line depreciation 
    D[0]=0                            # no depreciation at time 0
    EBIT=sales-cost1-cost2-cost3-cost4-RD-D
    NI=EBIT*(1-tax)
    FCF=NI+D                          # add back depreciation
    npvProject=sp.npv(R,FCF)/million  # estimate NPV
    npv.append(npvProject)
print("mean NPV of project=",round(sp.mean(npv),0))
print("min  NPV of project=",round(min(npv),0))
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print("max  NPV of project=",round(max(npv),0))
plt.title("NPV of the project: 3 uncertainties")
plt.xlabel("NPV (in million)")
plt.hist(npv, 50, range=[-3, 6], facecolor='blue', align='mid')
plt.show()

The histogram of the NPV distribution is shown here:

Python SimPy module
SimPy is a process-based discrete-event simulation framework based on standard 
Python. Its event dispatcher is based on Python's generators and can also be used for 
asynchronous networking or to implement multi-agent systems (with both simulated 
and real communication). Processes in SimPy are simple Python generator functions 
and are used to model active components such as customers, vehicles, or agents. 
SimPy also provides various types of shared resources to model limited capacity 
congestion points (such as servers, checkout counters, and tunnels). From version 
3.1, it will also provide monitoring capabilities to aid in gathering statistics about 
resources and processes:

import simpy
def clock(env, name, tick):
     while True:
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         print(name, env.now)
         yield env.timeout(tick)
#
env = simpy.Environment()
env.process(clock(env, 'fast', 0.5))
env.process(clock(env, 'slow', 1))
env.run(until=2)
('fast', 0)
('slow', 0)
('fast', 0.5)
('slow', 1)
('fast', 1.0)
('fast', 1.5)

Comparison between two social policies 
– basic income and basic job
This example is borrowed from Stucchhio (2013). Over the development of the past 
several decades, the wealth of each nation is continuously commutative. This is 
especially true for the developed countries. One of the basic arguments supporting 
equity is that each citizen should have their basic standard of living. Based on this 
argument, many countries offer huge benefits to their citizens, such as universal 
healthcare, free education, and the like. One policy suggestion is basic income, under 
which each citizen receives a basic income annually with no strings attached. For 
example, if we assume that the basic hourly rate is $7.50, 40 hours per week and 50 
weeks per year, then the basic income should be $15,000. Zhong (2017) reports that 
India is considering fighting poverty with a universal basic income plan. The obvious 
advantage is that the administration cost will be quite small. In addition, it is less 
likely that corruption would eat the lions share of government release funds for the 
poor. In 2017, Finland launched a pilot project, and local authorities in Canada and 
the Netherlands have also announced experiments. In 2016, voters in Switzerland 
rejected a minimum income proposal.
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One alternative is a so-called basic job in which the government guarantees a  
low-paid job to anyone who cannot find a decent one. Each of these methods has its 
advantages and disadvantages. Based on a set of assumptions, such as hourly pay, 
number of working hours per week, number of working weeks per year, population, 
workforce, and the like, Stucchhio (2013) compares the cost and benefits of these two 
proposals. Several uncertainties exist; see the list in the following table:

Policy Command Description 

Ba
si

c 
in

co
m

e

unitAdmCost = norm(250,75) Administration cost for 
each person

binom(nNonWorkers,tiny).rvs() A random number from a 
binomial distribution 

nonWorkerMultiplier = uniform(-0.10, 
0.15).rvs()

Multiplier for none workers

Ba
si

c 
jo

b

unitAdmCost4disabled= norm(500,150).
rvs()

Administration cost for 
each disabled adult

unitAdmCost4worker = norm(5000, 
1500).rvs() 

Administration cost for 
each worker

nonWorkerMultiplier = uniform(-0.20, 
0.25).rvs()   

Multiplier for none workers

hourlyProductivity = 
uniform(0.0,hourlyPay).rvs()

Hourly productivity 

Table 12.2: Costs and benefits of the two proposals

The program uses three distributions: normal, uniform, and binomial. The 
uniform(a,b).rvs() command generates a random number uniformly distributed 
between a and b. The norm(mean,std).rvs() command generates a random 
number generated from a normal distribution with specified mean and standard 
deviation. The binom(n,k).rvs() command generates a random number from a 
binomial distribution with a pair of input values of n and k:

import scipy as sp
import scipy.stats as stats
sp.random.seed(123)
u=stats.uniform(-1,1).rvs()
n=stats.norm(500,150).rvs()
b=stats.binom(10000,0.1).rvs()
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x='random number from a '
print(x+"uniform distribution ",u)
print(x+" normal distribution ",n)
print(x+" binomial distribution ",b)
('random number from a uniform distribution ', -0.30353081440213836)
('random number from a  normal distribution ', 357.18541897080166)
('random number from a  binomial distribution', 1003)

Stucchhio's Python program, with a few minor modifications, is shown here:

from pylab import *
from scipy.stats import *
#input area
million=1e6                        # unit of million 
billion=1e9                        # unit of billion 
trillion=1e12                      # unit of trillion 
tiny=1e-7                          # a small number 
hourlyPay = 7.5                    # hourly wage
workingHoursPerWeek=40             # working hour per week                                
workingWeeksPerYear=50             # working weeks per year
nAdult           = 227*million     # number of adult
laborForce       = 154*million     # labor force
disabledAdults   =  21*million     # disability 
nSimulations     = 1024*32         # number of simulations 
#
basicIncome = hourlyPay*workingHoursPerWeek*workingWeeksPerYear
# define a few function
def geniusEffect(nNonWorkers):
    nGenious = binom(nNonWorkers,tiny).rvs()
    return nGenious* billion
#
def costBasicIncome():
    salaryCost= nAdult * basicIncome
    unitAdmCost = norm(250,75)
    nonWorkerMultiplier = uniform(-0.10, 0.15).rvs()
    nonWorker0=nAdult-laborForce-disabledAdults
    nNonWorker = nonWorker0*(1+nonWorkerMultiplier)
    marginalWorkerHourlyProductivity = norm(10,1)
    admCost = nAdult * unitAdmCost.rvs()
    unitBenefitNonWorker=40*52*marginalWorkerHourlyProductivity.rvs()
    benefitNonWorkers = 1 * (nNonWorker*unitBenefitNonWorker)
    geniusBenefit=geniusEffect(nNonWorker)
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    totalCost=salaryCost + admCost - benefitNonWorkers-geniusBenefit
    return totalCost
#
def costBasicJob():
    unitAdmCost4disabled= norm(500,150).rvs()
    unitAdmCost4worker = norm(5000, 1500).rvs()
    nonWorkerMultiplier = uniform(-0.20, 0.25).rvs()
    hourlyProductivity = uniform(0.0, hourlyPay).rvs()
    cost4disabled=disabledAdults * (basicIncome + 
unitAdmCost4disabled)
    nBasicWorkers=((nAdult-disabledAdults-laborForce)*(1+nonWorkerMul
tiplier))
    
annualCost=workingHoursPerWeek*workingWeeksPerYear*hourlyProductivity
    cost4workers=nBasicWorkers * (basicIncome+unitAdmCost4worker-
annualCost)
    return cost4disabled + cost4workers
#
N = nSimulations
costBI = zeros(shape=(N,),dtype=float)
costBJ = zeros(shape=(N,),dtype=float)
for k in range(N):
    costBI[k] = costBasicIncome()
    costBJ[k] = costBasicJob()
#
def myPlot(data,myTitle,key):
    subplot(key)
    width = 4e12
    height=50*N/1024
    title(myTitle)
    #xlabel("Cost (Trillion = 1e12)")
    hist(data, bins=50)
    axis([0,width,0,height])
#
myPlot(costBI,"Basic Income",211)
myPlot(costBJ,"Basic Job",212)
show()
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Based on the graph shown here, he concludes that the cost of basic job proposal is 
lower than the basic income proposal. To save space, we will not elaborate on the 
program. For more detailed explanation and related assumption, please read the 
blog posted by Stucchhio (2013):

Finding an efficient frontier based on two 
stocks by using simulation
The following program aims at generating an efficient frontier based on two stocks 
with known means, standard deviations, and correlation. We have just six input 
values: two means, two standard deviations, the correlation (ρ), and the number 
of simulations. To generate the correlated y1 and y2 time series, we generate the 
uncorrelated x1 and x2 series first. Then, we apply the following formulae:

Another important issue is how to construct an objective function to minimize. Our 
objective function is the standard deviation of the portfolio in addition to a penalty 
that is defined as the scaled absolute deviation from our target portfolio mean.
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In other words, we minimize both the risk of the portfolio and the deviation of our 
portfolio return from our target return, as shown in the following code:

import numpy as np 
import scipy as sp 
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime as dt 
from scipy.optimize import minimize
#
# Step 1: input area
mean_0=(0.15,0.25)   # mean returns for 2 stocks
std_0= (0.10,0.20)   # standard deviations for 2 stocks 
corr_=0.2       # correlation between 2 stocks
nSimulations=1000    # number of simulations 
#
# Step 2: Generate two uncorrelated time series 
n_stock=len(mean_0)
n=nSimulations
sp.random.seed(12345) # to get the same random numbers 
x1=sp.random.normal(loc=mean_0[0],scale=std_0[0],size=n) 
x2=sp.random.normal(loc=mean_0[1],scale=std_0[1],size=n) 
if(any(x1)<=-1.0 or any(x2)<=-1.0):
    print ('Error: return is <=-100%')
#
# Step 3: Generate two correlated time series 
index_=pd.date_range(start=dt(2001,1,1),periods=n,freq='d') 
y1=pd.DataFrame(x1,index=index_) 
y2=pd.DataFrame(corr_*x1+sp.sqrt(1-corr_**2)*x2,index=index_)
#
# step 4: generate a return matrix called R 
R0=pd.merge(y1,y2,left_index=True,right_index=True) 
R=np.array(R0)
#
# Step 5: define a few functions 
def objFunction(W, R, target_ret):
    stock_mean=np.mean(R,axis=0) 
    port_mean=np.dot(W,stock_mean)            # portfolio mean
    cov=np.cov(R.T)                           # var-covar matrix 
    port_var=np.dot(np.dot(W,cov),W.T)        # portfolio variance 
    penalty = 2000*abs(port_mean-target_ret)  # penalty 4 deviation
    return np.sqrt(port_var) + penalty        # objective function
#
# Step 6: estimate optimal portfolio for a given return 
out_mean,out_std,out_weight=[],[],[] 
stockMean=np.mean(R,axis=0)
#
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for r in np.linspace(np.min(stockMean),np.max(stockMean),num=100): 
    W = sp.ones([n_stock])/n_stock             # start equal w
    b_ = [(0,1) for i in range(n_stock)]       # bounds
    c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })# constraint 
    result=minimize(objFunction,W,(R,r),method='SLSQP',constraints=c_
,bounds=b_)
    if not result.success:                     # handle error 
        raise BaseException(result.message)
    out_mean.append(round(r,4))                # decimal places
    std_=round(np.std(np.sum(R*result.x,axis=1)),6) 
    out_std.append(std_) 
    out_weight.append(result.x)
#
# Step 7: plot the efficient frontier
plt.title('Simulation for an Efficient Frontier from given 2 stocks') 
plt.xlabel('Standard Deviation of the 2-stock Portfolio (Risk)') 
plt.ylabel('Return of the 2-stock portfolio')
plt.figtext(0.2,0.80,' mean = '+str(stockMean)) 
plt.figtext(0.2,0.75,' std  ='+str(std_0)) 
plt.figtext(0.2,0.70,' correlation ='+str(corr_))
plt.plot(np.array(std_0),np.array(stockMean),'o',markersize=8) 
plt.plot(out_std,out_mean,'--',linewidth=3)
plt.show()

The output is shown here:
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Constructing an efficient frontier  
with n stocks
When the number of stocks, n, increases, the correlation between each pair of stocks 
increases dramatically. For n stocks, we have n*(n-1)/2 correlations. For example, if n 
is 10, we have 45 correlations. Because of this, it is not a good idea to manually input 
those values. Instead, we generate means, standard deviations, and correlations by 
drawing random numbers from several uniform distributions. To produce correlated 
returns, first we generate n uncorrelated stock return time series and then apply 
Cholesky decomposition as follows:

import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime as dt
from scipy.optimize import minimize
#
# Step 1: input area
nStocks=20
sp.random.seed(1234)                        # produce the same random 
numbers 
n_corr=nStocks*(nStocks-1)/2                # number of correlation 
corr_0=sp.random.uniform(0.05,0.25,n_corr)  # generate correlations 
mean_0=sp.random.uniform(-0.1,0.25,nStocks) # means
std_0=sp.random.uniform(0.05,0.35,nStocks)  # standard deviation 
nSimulations=1000                           # number of simulations 
#
# Step 2: produce correlation matrix: Cholesky decomposition
corr_=sp.zeros((nStocks,nStocks))
for i in range(nStocks):
    for j in range(nStocks):
        if i==j:
            corr_[i,j]=1
        else:
            corr_[i,j]=corr_0[i+j]
U=np.linalg.cholesky(corr_)
#
# Step 3: Generate two uncorrelated time series 
R0=np.zeros((nSimulations,nStocks))
for i in range(nSimulations):
    for j in range(nStocks):
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        R0[i,j]=sp.random.normal(loc=mean_0[j],scale=std_0[j],size=1)
if(R0.any()<=-1.0):
    print ('Error: return is <=-100%')
#
# Step 4: generate correlated return matrix: Cholesky     
R=np.dot(R0,U)
R=np.array(R)
#
# Step 5: define a few functions
def objFunction(W, R, target_ret): 
    stock_mean=np.mean(R,axis=0)  
    port_mean=np.dot(W,stock_mean)           # portfolio mean
    cov=np.cov(R.T)                          # var-covar matrix
    port_var=np.dot(np.dot(W,cov),W.T)       # portfolio variance
    penalty = 2000*abs(port_mean-target_ret) # penalty 4 deviation 
    return np.sqrt(port_var) + penalty       # objective function 
#
# Step 6: estimate optimal portfolo for a given return 
out_mean,out_std,out_weight=[],[],[] 
stockMean=np.mean(R,axis=0)    
#
for r in np.linspace(np.min(stockMean), np.max(stockMean), num=100):
    W = sp.ones([nStocks])/nStocks             # starting:equal w 
    b_ = [(0,1) for i in range(nStocks)]       # bounds
    c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })# constraint
    result=minimize(objFunction,W,(R,r),method='SLSQP',constraints=c_, 
bounds=b_)    
    if not result.success:                    # handle error
        raise BaseException(result.message) 
    out_mean.append(round(r,4))               # a few decimal places
    std_=round(np.std(np.sum(R*result.x,axis=1)),6)
    out_std.append(std_)
    out_weight.append(result.x) 
#
# Step 7: plot the efficient frontier
plt.title('Simulation for an Efficient Frontier: '+str(nStocks)+' 
stocks')
plt.xlabel('Standard Deviation of the Porfolio')
plt.ylabel('Return of the2-stock portfolio')
plt.plot(out_std,out_mean,'--',linewidth=3)
plt.show()
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The graph is shown here:

It is difficult to simulate an n-stock portfolio when n is a huge number. The reason is 
that it is time consuming to generate a variance-covariance matrix, see the number of 
covariances (correlations) here:

Assume that we have 500 stocks in our portfolio. Then we have to estimate 124,750 
pairs of correlations. To simplify this calculation, we could apply CAPM, see the 
following formula:
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Here Ri,t is the return for stock i at time t, αi, and βi are the intercept and slope for 
stock i, RM,t is the a market index return at time t, ei,t, is the error term at time t. 
Since the total risk of individual stock has two components: systematic risk and firm 
specific risk. Thus, the variance of stock i is associated with the market index in the 
following way:

The covariance between stocks i and j is given here:

Because of this, we can reduce our estimation from 124,750 to just 1,000. Estimate 500 
βs first. Then we apply the preceding formula to estimate the covariance. Similarly, 
the formula to estimate the correlation between stock i and j is given here:

Long-term return forecasting
Many researchers and practitioners argue that a long-term return forecast would 
be overestimated if it is based on the arithmetic mean of the past returns and 
underestimated based on a geometric mean. Using 80 years' historical returns to 
forecast the next 25-year future return, Jacquier, Kane, and Marcus (2003) suggest the 
following weighted scheme:
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The following program reflects the preceding equation:

import numpy as np
import pandas as pd
from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
#
# input area
ticker='IBM'           # input value 1 
begdate=(1926,1,1)     # input value 2 
enddate=(2013,12,31)   # input value 3 
n_forecast=25          # input value 4
#
def geomean_ret(returns): 
    product = 1
    for ret in returns: 
        product *= (1+ret)
    return product ** (1.0/len(returns))-1
#
x=getData(ticker,begdate,enddate,asobject=True, adjusted=True)
logret = np.log(x.aclose[1:]/x.aclose[:-1]) 
date=[]
d0=x.date
for i in range(0,np.size(logret)):
    date.append(d0[i].strftime("%Y"))
#
y=pd.DataFrame(logret,date,columns=['logret'],dtype=float)
ret_annual=np.exp(y.groupby(y.index).sum())-1 
ret_annual.columns=['ret_annual']
n_history=len(ret_annual) 
a_mean=np.mean(np.array(ret_annual))
g_mean=geomean_ret(np.array(ret_annual))
w=n_forecast/n_history
future_ret=w*g_mean+(1-w)*a_mean
print('Arithmetric mean=',round(a_mean,3), 'Geomean=',round(g_
mean,3),'forecast=',future_ret)

The output is shown here:
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Efficiency, Quasi-Monte Carlo, and Sobol 
sequences
When applying the Monte Carlo simulation to solve various finance-related 
problems, a set of random numbers is generated. When the accuracy is very high, 
we have to draw a huge amount of such random numbers. For example, when 
pricing options, we use very small intervals or a large number of steps to increase 
the accuracy of our solutions. Thus, the efficiency of our Monte Carlo simulation 
would be a vital issue in terms of computational time and costs. This is especially 
true if several thousand options are to be priced. One way to increase the efficiency is 
to apply a better algorithm, that is, optimize our codes. Another way is to use some 
special types of random numbers that are more evenly distributed. This is called 
Quasi-Monte Carlo Simulation. A typical example is a so-called Sobol sequence. 
Sobol sequences belong to the so-called low-discrepancy sequences, which satisfy the 
properties of random numbers, but are distributed more evenly:

import numpy as np
import matplotlib.pyplot as plt
np.random.seed(12345)
n=200
a = np.random.uniform(size=(n*2))
plt.scatter(a[:n], a[n:])
plt.show()

The related graph is shown on the left panel:
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On the other hand, if we use the Sobol sequence, the distribution of those random 
numbers would be more even; see the preceding right panel. The related code is 
shown here:

import sobol_seq
import scipy as sp
import matplotlib.pyplot as plt
a=[]
n=100
for i in sp.arange(2*n):
     t=sobol_seq.i4_sobol(1,i)
     a.append(t)
print(a[0:10])
x=sp.random.permutation(a[:n])
y=sp.random.permutation(a[n:])
plt.scatter(x,y,edgecolors='r')
plt.show()
[[array([ 0.]), 1], [array([ 0.5]), 2], [array([ 0.75]), 3], [array([ 
0.25]), 4], [array([ 0.375]), 5], [array([ 0.875]), 6], [array([ 
0.625]), 7], [array([ 0.125]), 8], [array([ 0.1875]), 9], [array([ 
0.6875]), 10]]
>>>

For a similar example, but with more complex Python codes, see http://betatim.
github.io/posts/quasi-random-numbers/.

Appendix A – data case #8 - Monte Carlo 
Simulation and blackjack
Blackjack is a two-player game, with a dealer and a player. Here, we assume that you 
are the player.

Rule #1: Cards 2 to 10 have their face value, while Jack, Quenn, and King are worth 
10 points, and Ace is worth either 1 or 11 points (player's choice).

Terminology:

• Blackjack: One A plus any card worth 10 points
• Lose: The player's bet is taken by the dealer
• Win: The player wins as much as he bets
• Blackjack (natural): The player wins 1.5 times the bet
• Push: The player keeps his bet, neither winning nor losing money

http://betatim.github.io/posts/quasi-random-numbers/
http://betatim.github.io/posts/quasi-random-numbers/
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• Step 1: The dealer draws two cards, one face up, while the player draws two 
cards (face up)

• Step 2: The player could draw the third card
• Win or lose: If the sum of your cards is less than 21 and is bigger than 

the dealer's, you win. Take a look at http://www.pagat.com/banking/
blackjack.html
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Exercises
1. From Yahoo!Finance (http://finance.yahoo.com), download the last five 

years of price data for a few companies, such as IBM, WMT, and C (City 
Group). Test whether their daily returns follow a normal distribution.

2. Write a Python program to use the scipy.permutation() function to 
select 12 monthly returns randomly from the past five-year data without 
replacement. To test the program, you can use Citigroup and the time period 
from January 2, 2012 to December 31, 2016 from Yahoo! Finance.

3. Write a Python program to run bootstrapping with n given returns. For each 
time, we select m returns where m>n.
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http://blogs.wsj.com/indiarealtime/2017/01/31/india-considers-fighting-poverty-with-a-universal-basic-income/
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4. To convert random numbers from a uniform distribution to a normal 
distribution, we have the following formula:

Based on the formula, generate 5,000 normally distributed random numbers; 
estimate their mean, standard deviation, and test it.

5. Assume that the current stock price is $10.25, the mean value in the past five 
years is $9.35, and the standard deviation is 4.24. Write a Python program to 
generate 1,000 future prices.

6. Download the price data for 10 stocks over the last 10 years. Form an  
equal-weighted portfolio and conduct a Shapiro-Wilk test on its portfolio 
daily returns:

Company name Ticker Dell company DELL
International Business Machine IBM General Electric GE
Microsoft MSFT Google GOOG
Family Dollar Stores FDO Apple AAPL
Wal-Mart Stores WMT eBay EBAY
McDonald's MCD

7. Go to Yahoo! Finance to find out today's IBM price and then download its 
historical-prices information to estimate its mean and standard deviation 
for the past five years. Generate predictions for one-year daily prices in the 
future.

8. For 20 tickers, download and save their daily price as 20 different CSV files. 
Write a Python program to randomly select five stocks and estimate their 
equal-weighted portfolio returns and risk.

9. Repeat the previous program, but save it as one file instead of 20 separate 
CSV files.

Generate an extra variable called ticker.

10. There are 30 students in a class. Write a program to select seven of them 
randomly.
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11. Test the time difference between retrieving ffMonthly.pkl, ffDaily.pkl, or 
ffMonthly.csv, ffDaily.csv and conduct some tests.

12. Usually we observe the negative relationship between the portfolio's 
volatility and the number of stocks in the portfolio. Write a program to  
show the relationship between the variance of a portfolio and the number  
of stock in it.

13. What is the probability for picking up 1, 2, 3, and 4 from 10 balls marked 
from 1 to 10? Use two methods: a. Use the formula. b. Write a program to 
generate a set of five random numbers.

14. Write a program to generate 176 million sets of combinations in terms of the 
Mega Millions game. What is the chance to win (1, 2, 3, 4, 5) and (1)?

15. For the Powerball games, we choose five white balls from 59 white balls 
numbered from 1 to 59 and one red ball from 39 red balls numbered from 1 
to 39. Write a program to choose those six balls randomly.

16.  Retrieving seven stocks from 20 stocks, what is the probability of choosing 
the first seven stocks? Use simulation to prove your result.

Summary
In this chapter, we discussed several types of distribution: normal, standard normal, 
lognormal, and Poisson. Since the assumption that stocks follow a lognormal 
distribution and returns follow a normal distribution is the cornerstone for option 
theory, the Monte Carlo simulation is used to price European options. Under certain 
scenarios, Asian options might be more effective in terms of hedging. Exotic options 
are more complex than the vanilla options since the former have no closed-form 
solution, while the latter could be priced by the Black-Scholes-Merton option model. 
One way to price these exotic options is to use the Monte Carlo simulation. The 
Python programs to price an Asian option and lookback options were also discussed.
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Credit Risk Analysis
The objective of credit risk analysis is trying to measure the probability of potential 
failure to pay a promised amount. A credit rating reflects the credit worthiness of 
a firm or a bond. A firm's rating is different from its bond's rating since the latter 
depends on its maturity and certain features such as whether it is callable or puttable. 
In Chapter 5, Bond and Stock Valuation, we have learnt the concept of Yield to Maturity 
(YTM) or simply yield, which is correlated with credit quality. The lower its credit 
quality; the higher its required return, that is, a higher yield. In this chapter, we will 
discuss many basic concepts related to credit risk, such as credit rating, credit spread, 
1-year credit rating migration matrix, probability of default, loss given default, 
recovery rate, and KMV model. In particular, the following topics will be covered:

• Moody's, Standard and Poor's, and Fitch's credit ratings
• Credit spread, one-year, and five-year migration matrices
• Term structure of interest rate
• Simulation of future interest rate
• Altman's Z-score to predict corporate bankruptcy
• KMV model to estimate total asset and its volatility
• Default probability and distance to default
• Credit default swap
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Introduction to credit risk analysis
In this chapter, we will discuss basic concepts related to credit risk, such as credit 
rating, credit spread, 1-year and 5-year rating migration matrices, probability of 
default, recovery rate, and loss given default. A credit spread, the difference between 
a bond's yield and a benchmark yield (risk-free rate), reflects its credit risk or default 
risk. For example, to estimate the present value of a coupon payment in two years 
for an AA rated bond, the discount rate (yield) will be a risk-free yield (treasury-note 
yield) plus the corresponding spread. There are many tools that we could use when 
analyzing a company or a bond's credit worthiness. The first tool is credit rating 
offered by a credit rating agent, such as Moody's or Standard and Poor's. One of the 
apparent advantages is that a potential user would spend less time and efforts to 
assess a company or a bond's credit risk. The obvious disadvantage is that the credit 
rating is a black box for most users. In other words, users could not replicate a credit 
rating. Thus, it is quite difficult to siphon the logic behind such a simple letter credit 
rating system, such as AA or A1. There are other ways to evaluate the worthiness 
of a company (bond), such as spread that is readily available. One of the most 
quantitative models is the so-called KMV model, which applies the options theory 
we have learnt in Chapter 10, Options and Futures to evaluate the credit risk of a firm.

Credit rating
Nowadays, there are three major credit ratings agents in the USA: Moody's, 
Standard, and Poor's and Fitch. Their websites are http://www.moodys.com/, 
http://www.standardandpoors.com/en_US/web/guest/home, and https://www.
fitchratings.com/site/home. Although their ratings have different notations 
(letters), it is easy to translate one letter rating from a rating agency to another one. 
Based on the following link at http://www.quadcapital.com/Rating%20Agency%20
Credit%20Ratings.pdf, a dataset called creditRatigs3.pkl is generated, which 
can be downloaded at the author's website, http://canisius.edu/~yany/python/
creditRatings3.pkl. Assume that it is located under C:/temp/.

The following codes show its contents:

import pandas as pd
x=pd.read_pickle("c:/temp/creditRatings3.pkl")
print(x)
       Moody's S&P Fitch  NAIC  InvestmentGrade
0      Aaa   AAA   AAA     1                1
1      Aa1   AA+   AA+     1                1
2      Aa2    AA    AA     1                1
3      Aa3   AA-   AA-     1                1
4       A1    A+    A+     1                1
5       A2     A     A     1                1

http://www.moodys.com/
http://www.standardandpoors.com/en_US/web/guest/home
https://www.fitchratings.com/site/home
https://www.fitchratings.com/site/home
http://www.quadcapital.com/Rating%20Agency%20Credit%20Ratings.pdf
http://www.quadcapital.com/Rating%20Agency%20Credit%20Ratings.pdf
http://canisius.edu/~yany/python/creditRatings3.pkl
http://canisius.edu/~yany/python/creditRatings3.pkl
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6       A3    A-    A-     1                1
7     Baa1  BBB+  BBB+     2                1
8     Baa2   BBB   BBB     2                1
9     Baa3  BBB-  BBB-     2                1
10     Ba1   BB+   BB+     3                0
11     Ba2    BB    BB     3                0
12     Ba3   BB-   BB-     3                0
13      B1    B+    B+     3                0
14      B2     B     B     3                0
15      B3    B-    B-     3                0

The first column is for the row numbers, which have no specific meaning. The next 
three columns are credit levels for Moody's, S&P, and Fitch, respectively. NAIC 
stands for the National Association of Insurance Commissioners. Any ratings equal 
to or over BBB are classified as investment grades, see the last column (variable) that 
has a value of 1 or 0. Many mutual funds and pension funds are only allowed to 
invest bonds rated as investment grades.

When a company has an Aaa rating this year, what is its probability next year to 
remain as the same credit rating? According to the following table, the probability 
that it keeps its Aaa rating next year is 89%, Moody's (2007). On the other hand, there 
is 3% chance that its credit rating would be downgraded by one notch, that is, from 
Aaa to Aa1. For a B1 rated bond, the probability of maintaining the same credit rating 
is 65%. Jointly, it has 12% probability of upgrading. For a possible downgrade, it has 
9% probability. The default probability of a B1 rated bond is 3%, see the last column 
of the following figure that gives us the one-year credit rating migration matrix:

One-year credit rating migration matrix
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Note the following abbreviations:

• WR indicates that Moody's has withdrawn their ratings
• DEF is for default probability

Similarly, the probability of an Aaa rated firm becoming an Aa2 firm is 3% next 
year. The values along the main diagonal line (from North-West to South-East) are 
the probabilities of keeping the same rating next year. The values below the main 
diagonal line (left and bottom triangle) are the probabilities of a downgrade while 
the values above the diagonal line (up and right triangle) are the probabilities of 
an upgrade. The last column offers the default probabilities for various ratings. 
For example, a Ba2 rated bond has 1% chance to default, while a Caa3 rated bond 
has 25%. The Python dataset called migration1year.pkl could be used, see the 
following codes. The dataset is available at http://canisius.edu/~yany/python/
migration1year.pkl:

import pandas as pd
x=pd.read_pickle("c:/temp/migration1year.pkl")
print(x.head(1))
print(x.tail(1))
    Aaa   Aa1   Aa2  Aa3   A1   A2   A3  Baa1  Baa2  Baa3 ...   Ba3   
B1  \
Aaa  0.89  0.03  0.03  0.0  0.0  0.0  0.0   0.0   0.0   0.0 ...   0.0  
0.0   
      B2   B3  Caa1  Caa2  Caa3  Ca-C    WR  DEF  
Aaa  0.0  0.0   0.0   0.0   0.0   0.0  0.05  0.0  
[1 rows x 22 columns]
      Aaa  Aa1  Aa2  Aa3   A1   A2   A3  Baa1  Baa2  Baa3 ...   Ba3   
B1   B2\
Ca-C  0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0   0.0   0.0 ...   0.0  
0.0  0.0   
       B3  Caa1  Caa2  Caa3  Ca-C    WR  DEF  
Ca-C  0.0  0.01  0.01  0.01  0.35  0.13  0.2  
[1 rows x 22 columns]

The following table shows the Moody's 5-year transition (migration) matrix. Please 
pay attention to the column under DEF (for default probability):

http://canisius.edu/~yany/python/migration1year.pkl
http://canisius.edu/~yany/python/migration1year.pkl
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Moody's Average 5-year Rating Transition Matrix (1920-1992)

Source: Moody's (2007).

Note the following abbreviations:

• WR indicates that Moody's has withdrawn their ratings
• DEF is for default probability

One dataset was generated with a name called migration5year.pkl. The dataset 
could be downloaded at http://canisius.edu/~yany/python/migration5year.
pkl. The following code will print its first and last line:

import pandas as pd
x=pd.read_pickle("c:/temp/migration5year.pkl")
print(x.head(1))
print(x.tail(1))
    Aaa   Aa1  Aa2   Aa3    A1    A2   A3  Baa1  Baa2  Baa3 ...   Ba3   
B1  \
Aaa  0.56  0.07  0.1  0.03  0.01  0.01  0.0   0.0   0.0   0.0 ...   
0.0  0.0   
      B2   B3  Caa1  Caa2  Caa3  Ca-C   WR  DEF  
Aaa  0.0  0.0   0.0   0.0   0.0   0.0  0.2  0.0  
[1 rows x 22 columns]
      Aaa  Aa1  Aa2  Aa3   A1   A2   A3  Baa1  Baa2  Baa3  ...   Ba3   
B1  \
Ca-C  0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0   0.0   0.0  ...   0.0  
0.0   
        B2    B3  Caa1  Caa2  Caa3  Ca-C    WR   DEF  
Ca-C  0.02  0.02  0.01  0.01  0.01  0.04  0.43  0.46  

http://canisius.edu/~yany/python/migration5year.pkl
http://canisius.edu/~yany/python/migration5year.pkl
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Rating and default are negatively correlated. The higher a rating; the lower its 
default probability. The cumulative historical default rates (in %) are given here:

Default rate (%)
Moody's S&P

Rating category Muni Corp Muni Corp
Aaa/AAA 0.00 0.52 0.00 0.60
Aa/AA 0.06 0.52 0.00 1.50
A/A 0.03 1.29 0.23 2.91
Baa/BBB 0.13 4.64 0.32 10.29
Ba/BB 2.65 19.12 1.74 29.93
B/B 11.86 43.34 8.48 53.72
Caa-C/CCC-C 16.58 69.18 44.81 69.19

Averages
Investment grade 0.07 2.09 0.20 4.14
Non-investment grade 4.29 31.37 7.37 42.35
All 0.10 9.70 0.29 12.98

Table 13.3 Relationship between the credit rating and the DP (default probability)

The course of the data is from the website at http://monevator.com/bond-
default-rating-probability/.

For example, for an Aaa related corporate bond by Moody's, its default probability 
is 0.52%. The corresponding default probability from Standard and Poor's is 0.60%. 
Recovery rate given default is an important concept. The status (seniority) has a great 
impact on the recovery rates. According to Altman and Kishore (1997), we have the 
following table:

Recovery rate (% of face value)
Senior-secured debt 58%
Senior-unsecured debt 48%
Senior-subordinate 35%
Subordinated 32%
Discounted and zero coupon 21%

Table 13.4 Recovery rates based on the seniority

http://monevator.com/bond-default-rating-probability/
http://monevator.com/bond-default-rating-probability/
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A secured debt is a debt on which payment is guaranteed by an asset. Senior 
and subordinated are referred to the priority structure. On the other hand, 
different industries have different recovery rates because of their unique industry 
characteristics, such as fixed long-term assets and the percentages of intangible assets:

Industry Average 
Recovery 
Rate 

Number of 
observations

Public Utilities 70.5% 56
Chemical, petroleum, rubber, and plastic products 62.7% 35
Machinery, instruments, and related products 48.7% 36
Services- business and personal 46.2% 14
Food and kindred products 45.3% 18
Wholesale and retail trade 44.0% 12
Diversified manufacturing 42.3% 20
Casino, hotel, and recreation 40.2% 21
Building materials, metals, and fabricated products 38.8% 68
Transportation and transportation equipment 38.4% 52
Communication, broadcasting, movie production 37.1% 65
Printing and publishing NA NA
Financial institutions 35.7% 66
Construction and real estate 35.3% 35
General merchandize stores 33.2% 89
Mining and petroleum drilling 33.0% 45
Textile and apparel products 31.7% 31
Wood, paper, and leather products 29.8% 11
Lodging, hospitals, and nursing facilities 26.5% 22
Total 41.0% 696

Table 13.5 Recovery rates based on the industry

See the article on Recovery Rates at: http://www.riskworx.com/resources/
Recovery%20Rates.pdf.

http://www.riskworx.com/resources/Recovery%20Rates.pdf
http://www.riskworx.com/resources/Recovery%20Rates.pdf
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The preceding table is sorted according to the recovery rate from the highest to the 
lowest. For the printing and publishing industry, there is no data according to the 
original source. Loss given default (LGD) is equal to 1 minus the Recovery rate:

Here, we explain the usage of default probability and recovery rates by using a 
hypothetical example to calculate the price of a bond. Assume that the face value of a 
one-year bond is $100 with a coupon rate of 6% and a Yield to Maturity (YTM) of 7%. 
We have the following four situations:

• Situation #1: No default. The price today will be its discounted future cash 
flow, (6+100)/(1+0.07).

• Situation #2: Sure default and recover nothing. For this case, its price would 
be zero.

• Situation #3: If it defaults, we receive nothing.
• Situation #4: If it defaults, we receive something.

The following table summarizes the preceding four situations:

# Conditions Default Probability

Recover rate

Today's price

1 No default P=0, Recovery Rate (NA) $99.07
2 100% default/recover 

nothing
P=100%, Rrecovery=0 0

3 If default, recover nothing O<P<100%, Rrecovery=0 $99.07 *(1-P)
4 If default, recover something O<P<100% , Rrecovery>0 $99.07 *[1-P*(1- )]

Table 13.6 Four situations for different default probabilities and recovery rates

The price of a bond is the summation of all present values of its expected future  
cash flows:
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If P is the default probability we have the following expected future cash flow:

Discounting all future cash flows would give us its price:

Assume that the credit rating is A based on the Moody's scale. According to 
Table 13.3, its default rate is 1.29%. Assume further that it is a utility firm. Thus, 
its recovery rate given default is 70.5% based on Table 13.5. The face value of the 
bond is $100 and the required return (YTM) is 5%. Based on the preceding formula, 
the price of a one-year bond with no default will be $95.24, that is, 100/(1+0.05). 
The selling price of our bond with a 1.29% chance of default will be $94.88, that is, 
95.24*(1-0.0129*(1-0.705)).

Credit spread
Credit spreads (default risk premium) reflect their default risk. For example, to 
estimate the present value of a coupon payment in two years for an AA rated bond, 
the discount rate (yield) will be a risk-free rate plus the corresponding spread. For a 
given credit rating, its credit spread could be found by using historical data. Here is a 
typical table showing the relationship between credit risk premium (spread) and the 
credit rating, see the following table:
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We thank Prof Adamodar for making the dataset available at his website,  
http://people.stern.nyu.edu/adamodar/pc/datasets/:

Credit Spread based on credit rating

Spreads, except the last row in the preceding table, have a unit of basic-point, 
which is the 100th of one percent. For example, or an A- (A minus) rated bond 
with a maturity of five years, its spared is 83.6 basis points. Since the risk-free is 
1.582% (for a 5-year treasury rate), the YTM for this bond will be 2.418%, that is, 
0.01582+83.6/100/100. Based on the preceding table, we generated a Python dataset 
called bondSpread2014.p, which is available at the author's website, http://
canisius.edu/~yany/python/creditSpread2014.pkl:

import pandas as pd
x=pd.read_pickle("c:/temp/creditSpread2014.pkl")
print(x.head())
print(x.tail())
  Rating     1     2     3     5     7    10     30
0  Aaa/AAA   5.0   8.0  12.0  18.0  28.0  42.0   65.0
1  Aa1/AA+  11.2  20.0  27.0  36.6  45.2  56.8   81.8
2   Aa2/AA  16.4  32.8  42.6  54.8  62.8  71.2   97.8
3  Aa3/AA-  21.6  38.6  48.6  59.8  67.4  75.2   99.2
4    A1/A+  26.2  44.0  54.2  64.6  71.4  78.4  100.2
               Rating        1        2        3        5        7       
10  \
13              B1/B+  383.600  409.600  431.400  455.600  477.600  
500.800   

http://people.stern.nyu.edu/adamodar/pc/datasets/
http://canisius.edu/~yany/python/creditSpread2014.pkl
http://canisius.edu/~yany/python/creditSpread2014.pkl
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14               B2/B  455.800  481.600  505.200  531.000  555.400  
581.400   
15              B3/B-  527.800  553.800  579.400  606.400  633.600  
661.800   
16           Caa/CCC+  600.000  626.000  653.000  682.000  712.000  
743.000   
17  US Treasury Yield    0.132    0.344    0.682    1.582    2.284    
2.892

After studying the preceding table carefully, we would find two monotone trends. 
First, the spread is a decreasing function of credit quality. The lower a credit rating; 
the higher its spread. Second, for the same credit rating, its spread increases every 
year. For example, for an AAA rated bond, its spread in one year is 5 basis-points 
while it is 18 in five years.

YIELD of AAA-rated bond, Altman 
Z-score
From the previous sections, we have learnt that the spread between a bond's 
yield and a treasury bond's yield with the same maturity is the default risk 
premium. To retrieve the yields for AAA and AA bonds, we use the following codes. 
Moody's Seasoned Aaa Corporate Bond Yield can be downloaded at https://
fred.stlouisfed.org/series/AAA. The dataset can be downloaded at http://
canisius.edu/~yany/python/moodyAAAyield.p. Note that the .png of .p is fine 
for the .pickle format:

import pandas as pd
x=pd.read_pickle("c:/temp/moodyAAAyield.p")
print(x.head())
print(x.tail())

The output is shown here:

https://fred.stlouisfed.org/series/AAA
https://fred.stlouisfed.org/series/AAA
http://canisius.edu/~yany/python/moodyAAAyield.p
http://canisius.edu/~yany/python/moodyAAAyield.p
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Note that the values of the second column, for the dataset called moodyAAAyield.p, 
are annualized. Thus, if we want to estimate a monthly yield (rate of return) in 
January 1919, the yield should be 0.4458333%, that is, 0.0535/12.

Altman's z-score is widely applied in finance for credit analysis to predict the 
possibility of a firm going to bankruptcy. This score is a weighted average of five 
ratios based on a firm's balance sheet and income statement. For public firms, 
Altman (1968) offers the following formula:

Here, the definitions of X1, X2, X3, X4, and X5 are given in the following table:

Variable Definition
X1 EBIT/Total assets
X2 Net sales/Total assets
X3 Market value of equity/TotallLiabilities
X4 Working capital/Total assets
X5 Retained earnings/Total assets

Table 13.8 Definitions of variables in the estimation of Z-scores

Based on the ranges of z-scores, we could classify public firms into following 
four categories. Eidlenan (1995) finds that the Z score correctly predicted 72% of 
bankruptcies two years prior to the event:

Z-score range Description
> 3.0 Safe
2.7 to 2.99 On Alert
1.8 to 2.7 Good chances of going bankrupt within 2 years
< 1.80 Probability of financial distress is very high

Altman's Z-score belongs to the categories called credit scoring (methods). On the 
other hand, more advanced models, for example, the KMV model, are based on 
modern finance theories, such as option theory.
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Using the KMV model to estimate the 
market value of total assets and its 
volatility
KMV stands for Kealhofer, McQuown and Vasicek who founded a company 
focusing on measuring default risk. KMV methodology is one of the most important 
methods to estimate the probability of default for a given company by using its 
balance sheet information and the equity market information. The objective of 
this section is to show how to estimate the market value of total assets (A) and its 
corresponding volatility (σA). The result will be used later in the chapter. The basic 
idea is to treat the equity of a firm as a call option and the book value of its debt as its 
strike price. Let's look at the simplest example. For a firm, if its debt is $70 and equity 
is $30, then the total assets will be $100, see the following table:

100 70

30

Assume that the total asset jumps to $110 and the debt remains the same. Now, the 
value of the equity increases to $40. On the other hand, if the assets drop to $90, the 
equity will be valued at $20. Since the equity holders are the residual claimer, their 
value satisfies the following expression:

Here, E is the value of equity, A is the total asset, and D is the total debt level. Recall 
for a European call option, we have the following payoff function:
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Here ST is the terminal stock price at maturity date, T is the maturity date, K is the 
exercise price, and max() is the maximum function. The similarity between the 
preceding two equations suggests that we could treat equity as a call option with 
the debt level as our exercise price. With appropriate notations, we will have the 
following formulas for a firm's equity. The KMV model is defined here:

On the other hand, the following relationship between the volatilities of the equity 
and the total assets holds. In the following equation, we have:

Since d1 and d2 are defined by the previous equations, we have two equations  
for two unknowns (A and ); see the following formulas. Thus, we could use 
trial-and-error or simultaneous equation methods to solve those two unknowns. 
Eventually, we want to solve the following two equations for A and :

We should pay attention to the estimated A (market value of total assets) from the 
preceding equation since it is different from the summation of market value of assets 
plus the book value of the debt.
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The following Python program is for estimating total assets (A) and its volatility 
(sigmA) for a given E (equity), D (debt), T (maturity), r (risk-free rate), and the 
volatility of the equity (sigmaE). The basic logic of the program is that we input 
a large number of pairs of (A, sigmaE). Then we estimate E and sigmaE based on 
the preceding equation. Since both E and sigmaE are known, we could estimate 
the differences, diff4E=estimatedE – knownE and diff4sigmaE = estimatedSigmaE – 
knownSigmaE. The pair of (A, sigmaE) that minimizes the sum of those two absolute 
differences will be our solution:

import scipy as sp
import pandas as pd
import scipy.stats as stats
from scipy import log,sqrt,exp
# input area 
D=30.            # debt
E=70.            # equity 
T=1.             # maturity 
r=0.07           # risk-free
sigmaE=0.4       # volatility of equity 
#
# define a function to siplify notations later 
def N(x):
    return stats.norm.cdf(x)
#
def KMV_f(E,D,T,r,sigmaE):
    n=10000
    m=2000
    diffOld=1e6     # a very big number
    for i in sp.arange(1,10):
        for j in sp.arange(1,m):
            A=E+D/2+i*D/n
            sigmaA=0.05+j*(1.0-0.001)/m
            d1 = (log(A/D)+(r+sigmaA*sigmaA/2.)*T)/(sigmaA*sqrt(T))
            d2 = d1-sigmaA*sqrt(T)
            diff4A= (A*N(d1)-D*exp(-r*T)*N(d2)-E)/A  # scale by assets
            diff4sigmaE= A/E*N(d1)*sigmaA-sigmaE     # a small number 
already
            diffNew=abs(diff4A)+abs(diff4sigmaE)
            if diffNew<diffOld:
               diffOld=diffNew
               output=(round(A,2),round(sigmaA,4),round(diffNew,5))
    return output
#
print("KMV=", KMV_f(D,E,T,r,sigmaE))
print("KMV=", KMV_f(D=65e3,E=110e3,T=1,r=0.01,sigmaE=0.2))
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The output is shown here:

print("KMV=", KMV_f(D,E,T,r,sigmaE))

Please pay attention to the result, since the summation of the book value of debt and 
the market value of equity 175,000 while our estimated result is 142,559. Since the 
equity of a firm is the call option, we could use the Black-Scholes-Merton model to 
double-check our result.

Term structure of interest rate
In Chapter 5, Bond and Stock Valuation, we have discussed the concepts of a term 
structure of interest rate. The term structure of interest rate is defined as the 
relationship between risk-free rate and time. A risk-free rate is usually defined as 
a default-free treasury rate. From many sources, we could get the current term 
structure of interest rate. For example, on 2/27/2017 from http://finance.yahoo.
com/bonds, we could get the following information:

The plotted term structure of an interest rate could be more eye catching; see the 
following codes:

import matplotlib.pyplot as plt
time=[3./12.,6./12.,2.,3.,5.,10.,30.]
rate=[0.45,0.61,1.12,1.37,1.78,2.29,2.93]
plt.title("Term Structure of Interest Rate ")
plt.xlabel("Time (in years) ")
plt.ylabel("Risk-free rate (%)")
plt.plot(time,rate)
plt.show()

http://finance.yahoo.com/bonds
http://finance.yahoo.com/bonds
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The related graph is shown here:

To simulate future interest movement, we could apply the so-called BIS model with 
the following formulas. The change in the interest rate is assumed to follow a normal 
distribution; see the following formula:

Here, Δ is for change, R is the interest rate, and s is the standard deviation of interest 
rate. Here is the equivalent equation:

Now, we have the following formula to tune our simulation:
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Here, z is the anti-cumulative normal distribution. The following codes show the 
scipy.stat.norm.ppf() function and percent point function (inverse of cdf) at q of 
the given RV:

import scipy.stats as stats
#
cumulativeProb=0
print(stats.norm.ppf(cumulativeProb))
#
cumulativeProb=0.5
print(stats.norm.ppf(cumulativeProb))
#
cumulativeProb=0.99
print(stats.norm.ppf(cumulativeProb))

The related three outputs are shown here:

The related Python codes are shown here:

import scipy as sp
import scipy.stats as stats
# input area
R0=0.09              # initial rate
s=0.182              # standard deviation of the risk-free rate
nSimulation=10       # number of simulations
sp.random.seed(123)  # fix the seed
#
num=sp.random.uniform(0,1,size=nSimulation)
z=stats.norm.ppf(num)
#
output=[]
def BIS_f(R,s,n):
    R=R0
    for i in sp.arange(0,n):
        deltaR=z[i]*s/sp.sqrt(2.)
        logR=sp.log(R)
        R=sp.exp(logR+deltaR)
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        output.append(round(R,5))
    return output 
#
final=BIS_f(R0,s,nSimulation)
print(final)
[0.09616, 0.08942, 0.0812, 0.08256, 0.08897, 0.08678, 0.11326, 0.1205, 
0.11976, 0.11561]

Distance to default
Distance to default (DD) is defined by the following formula; here A is the market 
value of the total assets and  is its risk. The interpretation of this measure is clear; 
the higher DD, the safer the firm:

In terms of Default Point, there is no theory on how to choose an ideal default point. 
However, we could use all short-term debts plus the half of long-term debts as our 
default point. After we have the values of the market value of assets and its volatility, 
we could use the preceding equation to estimate the Distance to Default. The A and 

 are from the output from Equation (10). On the other hand, if the default point 
equals E, we would have the following formula:

According to the Black-Scholes-Merton call option model, the relationship between 
DD and DP (Default Probability) is given here:



Credit Risk Analysis

[ 486 ]

Credit default swap
A lender could buy a so-called credit default swap (CDS) to protect them in the 
event of default. The buyer of the CDS makes a series of payments to the seller and, 
in exchange, receives a payoff if the loan defaults. Let's see a simple example. A fund 
just bought $100 million corporate bonds with a maturity of 15 years. If the issuing 
firm does not default, the pension fund would enjoy interest payment every year 
plus $100 million at maturity. To protect their investment, they entered a 15-year 
CDS contract with a financial institution. Based on the credit worthiness of the bond 
issuing firm, the agreed spread is 80 basis points payable annually. This means that 
every year, the pension fund (CDS buyer) pays the financial institution (CDS seller) 
$80,000 per year over the next 10 years. If a credit event happens, the CDS seller 
would compensate the CDS buyer depending on their loss because of credit events. 
If the contract specifies a physical settlement, the CDS buyer could sell their bonds 
at $100m to the CDS seller. If the contract specifies a cash settlement, the CDS seller 
would pay Max($100m-X,0) to the CDS buyer, where X is the market value of the 
bonds. If the market value of the bonds is $70m, then the CDS seller would pay the 
CDS buyer $30m. In the preceding case, the spreads or fees is strongly correlated 
with the default probability of the issuing firm. The higher the default probability, 
the higher the CDS spread. The following table represents such a relationship:

CDS P CDS P CDS P CDS P CDS P CDS P CDS P

0 0.0% 100 7.8% 200 13.9% 300 19.6% 500 30.2% 500 30.2% 1000 54.1%

5 0.6% 105 8.1% 205 14.2% 310 20.2% 510 30.7% 525 31.4% 1025 55.2%

10 1.1% 110 8.4% 210 14.5% 320 20.7% 520 31.2% 550 32.7% 1050 56.4%

15 1.6% 115 8.7% 215 14.8% 330 21.2% 530 31.7% 575 33.9% 1075 57.5%

20 2.0% 120 9.1% 220 15.1% 340 21.8% 540 32.2% 600 35.2% 1100 58.6%

25 2.4% 125 9.4% 225 15.4% 350 22.3% 550 32.7% 625 36.4% 1125 59.7%

30 2.8% 130 9.7% 230 15.7% 360 22.9% 560 33.2% 650 37.6% 1150 60.9%

35 3.2% 135 10.0% 235 16.0% 370 23.4% 570 33.7% 675 38.8% 1175 62.0%

40 3.6% 140 10.3% 240 16.2% 380 23.9% 580 34.2% 700 40.0% 1200 63.1%

45 4.0% 145 10.6% 245 16.5% 390 24.5% 590 34.7% 725 41.2% 1225 64.2%

50 4.3% 150 10.9% 250 16.8% 400 25.0% 600 35.2% 750 42.4% 1250 65.3%

55 4.7% 155 11.2% 255 17.1% 410 25.5% 610 35.7% 775 43.6% 1275 66.4%

60 5.0% 160 11.5% 260 17.4% 420 26.0% 620 36.1% 800 44.8% 1300 67.5%

65 5.4% 165 11.8% 265 17.7% 430 26.6% 630 36.6% 825 46.0% 1325 68.6%

70 5.7% 170 12.1% 270 17.9% 440 27.1% 640 37.1% 850 47.2% 1350 69.7%

75 6.1% 175 12.4% 275 18.2% 450 27.6% 650 37.6% 875 48.3% 1375 70.7%

80 6.4% 180 12.7% 280 18.5% 460 28.1% 660 38.1% 900 49.5% 1400 71.8%

85 6.8% 185 13.0% 285 18.8% 470 28.6% 670 38.6% 925 50.6% 1425 72.9%
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CDS P CDS P CDS P CDS P CDS P CDS P CDS P

90 7.1% 190 13.3% 290 19.1% 480 29.1% 680 39.1% 950 51.8% 1450 74.0%

95 7.4% 195 13.6% 295 19.3% 490 29.6% 690 39.6% 975 52.9% 1475 75.1%

100 7.8% 200 13.9% 300 19.6% 500 30.2% 700 40.0% 1000 54.1% 1500 76.1%

Table 13.9: Default probability and credit default swap.

The Default Probabilities Estimated five-Year Cumulative Probability of Default (P)

and five year credit default swaps (5Y CDS)

Appendix A – data case #8 - predicting 
bankruptcy by using Z-score
The Altman's Z score is used to predict the possibility of a firm going to bankruptcy. 
This score is a weighted average of five ratios based on a firm's balance sheet and 
income statement. For public firms, Altman (1968) offers the following formula:

Here, the definitions of X1, X2, X3, X4, and X5 are given in the following table:

Variable Definition
X1 EBIT/total assets
X2 Net sales/total assets
X3 Market value of equity/total liabilities
X4 Working capital/total assets
X5 Retained earnings/total assets

Based on the ranges of z-scores, we could classify 20 public firms into the following 
four categories. Eidlenan (1995) finds that the Z score correctly predicted 72% of 
bankruptcies two years prior to the event:

Z-score range Description
> 3.0 Safe
2.7 to 2.99 On alert
1.8 to 2.7 Good chances of going bankrupt within two years
< 1.80 Probability of financial distress is very high
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Exercises
1. How many credit agencies are there in the US? Which are the major ones?
2. How many types of definition of risk are there? What are the differences 

between credit risk and market risk?
3. How do you estimate the total risk and market risk of a firm? What is the 

related mathematical formula?
4. How do you estimate the credit risk of a firm? What is the related 

mathematical formula?
5. Why might the credit risk of a bond be different than its company's  

credit rating?
6. If everything is equal, which one is for risk, long-term bonds, or  

short-term bonds?
7. What is the definition of credit spread? Why is it useful?
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8. What are uses of the term structure of interest rate?
9. What are the definitions of X1, X2, X3, X4, and X5 for Altman's Z-score? 

Explain why the higher a Z-score, the lower the probability of bankruptcy:

10. Identify an issue with z score and find a way to address the issue.
11. What is the one-year migration (transition) matrix?
12. What is the relationship between the credit rating and the default 

probability?
13. Using the concept of the present value of a bond, is the discounted the 

expected future cash flows to derive equation (1).
14. What are the values on the (main) diagonal line (from NW to SE) of a credit 

transition matrix?
15. Walmart plans to issue a $50 million (total face value) corporate bond with 

a face value of $1,000 for each bond. The bonds will mature in 10 years. The 
coupon rate is 8% with an annual payment. How much could Walmart raise 
today? If Walmart manages to raise its credit rating by one notch, how much 
extra cash could the firm raise?

16. The following table presents the relationship between rating, default 
risk (spread), and time. Write a Python program to interpolate the 
missing spreads, such as S from year 11 to 29. The Python dataset 
could be downloaded from http://canisius.edu/~yany/python/
creditSpread2014.p:
import matplotlib.pyplot as plt
import pandas as pd
x=pd.read_pickle("c:/temp/creditSpread2014.p")
print(x.head())
    Rating     1     2     3     5     7    10     30
0  Aaa/AAA   5.0   8.0  12.0  18.0  28.0  42.0   65.0
1  Aa1/AA+  11.2  20.0  27.0  36.6  45.2  56.8   81.8
2   Aa2/AA  16.4  32.8  42.6  54.8  62.8  71.2   97.8
3  Aa3/AA-  21.6  38.6  48.6  59.8  67.4  75.2   99.2
4    A1/A+  26.2  44.0  54.2  64.6  71.4  78.4  100.2

http://canisius.edu/~yany/python/creditSpread2014.p
http://canisius.edu/~yany/python/creditSpread2014.p
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Summary
In this chapter, we start from the very basics about credit risk analysis such as 
credit rating, credit spread, 1-year rating migration matrix, Probability of Default 
(PD), Loss Given Default (LGD), term structure of interest rate, Altman's Z-score, 
KMV model, default probability, the distance to default, and credit default swap. In 
Chapter 10, Options and Futures, some basic vanilla options, such as Black-Scholes-
Merton options and their related applications, are discussed. In addition, in Chapter 
12, Monte Carlo Simulation, two exotic options are explained.

In the next chapter, we will discuss more exotic options, since they are quite useful 
for mitigating many types of financial risk.
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Exotic Options
In Chapter 10, Options and Futures, we have discussed the famous Black-Scholes-
Merton option model and various trading strategies involving various types of 
options, futures, and underlying securities. The Black-Scholes-Merton closed-form 
solution is for European options that could be exercised only on maturity dates. 
American options could be exercised before or on a maturity date. Usually, those 
types of options are called vanilla options. On the other hand, there exist various 
types of exotic options that have all sorts of features making them more complex 
than commonly traded vanilla options.

For example, if an option buyer could exercise their right several times before the 
maturity date, it is called a Bermudan option. In Chapter 12, Monte Carlo Simulation, 
two types of exotic options are discussed. Many exotic options (derivatives) may 
have several triggers relating to their payoffs. An exotic option may also include 
non-standard underlying security or instrument, developed for a specific client or for 
a particular market. Exotic options are generally traded over the counter (OTC).

In this chapter, the following topics will be covered:

• European, American, and Bermudan options
• Simple chooser options
• Shout, rainbow, and binary options
• Average price option
• Barrier options – up-and-in options and up-and-out option
• Barrier options – down-and-in and down-and-out options



Exotic Options

[ 492 ]

European, American, and Bermuda 
options
In Chapter 10, Options and Futures, we have learnt that for a European option, the 
option buyer could exercise their right only on maturity dates, while for an American 
option buyer, they could exercise their right any time before and on maturity 
dates. Thus, an American option would be more valuable than its counterparty of 
European option. Bermudan options could be exercised once or several times on a 
few predetermined dates. Consequently, the price of a Bermudan option should be 
between a European and an American option with the same features, such as the 
same maturity dates and the same exercises prices, see the following two inequalities 
for call options:

Here is an example for a Bermudan option. Assume that a company issues a 10-year 
bond. After seven years, the company could call back, that is, retire, the bond at 
the end of each year for the next three years. This callable property is eventually an 
embedded Bermudan option with exercise dates in December of years 8, 9, and 10.

First, let's look at the Python program for an American call by using the binomial 
model:

def binomialCallAmerican(s,x,T,r,sigma,n=100):
    from math import exp,sqrt
    import numpy as np
    deltaT = T /n
    u = exp(sigma * sqrt(deltaT)) 
    d = 1.0 / u
    a = exp(r * deltaT)
    p = (a - d) / (u - d)
    v = [[0.0 for j in np.arange(i + 1)] for i in np.arange(n + 1)] 
    for j in np.arange(n+1):
        v[n][j] = max(s * u**j * d**(n - j) - x, 0.0) 
    for i in np.arange(n-1, -1, -1):
        for j in np.arange(i + 1):
            v1=exp(-r*deltaT)*(p*v[i+1][j+1]+(1.0-p)*v[i+1][j]) 
            v2=max(v[i][j]-x,0)         # early exercise 
            v[i][j]=max(v1,v2)
    return v[0][0]
#
s=40.        # stock price today 
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x=40.        # exercise price
T=6./12      # maturity date ii years
tao=1/12     # when to choose
r=0.05       # risk-free rate
sigma=0.2    # volatility 
n=1000       # number of steps
#
price=binomialCallAmerican(s,x,T,r,sigma,n)
print("American call =", price)
('American call =', 2.7549263174936502)

The price of this American call is $2.75. The key for modifying the previous program 
to satisfy only a few exercise prices is the following two lines:

            v2=max(v[i][j]-x,0)         # early exercise 
            v[i][j]=max(v1,v2)

Here is the Python program for a Bermudan call option. The key different is the 
variable called T2, which contains the dates when the Bermudan option could  
be exercised:

def callBermudan(s,x,T,r,sigma,T2,n=100):
    from math import exp,sqrt
    import numpy as np
    n2=len(T2)
    deltaT = T /n
    u = exp(sigma * sqrt(deltaT)) 
    d = 1.0 / u
    a = exp(r * deltaT)
    p = (a - d) / (u - d)
    v =[[0.0 for j in np.arange(i + 1)] for i in np.arange(n + 1)] 
    for j in np.arange(n+1):
        v[n][j] = max(s * u**j * d**(n - j) - x, 0.0) 
    for i in np.arange(n-1, -1, -1):
        for j in np.arange(i + 1):
            v1=exp(-r*deltaT)*(p*v[i+1][j+1]+(1.0-p)*v[i+1][j])
            for k in np.arange(n2):
                if abs(j*deltaT-T2[k])<0.01:
                    v2=max(v[i][j]-x,0)  # potential early exercise 
                else: 
                    v2=0
            v[i][j]=max(v1,v2)
    return v[0][0]
#
s=40.                 # stock price today 
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x=40.                 # exercise price
T=6./12               # maturity date ii years
r=0.05                # risk-free rate
sigma=0.2             # volatility 
n=1000                # number of steps
T2=(3./12.,4./12.)    # dates for possible early exercise 
#
price=callBermudan(s,x,T,r,sigma,T2,n)
print("Bermudan call =", price)
('Bermudan call =', 2.7549263174936502)

Chooser options
For a chooser option, it allows the option buyer to choose, at a predetermined point of 
time before the option matures whether it is a European call or a European put. For a 
simple chooser option, the underlying call and put options have the same maturities 
and exercise prices. Let's look at two extreme cases. The option buyer has to make 
a decision today, that is, when they make such a purchase. The price of this chooser 
option should be the maximum of call and put options since the option buyer does 
not have more information. The second extreme case is the investor could make a 
decision on the maturity date. Since the call and put have the same exercise prices, if 
the call is in the money, the put should be out of money. The opposite is true. Thus, 
the price of a chooser option should be the summation of the call and the put. This is 
equivalent to buy a call and a put with the same exercise prices and maturity dates. 
In Chapter 10, Options and Futures we know such a trading strategy is called Straddle. 
With such a trading strategy, we bet that the underlying security would move away 
from our current position. However, we are not sure about the direction.

First, let's look at the pricing formula for a simple chooser option, both call and put 
have the same maturity dates and exercise prices. Assume that there is no dividend 
before maturity. A simple chooser option has the following pricing formula:

Here, Pchooer is the price or premium for a chooser option, call (T) is a European call 
with a maturity T. put(τ) will be defined soon. For the first call (T) option, we have 
the following pricing formula:



Chapter 14

[ 495 ]

Here, call (T) is the call premium, S is today's price, K is the exercise price, T is the 
maturity in years, σ is the volatility, and N() is the cumulative standard normal 
distribution. Actually, this is exactly the same as the Black-Scholes-Merton call 
option model. put (τ) has the following formula:

Again, put(τ) is the put premium and τ is when the chooser option buyer could make 
a decision. To make d1 and d2 distinguishable from those two values in the previous 
equation,  and are used instead of d1 and d2. Note that the preceding 
equation is different from the Black-Scholes-Merton put option model since we have 
both T and τ instead of just T. Now, let's look at one extreme case: the option buyer 
could make their decision at maturity date, that is, τ=T. From the preceding equation, 
obviously the price of the chooser option will be the summation of those two options:

The following Python program is for the choose options. To save space, we could 
combine both a call with a put, see the following Python codes. In order to do so, we 
have two time variable input called T and tao:

from scipy import log,exp,sqrt,stats 
def callAndPut(S,X,T,r,sigma,tao,type='C'):
    d1=(log(S/X)+r*T+0.5*sigma*sigma*tao)/(sigma*sqrt(tao)) 
    d2 = d1-sigma*sqrt(tao)
    if type.upper()=='C':
        c=S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)
        return c
    else:
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        p=X*exp(-r*T)*stats.norm.cdf(-d2)-S*stats.norm.cdf(-d1)
        return p
#
def chooserOption(S,X,T,r,sigma,tao):
    call_T=callAndPut(S,X,T,r,sigma,T)
    put_tao=callAndPut(S,X,T,r,sigma,tao,type='P')
    return call_T- put_tao
#
s=40.        # stock price today 
x=40.        # exercise price
T=6./12      # maturity date ii years
tao=1./12.   # when to choose
r=0.05       # risk-free rate
sigma=0.2    # volatility 
#
price=chooserOption(s,x,T,r,sigma,tao)
print("price of a chooser option=",price)
('price of a chooser option=', 2.2555170735574421)

The price of this chooser option is $2.26.

Shout options
A shout option is a standard European option except that the option buyer can shout 
to the option seller before maturity date to set the minimum payoff as Sτ-X, where 
Sτ is the stock price at time τ when the buyer shouts and X is the exercise price. The 
level of the strike could be set at a specific relation to the spot price, such as 3% or 5% 
above (or below). The Python codes are given here:

def shoutCall(s,x,T,r,sigma,shout,n=100):
    from math import exp,sqrt
    import numpy as np
    deltaT = T /n
    u = exp(sigma * sqrt(deltaT)) 
    d = 1.0 / u
    a = exp(r * deltaT)
    p = (a - d) / (u - d)
    v =[[0.0 for j in np.arange(i + 1)] for i in np.arange(n + 1)] 
    for j in np.arange(n+1):
        v[n][j] = max(s * u**j * d**(n - j) - x, 0.0) 
    for i in np.arange(n-1, -1, -1):
        for j in np.arange(i + 1):
            v1=exp(-r*deltaT)*(p*v[i+1][j+1]+(1.0-p)*v[i+1][j]) 
            v2=max(v[i][j]-shout,0)   # shout  
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            v[i][j]=max(v1,v2)
    return v[0][0]
#
s=40.              # stock price today 
x=40.              # exercise price
T=6./12            # maturity date ii years
tao=1/12           # when to choose
r=0.05             # risk-free rate
sigma=0.2          # volatility 
n=1000             # number of steps
shout=(1+0.03)*s   # shout out level 
#
price=shoutCall(s,x,T,r,sigma,shout,n)
print("Shout call =", price)

Binary options
A binary option, or asset-or-nothing option, is a type of options in which the payoff 
is structured to be either a fixed amount of compensation if the option expires in 
the money, or nothing at all if the option expires out of the money. Because of this 
property, we could apply Monte Carlo Simulation to find a solution. The Python 
codes are given here:

import random
import scipy as sp
#
def terminalStockPrice(S, T,r,sigma):
    tao=random.gauss(0,1.0)
    terminalPrice=S * sp.exp((r - 0.5 * sigma**2)*T+sigma*sp.
sqrt(T)*tao)
    return terminalPrice
#
def binaryCallPayoff(x, sT,payoff):
    if sT >= x:
        return payoff
    else:
        return 0.0
# input area 
S = 40.0            # asset price
x = 40.0            # exercise price 
T = 0.5             # maturity in years 
r = 0.01            # risk-free rate 
sigma = 0.2         # vol of 20%
fixedPayoff = 10.0  # payoff 
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nSimulations =10000 # number of simulations 
#
payoffs=0.0
for i in xrange(nSimulations):
    sT = terminalStockPrice(S, T,r,sigma) 
    payoffs += binaryCallPayoff(x, sT,fixedPayoff)
#
price = sp.exp(-r * T) * (payoffs / float(nSimulations))
print('Binary options call= %.8f' % price)

Note that since the preceding program does not fix the seed, for each run, users 
should get different results.

Rainbow options
Many financial problems could be summarized as or associated with the maximum 
or minimum of several assets. Let's look at a simple one: options on the maximum 
or minimum of two assets. These type of options are called rainbow options. 
Since two assets are involved, we have to get familiar with a so-called bivariate 
normal distribution. The following codes show its graph. The original codes are 
at the website of http://scipython.com/blog/visualizing-the-bivariate-
gaussian-distribution/:

import numpy as np
from matplotlib import cm
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#
# input area
n   = 60                      # number of intervals
x   = np.linspace(-3, 3, n)   # x dimension
y   = np.linspace(-3, 4, n)   # y dimension 
x,y = np.meshgrid(x, y)       # grid 
#
# Mean vector and covariance matrix
mu = np.array([0., 1.])
cov= np.array([[ 1. , -0.5], [-0.5,  1.5]])
#
# combine x and y into a single 3-dimensional array
pos = np.empty(x.shape + (2,))
pos[:, :, 0] = x
pos[:, :, 1] = y
#
def multiNormal(pos, mu, cov):

http://scipython.com/blog/visualizing-the-bivariate-gaussian-distribution/
http://scipython.com/blog/visualizing-the-bivariate-gaussian-distribution/
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    n = mu.shape[0]
    Sigma_det = np.linalg.det(cov)
    Sigma_inv = np.linalg.inv(cov)
    n2 = np.sqrt((2*np.pi)**n * Sigma_det)
    fac=np.einsum('...k,kl,...l->...', pos-mu, Sigma_inv, pos-mu)
    return np.exp(-fac/2)/n2
#
z    = multiNormal(pos, mu, cov)
fig  = plt.figure()
ax   = fig.gca(projection='3d')
ax.plot_surface(x, y, z, rstride=3, cstride=3,linewidth=1, 
antialiased=True,cmap=cm.viridis)
cset = ax.contourf(x, y, z, zdir='z', offset=-0.15, cmap=cm.viridis)
ax.set_zlim(-0.15,0.2)
ax.set_zticks(np.linspace(0,0.2,5))
ax.view_init(27, -21)
plt.title("Bivariate normal distribtuion")
plt.ylabel("y values ")
plt.xlabel("x values")
plt.show()

The graph is shown here:
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Assume that returns of those two assets follow a bivariate normal distribution with 
a correlation of ρ. To make our estimation a little bit easier, we assume that there is 
no dividend before maturity date. The payoff for a call on the minimum of two assets 
will be:

Here,  is the terminal stock price for stock 1 (2) and T is the maturity date in 
years. The pricing formula for a call based on the minimum of two assets is given here:

Here, S1 (S2) is the current stock price for stock 1 (2), N2(a,b,ρ) is the cumulative 
bivariate normal distribution with the upper bounds of a and b, correlation of ρ 
between those two assets, and K is the exercise price. The parameters of d11, d12, d21, 
d22, ρ1, and ρ2 are defined here:



Chapter 14

[ 501 ]

First, we should study the bivariate cumulative normal distribution 
N2_f(d1,d2,rho) described here:

def N2_f(d1,d2,rho):
    """cumulative bivariate standard normal distribution 
       d1: the first value
       d2: the second value
       rho: correlation

       Example1:
               print(N2_f(0,0,1.)) => 0.5
       Example2:
               print(N2_f(0,0,0)  => 0.25
     """
    import statsmodels.sandbox.distributions.extras as extras
    muStandardNormal=0.0    # mean of a standard normal distribution 
    varStandardNormal=1.0   # variance of standard normal distribution 
    upper=([d1,d2])         # upper bound for two values
    v=varStandardNormal     # simplify our notations
    mu=muStandardNormal     # simplify our notations
    covM=([v,rho],[rho,v])
    return extras.mvnormcdf(upper,mu,covM)
#

Let's look at some special cases. From univariate standard normal distribution, we 
know that when input value is 0, we expected the cumulative standard normal 
distribution is 0.5 since the underlying normal distribution is symmetric. When 
two time series are perfectly positively correlated, the cumulative standard normal 
distribution should be 0.5 as well, see the preceding result. On the other hand, if two 
time series are not correlated, their cumulative standard normal distribution when 
the inputs are both zero, then we expected the overlapping, that is, 0.5 *0.5=0.25. This 
is true by calling the preceding N2_f() function. For the exotic, option, the related 
Python program is given here:

from math import exp,sqrt,log
import statsmodels.sandbox.distributions.extras as extras
#
def dOne(s,k,r,sigma,T):
    #print(s,k,r,sigma,T)
    a=log(s/k)+(r-0.5*sigma**2)*T
    b=(sigma*sqrt(T))
    return a/b
#
def sigmaA_f(sigma1,sigma2,rho):
    return sqrt(sigma1**2-2*rho*sigma1*sigma2+sigma2**2)
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#
def dTwo(d1,sigma,T):
    return d1+sigma*sqrt(T)
#
def rhoTwo(sigma1,sigma2,sigmaA,rho):
    return (rho*sigma2-sigma1)/sigmaA
#
def N2_f(d1,d2,rho):
    import statsmodels.sandbox.distributions.extras as extras
    muStandardNormal=0.0    # mean of a standard normal distribution 
    varStandardNormal=1.0   # variance of standard normal distribution 
    upper=([d1,d2])         # upper bound for two values
    v=varStandardNormal     # simplify our notations
    mu=muStandardNormal     # simplify our notations
    covM=([v,rho],[rho,v])
    return extras.mvnormcdf(upper,mu,covM)
#
def dOneTwo(s1,s2,sigmaA,T):
    a=log(s2/s1)-0.5*sigmaA**2*T
    b=sigmaA*sqrt(T)
    return a/b
#
def rainbowCallOnMinimum(s1,s2,k,T,r,sigma1,sigma2,rho):
    d1=dOne(s1,k,r,sigma1,T)
    d2=dOne(s2,k,r,sigma2,T)
    d11=dTwo(d1,sigma1,T)
    d22=dTwo(d2,sigma2,T)
    sigmaA=sigmaA_f(sigma1,sigma2,rho)
    rho1=rhoTwo(sigma1,sigma2,sigmaA,rho)
    rho2=rhoTwo(sigma2,sigma1,sigmaA,rho)
    d12=dOneTwo(s1,s2,sigmaA,T)
    d21=dOneTwo(s2,s1,sigmaA,T)
    #
    part1=s1*N2_f(d11,d12,rho1)
    part2=s2*N2_f(d21,d22,rho2)
    part3=k*exp(-r*T)*N2_f(d1,d2,rho)
    return part1 + part2 - part3
#
s1=100.
s2=95.
k=102.0
T=8./12.
r=0.08
rho=0.75
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sigma1=0.15
sigma2=0.20
price=rainbowCallOnMinimum(s1,s2,k,T,r,sigma1,sigma2,rho)
print("price of call based on the minimum of 2 assets=",price)
('price of call based on the minimum of 2 assets=', 3.747423936156629)

Another way to price various types of rainbow options is using Monte Carlo 
Simulation. As we mentioned in Chapter 12, Monte Carlo Simulation, we can generate 
two correlated random number time series. There are two step involved: generate 
two random time series x1 and x2 with a zero-correlation; and then apply the 
following formula:

Here, ρ is the predetermined correlation between those two time series. Now, y1 and 
y2 are correlated with a predetermined correlation. The following Python program 
would implement the preceding approach:

import scipy as sp
sp.random.seed(123)
n=1000
rho=0.3
x1=sp.random.normal(size=n)
x2=sp.random.normal(size=n)
y1=x1
y2=rho*x1+sp.sqrt(1-rho**2)*x2
print(sp.corrcoef(y1,y2))
[[ 1.          0.28505213]
 [ 0.28505213  1.        ]]

Next, we apply the same technique we know in Chapter 12, Monte Carlo Simulation to 
price a rainbow option call on the minimum of two assets:

import scipy as sp 
from scipy import zeros, sqrt, shape 
#
sp.random.seed(123)  # fix our random numbers
s1=100.              # stock price 1 
s2=95.               # stock price 2
k=102.0              # exercise price
T=8./12.             # maturity in years
r=0.08               # risk-free rate
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rho=0.75             # correlation between 2
sigma1=0.15          # volatility for stock 1
sigma2=0.20          # volatility for stock 1
nSteps=100.          # number of steps 
nSimulation=1000     # number of simulations 
#
# step 1: generate correlated random number
dt =T/nSteps 
call = sp.zeros([nSimulation], dtype=float) 
x = range(0, int(nSteps), 1) 
#
# step 2: call call prices 
for j in range(0, nSimulation): 
    x1=sp.random.normal(size=nSimulation)
    x2=sp.random.normal(size=nSimulation)
    y1=x1
    y2=rho*x1+sp.sqrt(1-rho**2)*x2
    sT1=s1
    sT2=s2 
    for i in x[:-1]: 
        e1=y1[i]
        e2=y2[i]
        sT1*=sp.exp((r-0.5*sigma1**2)*dt+sigma1*e1*sqrt(dt)) 
        sT2*=sp.exp((r-0.5*sigma2**2)*dt+sigma2*e2*sqrt(dt)) 
        minOf2=min(sT1,sT2)
        call[j]=max(minOf2-k,0) 
#
# Step 3: summation and discount back 
call=sp.mean(call)*sp.exp(-r*T) 
print('Rainbow call on minimum of 2 assets = ', round(call,3))
('Rainbow call on minimum of 2 assets = ', 4.127)

If we add more assets, it becomes more difficult to have a close-form solution. Here we 
show how to use Monte Carlo Simulation to price a rainbow call option based on the 
maximum terminal stock price. The basic logic is quite straight: generate three terminal 
stock prices, and then record the call payoff by applying the following formula:



Chapter 14

[ 505 ]

The final price would be the average of the discounted payoffs. The key is how to 
generate a correlated three set of random numbers. Here, the famous Cholesky 
decomposition is applied. Assume that we have a correlation matrix called C. A 
Cholesky decomposition matrix L that makes . Assume further that the 
uncorrelated return matrix is called U. Now, the correlated return matrix R = UL. 
The Python code is shown here:

import numpy as np
# input area
nSimulation=5000              # number of simulations
c=np.array([[1.0, 0.5, 0.3],  # correlation matrix
            [0.5, 1.0, 0.4],
            [0.3, 0.4, 1.0]])
np.random.seed(123)           # fix random numbers 
#
# generate uncorrelated random numbers
x=np.random.normal(size=3*nSimulation)
U=np.reshape(x,(nSimulation,3))
#
# Cholesky decomposition 
L=np.linalg.cholesky(c)
# generate correlated random numbers
r=np.dot(U,L)
#check the correlation matrix
print(np.corrcoef(r.T))
[[ 1.          0.51826188  0.2760649 ]
 [ 0.51826188  1.          0.35452286]
 [ 0.2760649   0.35452286  1.        ]]

Pricing average options
In Chapter 12, Monte Carlo Simulation, we discussed two exotic options. For 
convenience, we will include them in this chapter as well. Because of this, readers 
will find some duplicates. European and American options are path-independent 
options. This means that an option's payoff depends only on the terminal stock 
price and strike price. One related issue for path-dependent options is market 
manipulation at the maturity date. Another issue is that some investors or hedgers 
might care more about the average price instead of a terminal price.
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For example, a refinery is worried about oil, its major raw material, and price 
movement in the next three months. They plan to hedge the potential price jumps in 
crude oil. The company could buy a call option. However, since the firm consumes a 
huge amount of crude oil every day, naturally it cares more about the average price 
instead of just the terminal price on which a vanilla call option depends. For such 
cases, average options will be more effective. Average options are a type of Asian 
option. For an average option, its payoff is determined by the average underlying 
prices over some predetermined period of time. There are two types of averages: 
arithmetic average and geometric average. The payoff function of an Asian call 
(average price) is given as follows:

The payoff function of an Asian put (average price) is given here:

Asian options are one of the basic forms of exotic options. Another advantage of 
Asian options is that their costs are cheaper compared to European and American 
vanilla options since the variation of an average will be much smaller than a terminal 
price. The following Python program is for an Asian option with an arithmetic 
average price:

import scipy as sp 
s0=30.                 # today stock price 
x=32.                  # exercise price 
T=3.0/12.              # maturity in years 
r=0.025                # risk-free rate 
sigma=0.18             # volatility (annualized) 
sp.random.seed(123)    # fix a seed here 
n_simulation=1000      # number of simulations 
n_steps=500.           # number of steps
#
dt=T/n_steps 
call=sp.zeros([n_simulation], dtype=float) 
for j in range(0, n_simulation): 
    sT=s0 
    total=0 
    for i in range(0,int(n_steps)): 
         e=sp.random.normal()
         sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt)) 
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         total+=sT 
         price_average=total/n_steps 
    call[j]=max(price_average-x,0) 
#
call_price=sp.mean(call)*sp.exp(-r*T) 
print('call price based on average price = ', round(call_price,3))
('call price based on average price = ', 0.12)

Pricing barrier options
Unlike the Black-Scholes-Merton option model's call and put options, which are 
path-independent, a barrier option is path-dependent. A barrier option is similar in 
many ways to an ordinary option, except a trigger exists. An in option starts its life 
worthless unless the underlying stock reaches a predetermined knock-in barrier. 
On the contrary, an out barrier option starts its life active and turns useless when a 
knock-out barrier price is breached. In addition, if a barrier option expires inactive, 
it may be worthless, or there may be a cash rebate paid out as a fraction of the 
premium. The four types of barrier options are given as follows:

• Up-and-out: In this barrier option, the price starts from below a barrier level. 
If it reaches the barrier, it is knocked out.

• Down-and-out: In this barrier option, the price starts from above a barrier. If 
it reaches the barrier, it is knocked out.

• Up-and-in: In this barrier option, the price starts down a barrier and has to 
reach the barrier to be activated.

• Down-and-in: In this barrier option, the price starts over a barrier and has to 
reach the barrier to be activated.

The following Python program is for an up-and-out barrier option with a European call:

import scipy as sp 
from scipy import log,exp,sqrt,stats 
#
def bsCall(S,X,T,r,sigma):
    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T)) 
    d2 = d1-sigma*sqrt(T)
    return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)
#
def up_and_out_call(s0,x,T,r,sigma,n_simulation,barrier):
    n_steps=100. 
    dt=T/n_steps 
    total=0 
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    for j in sp.arange(0, n_simulation): 
        sT=s0 
        out=False
        for i in range(0,int(n_steps)): 
            e=sp.random.normal() 
            sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt)) 
            if sT>barrier: 
               out=True 
        if out==False: 
            total+=bsCall(s0,x,T,r,sigma) 
    return total/n_simulation 
#

The basic design is that we simulate the stock movement n times, such as 100 times. 
For each simulation, we have 100 steps. Whenever the stock price reaches the barrier, 
the payoff will be zero. Otherwise, the payoff will be a vanilla European call. The 
final value will be the summation of all call prices that are not knocked out, divided 
by the number of simulations, as shown in the following code:

s0=30.              # today stock price 
x=30.               # exercise price 
barrier=32          # barrier level 
T=6./12.            # maturity in years 
r=0.05              # risk-free rate 
sigma=0.2           # volatility (annualized) 
n_simulation=100    # number of simulations 
sp.random.seed(12)  # fix a seed
#
result=up_and_out_call(s0,x,T,r,sigma,n_simulation,barrier) 
print('up-and-out-call = ', round(result,3))
('up-and-out-call = ', 0.93)

The Python code for the down-and-in put option is shown as follows:

def down_and_in_put(s0,x,T,r,sigma,n_simulation,barrier): 
    n_steps=100.
    dt=T/n_steps 
    total=0
    for j in range(0, n_simulation): 
        sT=s0
        in_=False
        for i in range(0,int(n_steps)): 
            e=sp.random.normal()
            sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt)) 
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            if sT<barrier:
                in_=True
            #print 'sT=',sT
            #print 'j=',j ,'out=',out if in_==True:
            total+=p4f.bs_put(s0,x,T,r,sigma) 
    return total/n_simulation
#

Barrier in-and-out parity
If we buy an up-and-out European call and an up-and-in European call, then the 
following parity should hold good:

The logic is very simple—if the stock price reaches the barrier, then the first call is 
worthless and the second call will be activated. If the stock price never touches the 
barrier, the first call will remain active, while the second one is never activated. Either 
way, one of them is active. The following Python program illustrates such scenarios:

def upCall(s,x,T,r,sigma,nSimulation,barrier):
    import scipy as sp
    import p4f 
    n_steps=100
    dt=T/n_steps 
    inTotal=0 
    outTotal=0
    for j in range(0, nSimulation): 
        sT=s
        inStatus=False 
        outStatus=True
        for i in range(0,int(n_steps)):
            e=sp.random.normal()
            sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt)) 
            if sT>barrier:
                outStatus=False 
                inStatus=True
        if outStatus==True:
            outTotal+=p4f.bs_call(s,x,T,r,sigma) 
        else:
            inTotal+=p4f.bs_call(s,x,T,r,sigma) 
    return outTotal/nSimulation, inTotal/nSimulation
#
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We input a set of values to test whether the summation of an up-and-out call and an 
up-and-in call will be the same as a vanilla call:

import p4f
s=40.                 # today stock price 
x=40.                 # exercise price 
barrier=42.0          # barrier level 
T=0.5                 # maturity in years 
r=0.05                # risk-free rate 
sigma=0.2             # volatility (annualized) 
nSimulation=500       # number of simulations 
#
upOutCall,upInCall=upCall(s,x,T,r,sigma,nSimulation,barrier) 
print 'upOutCall=', round(upOutCall,2),'upInCall=',round(upInCall,2) 
print 'Black-Scholes call', round(p4f.bs_call(s,x,T,r,sigma),2)

The related output is shown here:

upOutCall= 0.75 upInCall= 2.01
Black-Scholes call 2.76

Graph of up-and-out and up-and-in parity
It is a good idea to use the Monte Carlo simulation to present such parity. The 
following code is designed to achieve this. To make our simulation clearer, we 
deliberately choose just five simulations:

import p4f
import scipy as sp
import matplotlib.pyplot as plt
#
s =9.25              # stock price at time zero
x =9.10              # exercise price
barrier=10.5         # barrier
T =0.5               # maturity date (in years)
n_steps=30           # number of steps
r =0.05              # expected annual return
sigma = 0.2          # volatility (annualized) 
sp.random.seed(125)  # seed()
n_simulation = 5     # number of simulations 
#
dt =T/n_steps
S = sp.zeros([n_steps], dtype=float) 
time_= range(0, int(n_steps), 1) 
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c=p4f.bs_call(s,x,T,r,sigma) 
sp.random.seed(124)
outTotal, inTotal= 0.,0. 
n_out,n_in=0,0

for j in range(0, n_simulation):
    S[0]= s
    inStatus=False
    outStatus=True
    for i in time_[:-1]:
        e=sp.random.normal()
        S[i+1]=S[i]*sp.exp((r-0.5*pow(sigma,2))*dt+sigma*sp.
sqrt(dt)*e) 
        if S[i+1]>barrier:
            outStatus=False 
            inStatus=True
    plt.plot(time_, S) 
    if outStatus==True:
        outTotal+=c;n_out+=1 
    else:
        inTotal+=c;n_in+=1 
        S=sp.zeros(int(n_steps))+barrier 
        plt.plot(time_,S,'.-') 
        upOutCall=round(outTotal/n_simulation,3) 
        upInCall=round(inTotal/n_simulation,3) 
        plt.figtext(0.15,0.8,'S='+str(s)+',X='+str(x))
        plt.figtext(0.15,0.76,'T='+str(T)+',r='+str(r)+',sigma=='+str
(sigma)) 
        plt.figtext(0.15,0.6,'barrier='+str(barrier))
        plt.figtext(0.40,0.86, 'call price  ='+str(round(c,3)))
        plt.figtext(0.40,0.83,'up_and_out_call ='+str(upOutCall)+' 
(='+str(n_out)+'/'+str(n_simulation)+'*'+str(round(c,3))+')') 
        plt.figtext(0.40,0.80,'up_and_in_call ='+str(upInCall)+' 
(='+str(n_in)+'/'+ str(n_simulation)+'*'+str(round(c,3))+')')
#
plt.title('Up-and-out and up-and-in parity (# of simulations = %d ' % 
n_simulation +')')
plt.xlabel('Total number of steps ='+str(int(n_steps))) 
plt.ylabel('stock price')
plt.show()
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The corresponding graph is shown as follows. Note that in the preceding program, 
since the seed is used, different users should get the same graphs if the same seed  
is applied:

Pricing lookback options with floating 
strikes
The lookback options depend on the paths (history) travelled by the underlying 
security. Thus, they are also called path-dependent exotic options. One of them is 
named floating strikes. The payoff function of a call when the exercise price is the 
minimum price achieved during the life of the option is given as follows:
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The Python code for this lookback option is shown as follows:

plt.show()
def lookback_min_price_as_strike(s,T,r,sigma,n_simulation): 
    n_steps=100
    dt=T/n_steps
    total=0
    for j in range(n_simulation): 
        min_price=100000.  # a very big number 
        sT=s
        for i in range(int(n_steps)): 
            e=sp.random.normal()
            sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt)) 
            if sT<min_price:
                min_price=sT
                #print 'j=',j,'i=',i,'total=',total 
                total+=p4f.bs_call(s,min_price,T,r,sigma)
    return total/n_simulation

Remember that the previous function needs two modules. Thus, we have to import 
those modules before we call the function, as shown in the following code:

import scipy as sp
import p4f
s=40.             # today stock price
T=0.5               # maturity in years
r=0.05              # risk-free rate
sigma=0.2           # volatility (annualized)
n_simulation=1000   # number of simulations
result=lookback_min_price_as_strike(s,T,r,sigma,n_simulation)
print('lookback min price as strike = ', round(result,3))

The result for one run is shown as follows:

('lookback min price as strike = ', 53.31)t(
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Appendix A – data case 7 – hedging crude oil
Assume that a refinery is using crude oil every day. Thus, they have to face the 
risk of price uncertainty of their main raw materials: crude oil. There is a tradeoff 
between protecting their bottom line and running production smoothly; the 
company studies all possible outcomes, such as hedge the oil price or not hedge at 
all. Assume that the total annual crude oil consumption is 20 million gallons. Again, 
the company has to operate every day. Compare the following several strategies and 
point out their advantages and disadvantages:

• No hedging
• Use futures
• Use options
• Use exotic option

Several strategies exist, such as American options; see its specification in the 
following table. Some of the crude oil options contract specifications are shown in the 
following table:

Contract unit A Light Sweet Crude Oil Put (Call) Option traded on 
the Exchange represents an option to assume a short 
(long) position in the underlying Light Sweet Crude Oil 
Futures traded on the Exchange.

Minimum price fluctuation $0.01 per barrel.
Price quotation U.S. dollars and cents per barrel.
Product code CME Globex: LO, CME ClearPort: LO, Clearing: LO.
Listed contracts Monthly contracts listed for the current year and the 

next five calendar years, and June and December 
contracts for three additional years. Monthly contracts 
for the balance of a new calendar year will be added 
following the termination of trading in the December 
contract of the current year.

Termination of trading Trading terminates three business days before the 
termination of trading in the underlying futures 
contract.

Exercise style American.
Settlement method Deliverable.
Underlying Light Sweet Crude Oil Futures.

Table 1: Some specification for crude oil options contract



Chapter 14

[ 515 ]

If we use futures to hedge, we have the following formula:

N is the number of futures contract, VA is the value of our portfolio (amount 
we want to hedge), β is the slope of a regression based on our material and the 
underlying instruments (note if our material is the same as the underlying hedging 
instrument, then beta is 1), and VF is the value of one futures contract:

• Source: http://www.cmegroup.com/trading/energy/crude-oil/light-
sweet-crude_contractSpecs_options.html?gclid=CLjWq92Yx9ICFU1MDQ
odP5EDLg&gclsrc=aw.ds

• Source of data: Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, 
Oklahoma (DCOILWTICO), https://fred.stlouisfed.org/series/
DCOILWTICO/downloaddata

• One related dataset is called crudeOilPriceDaily.pkl. The first and last 
several observations are shown here. The dataset is downloadable at  
http://canisius.edu/~yany/python/crudeOilPriceDaily.pkl:
import scipy as sp
import pandas as pd
x=pd.read_pickle("c:/temp/cruideOilPriceDaily.pkl")
print(x.head())
print(x.tail())
            PRICE
1986-01-02  25.56
1986-01-03  26.00
1986-01-06  26.53
1986-01-07  25.85
1986-01-08  25.87
            PRICE
2017-02-28  54.00
2017-03-01  53.82
2017-03-02  52.63
2017-03-03  53.33
2017-03-06  53.19

http://www.cmegroup.com/trading/energy/crude-oil/light-sweet-crude_contractSpecs_options.html?gclid=CLjWq92Yx9ICFU1MDQodP5EDLg&gclsrc=aw.ds 
http://www.cmegroup.com/trading/energy/crude-oil/light-sweet-crude_contractSpecs_options.html?gclid=CLjWq92Yx9ICFU1MDQodP5EDLg&gclsrc=aw.ds 
http://www.cmegroup.com/trading/energy/crude-oil/light-sweet-crude_contractSpecs_options.html?gclid=CLjWq92Yx9ICFU1MDQodP5EDLg&gclsrc=aw.ds 
https://fred.stlouisfed.org/series/DCOILWTICO/downloaddata
https://fred.stlouisfed.org/series/DCOILWTICO/downloaddata
http://canisius.edu/~yany/python/crudeOilPriceDaily.pkl
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Exercises
1. What is the definition of exotic options?
2. Why is it claimed that a callable bond is equivalent to a normal bond plus a 

Bermudan option (the issuing company is the buyer of this Bermudan option 
while the bond buyer is the seller)?

3. Write a Python program to price an Asian average price put based on the 
arithmetic mean.

4. Write a Python program to price an Asian average price put based on the 
geometric mean.

5. Write a Python program to price an up-and-in call (barrier option).
6. Write a Python program to price a down-and-out put (barrier option).
7. Write a Python program to show the down-and-out and down-and-in parity.
8. Write a Python program to use permutation() from SciPy to select 12 

monthly returns randomly from the past five-year data without placement. 
To test your program, you can use Citigroup and the time period January 1, 
2009 to December 31, 2014 from Yahoo Finance.

9. Write a Python program to run bootstrapping with n given returns. For each 
time, we select m returns where m>n.

10. In this chapter, we have learned that a simple chooser option has the 
following price formula:

https://kurtverstegen.wordpress.com/2013/12/07/simulation/
https://kurtverstegen.wordpress.com/2013/12/07/simulation/


Chapter 14

[ 517 ]

Here, T is the maturity date (in years) and τ is the time when the option 
makes its decision whether it prefers a call or a put. Is it possible to have the 
following formula?

11. When the stock pays a continuously compounded dividend, dividend yield 
δ, we have the following pricing formula for Chooser options:

Where Pchooser is the price or premium for a chooser option, call (T) is a 
European call with a maturity T. put(τ) will be defined soon. For the first call 
(T) option, we have the following pricing formula:

Where call(T) is the call price or premium, S is today's price, K is the exercise 
price, T is the maturity in years, σ is the volatility, and N() is the cumulative 
standard normal distribution. Actually, this is exactly the Black-Scholes-
Merton call option model. Put (τ) has the following formula:

Write a related Python program.

12. If two stocks prices are $40 and $55 today, the standard deviations of returns 
for those two stocks are 0.1 and 0.2, respectively. Their correlation is 0.45. 
What is the price of the rainbow call options based on the maximum of 
the terminal stock price of those two stocks? The exercise price is $60 and 
maturity is six months and the risk-free rate is 4.5%.
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13. Explain the differences and similarities between the univariate cumulative 
standard normal distribution and the bivariate cumulative standard normal 
distribution. For both univariate cumulative standard normal distribution, 
N_f() and the bivariate cumulative standard normal distribution, N2_f(), 
we have the following codes:
def N_f(x):
    from scipy import stats
    return stats.norm.cdf(x)
#
def N2_f(x,y,rho):
    import statsmodels.sandbox.distributions.extras as extras
    muStandardNormal=0.0    # mean of a standard normal 
distribution 
    varStandardNormal=1.0   # variance of standard normal 
distribution 
    upper=([x,y])           # upper bound for two values
    v=varStandardNormal     # simplify our notations
    mu=muStandardNormal     # simplify our notations
    covM=([v,rho],[rho,v])
return extras.mvnormcdf(upper,mu,covM) 

14. Write a Python program to price a call option on the maximum of two 
terminal prices of two assets that are correlated:

The definitions of S1, S2, d1, d2, d11, d12, d21, d22, and the N2() 
function are defined in the chapter.

15. Based on Monte Carlo simulation, write a Python program to price a put 
option on the minimum of two terminal prices of two assets that are correlated.

16. In this chapter, two programs related to American and Bermudan options, 
with the set of inputs of s=40, x=40, T=6./12, r=0.05, sigma=0.2, n=1000, 
T2=(3./12.,4./1); a few dates for potential early exercise offer the same  
results. Why?

17. Write a Python program to price Bermudan put options.
18. Write a Python program to price a Rainbow call option based on the 

minimum terminal prices of five assets.
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Summary
The options we've discussed in Chapter 10, Options and Futures are usually called 
vanilla options that have a close-form solution, that is, the Black-Scholes-Merton 
option model. In addition to those vanilla options, many exotic options exist. In 
this chapter, we have discussed several types of exotic options, such as Bermudan 
options, simple chooser options, shout and binary options, average price options, 
Up-and-in options, up-and-out options, and down-and-in and down-and-out 
options. For a European call, the option buyer could exercise their right at the 
maturity date, while for an American option buyer, they could exercise their right 
any time before or on the maturity date. A Bermudan option could be exercised a 
few times before maturity.

In the next chapter, we will discuss various volatility measures, such as our 
conventional standard deviation, Lower Partial Standard Deviation (LPSD).  
Using the standard deviation of returns as a risk measure is based on a critical 
assumption that stock returns follow a normal distribution. Because of this, we 
introduce several normality tests. In addition, we graphically show volatility 
clustering—high volatility is usually followed by a high-volatility period, while 
low volatility is usually followed by a low-volatility period. To deal with this 
phenomenon, the Autoregressive Conditional Heteroskedasticity (ARCH) process 
was developed by Angel (1982), and the Generalized AutoRegressive Conditional 
Heteroskedasticity (GARCH) processes, which are extensions of ARCH, were 
developed by Bollerslev (1986). Their graphical presentations and related Python 
programs will also be covered in the next chapter.
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Volatility, Implied Volatility, 
ARCH, and GARCH

In finance, we know that risk is defined as uncertainty since we are unable to 
predict the future more accurately. Based on the assumption that prices follow a 
lognormal distribution and returns follow a normal distribution, we could define 
risk as standard deviation or variance of the returns of a security. We call this our 
conventional definition of volatility (uncertainty). Since a normal distribution is 
symmetric, it will treat a positive deviation from a mean in the same manner as 
it would a negative deviation. This is against our conventional wisdom since we 
treat them differently. To overcome this, Sortino (1983) suggests a lower partial 
standard deviation. Most of the time, it is assumed that the volatility of a time 
series is a constant. Obviously this is not true. Another observation is volatility 
clustering, which means that high volatility is usually followed by a high-volatility 
period, and this is true for low volatility, which is usually followed by a low-
volatility period. To model this pattern, Angel (1982) develops an Auto Regressive 
Conditional Heteroskedasticity (ARCH) process, and Bollerslev (1986) extends it to 
a Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) process. 
In this chapter, the following topics will be covered:

• Conventional volatility measure—standard deviation—based on a normality 
assumption

• Tests of normality and fat tails
• Lower partial standard deviation and Sortino ratio
• Test of equivalency of volatility over two periods
• Test of heteroskedasticity, Breusch and Pagan
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• Volatility smile and skewness
• The ARCH model
• Simulation of an ARCH (1) process
• The GARCH model
• Simulation of a GARCH process
• Simulation of a GARCH (p,q) process using modified garchSim()
• GJR_GARCH process by Glosten, Jagannathan, and Runkle

Conventional volatility measure – 
standard deviation
In most finance textbooks, we use the standard deviation of returns as a risk 
measure. This is based on a critical assumption that log returns follow a normal 
distribution. Both standard deviation and variance could be used to measure 
uncertainty; the former is usually called volatility itself. For example, if we say that 
the volatility of IBM is 20 percent, it means that its annualized standard deviation is 
20 percent. Using IBM as an example, the following program is used to estimate its 
annualized volatility:

import numpy as np
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
#
ticker='IBM' 
begdate=(2009,1,1) 
enddate=(2013,12,31)
p =getData(ticker, begdate, enddate,asobject=True, adjusted=True)
ret = p.aclose[1:]/p.aclose[:-1]-1
std_annual=np.std(ret)*np.sqrt(252)
print('volatility (std)=',round(std_annual,4))
('volatility (std)=', 0.2093)

Tests of normality
The Shapiro-Wilk test is a normality test. The following Python program verifies 
whether IBM's returns are following a normal distribution. The last five-year daily 
data from Yahoo! Finance is used for the test. The null hypothesis is that IBM's daily 
returns are drawn from a normal distribution:

import numpy as np
from scipy import stats
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from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
#
ticker='IBM' 
begdate=(2009,1,1) 
enddate=(2013,12,31)
p =getData(ticker, begdate, enddate,asobject=True, adjusted=True)
ret = p.aclose[1:]/p.aclose[:-1]-1
#
print('ticker=',ticker,'W-test, and P-value') 
print(stats.shapiro(ret))
 ('ticker=', 'IBM', 'W-test, and P-value')
(0.9295020699501038, 7.266549629954468e-24)

The first value of the result is the test statistic, and the second one is its 
corresponding P-value. Since this P-value is so close to zero, we reject the null 
hypothesis. In other words, we conclude that IBM's daily returns do not follow a 
normal distribution.

For the normality test, we could also apply the Anderson-Darling test, which is a 
modification of the Kolmogorov-Smirnov test, to verify whether the observations 
follow a particular distribution. The stats.anderson() function has tests for 
normal, exponential, logistic, and Gumbel (Extreme Value Type I) distributions. The 
default test is for a normal distribution. After calling the function and printing the 
testing results, we see the following result:

print(stats.anderson(ret))
AndersonResult(statistic=inf, critical_values=array([ 0.574,  0.654,  
0.785,  0.915,  1.089]), significance_level=array([ 15. ,  10. ,   5. 
,   2.5,   1. ]))

Here, we have three sets of values: the Anderson-Darling test statistic, a set of critical 
values, and a set of corresponding confidence levels, such as 15 percent, 10 percent, 
5 percent, 2.5 percent, and 1 percent, as shown in the previous output. If we choose 
a 1 percent confidence level—the last value of the third set—the critical value is 
1.089, the last value of the second set. Since our testing statistic is 14.73, which is 
much higher than the critical value of 1.089, we reject the null hypothesis. Thus, our 
Anderson-Darling test leads to the same conclusion as our Shapiro-Wilk test.
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Estimating fat tails
One of the important properties of a normal distribution is that we could use mean 
and standard deviation, the first two moments, to fully define the whole distribution. 
For n returns of a security, its first four moments are defined in equation (1). The 
mean or average is defined as follows:

Its (sample) variance is defined by the following equation. The standard deviation, 
that is, σ, is the squared root of the variance:

The skewness defined by the following formula indicates whether the distribution is 
skewed to the left or to the right. For a symmetric distribution, its skewness is zero:

The kurtosis reflects the impact of extreme values because of its power of four. There 
are two types of definitions with and without minus three; refer to the following two 
equations. The reason behind the deduction of three in equation (4B), is that for a 
normal distribution, its kurtosis based on equation (4A) is three:
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Some books distinguish these two equations by calling equation (4B) excess kurtosis. 
However, many functions based on equation (4B) are still named kurtosis. Since we 
know that a standard normal distribution has a zero mean, unit standard deviation, 
zero skewness, and zero kurtosis (based on equation 4B). The following output 
confirms these facts:

import numpy as np
from scipy import stats, random
#
random.seed(12345)
ret=random.normal(0,1,50000)
print('mean =',np.mean(ret))
print('std =',np.std(ret))
print('skewness=',stats.skew(ret))
print('kurtosis=',stats.kurtosis(ret))
('mean =', -0.0018105809899753157)
('std =', 1.002778144574481)
('skewness=', -0.014974456637295455)
('kurtosis=', -0.03657086582842339)

The mean, skewness, and kurtosis are all close to zero, while the standard deviation 
is close to one. Next, we estimate the four moments for S&P500 based on its daily 
returns as follows:

import numpy as np
from scipy import stats
from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
#
ticker='^GSPC' 
begdate=(1926,1,1)
enddate=(2013,12,31)
p = getData(ticker, begdate, enddate,asobject=True, adjusted=True)
ret = p.aclose[1:]/p.aclose[:-1]-1
print( 'S&P500    n    =',len(ret))
print( 'S&P500    mean    =',round(np.mean(ret),8)) 
print( 'S&P500    std    =',round(np.std(ret),8)) 
print( 'S&P500    skewness=',round(stats.skew(ret),8))
print( 'S&P500    kurtosis=',round(stats.kurtosis(ret),8))
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The output for the five values mentioned in the previous code, including the number 
of observations, is given as follows:

('S&P500\tn\t=', 16102)
('S&P500\tmean\t=', 0.00033996)
('S&P500\tstd\t=', 0.00971895)
('S&P500\tskewness=', -0.65037674)
('S&P500\tkurtosis=', 21.24850493)

This result is very close to the result in the paper titled Study of Fat-tail Risk by Cook 
Pine Capital, the PDF version of the paper could be downloaded at http://www.
cookpinecapital.com/assets/pdfs/Study_of_Fat-tail_Risk.pdf. Alternatively, 
it is available at http://www3.canisius.edu/~yany/doc/Study_of_Fat-tail_
Risk.pdf. Using the same argument, we conclude that the S&P500 daily returns are 
skewed to the left, that is, a negative skewness, and have fat tails (kurtosis is 38.22 
instead of zero).

Lower partial standard deviation and 
Sortino ratio
We discussed this concept already. However, for completeness, in this chapter we 
mention it again. One issue with using standard deviation of returns as a risk measure 
is that the positive deviation is also viewed as bad. The second issue is that the 
deviation is from the average instead of a fixed benchmark, such as a risk-free rate. 
To overcome these shortcomings, Sortino (1983) suggests the lower partial standard 
deviation, which is defined as the average of squared deviation from the risk-free rate 
conditional on negative excess returns, as shown in the following formula:

Because we need the risk-free rate in this equation, we could generate a Fama-French 
dataset that includes the risk-free rate as one of their time series. First, download 
their daily factors from http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html. Then, unzip it and delete the non-data part at the end 
of the text file. Assume the final text file is saved under C:/temp/:

import datetime
import numpy as np
import pandas as pd 
file=open("c:/temp/ffDaily.txt","r") 
data=file.readlines()

http://www.cookpinecapital.com/assets/pdfs/Study_of_Fat-tail_Risk.pdf
http://www.cookpinecapital.com/assets/pdfs/Study_of_Fat-tail_Risk.pdf
http://www3.canisius.edu/~yany/doc/Study_of_Fat-tail_Risk.pdf
http://www3.canisius.edu/~yany/doc/Study_of_Fat-tail_Risk.pdf
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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f=[]
index=[]
#
for i in range(5,np.size(data)): 
    t=data[i].split() 
    t0_n=int(t[0]) 
    y=int(t0_n/10000) 
    m=int(t0_n/100)-y*100 
    d=int(t0_n)-y*10000-m*100
    index.append(datetime.datetime(y,m,d)) 
    for j in range(1,5):
         k=float(t[j]) 
         f.append(k/100)
#
n=len(f) 
f1=np.reshape(f,[n/4,4])
ff=pd.DataFrame(f1,index=index,columns=['Mkt_Rf','SMB','HML','Rf'])
ff.to_pickle("c:/temp/ffDaily.pkl")

The name of the final dataset is ffDaily.pkl. It is a good idea to generate this 
dataset yourself. However, the dataset could be downloaded from http:// 
canisius.edu/~yany/python/ffDaily.pkl. Using the last five years' data (January 
1, 2009 to December 31, 2013), we could estimate IBM's LPSD as follows:

import numpy as np
import pandas as pd 
from scipy import stats
from matplotlib.finance import quotes_historical_yahoo_ochl as getData 
#
ticker='IBM' 
begdate=(2009,1,1) 
enddate=(2013,12,31)
p =getData(ticker, begdate, enddate,asobject=True, adjusted=True)
ret = p.aclose[1:]/p.aclose[:-1]-1
date_=p.date
x=pd.DataFrame(data=ret,index=date_[1:],columns=['ret']) 
#
ff=pd.read_pickle('c:/temp/ffDaily.pkl') 
final=pd.merge(x,ff,left_index=True,right_index=True) 
#
k=final.ret-final.RF
k2=k[k<0] 
LPSD=np.std(k2)*np.sqrt(252)
print("LPSD=",LPSD)
print(' LPSD (annualized) for ', ticker, 'is ',round(LPSD,3))

http:// canisius.edu/~yany/python/ffDaily.pkl
http:// canisius.edu/~yany/python/ffDaily.pkl
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The following output shows that IBM's LPSD is 14.8 percent–quite different from the 
20.9 percent shown in the previous section:

('LPSD=', 0.14556051947047091)
(' LPSD (annualized) for ', 'IBM', 'is ', 0.146)

Test of equivalency of volatility over  
two periods
We know that the stock market fell dramatically in October, 1987. We could choose a 
stock to test the volatility before and after October, 1987. For instance, we could use 
Ford Motor Corp, with a ticker of F, to illustrate how to test the equality of variance 
before and after the market crash in 1987. In the following Python program, we 
define a function called ret_f() to retrieve daily price data from Yahoo! Finance and 
estimate its daily returns:

import numpy as np
import scipy as sp
import pandas as pd
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
#
# input area
ticker='F'            # stock
begdate1=(1982,9,1)   # starting date for period 1 
enddate1=(1987,9,1)   # ending date for period   1 
begdate2=(1987,12,1)  # starting date for period 2 
enddate2=(1992,12,1)  # ending   date for period 2
#
# define a function
def ret_f(ticker,begdate,enddate):
    p =getData(ticker, begdate, enddate,asobject=True, adjusted=True)
    ret = p.aclose[1:]/p.aclose[:-1]-1 
    date_=p.date
    return pd.DataFrame(data=ret,index=date_[1:],columns=['ret'])
#
# call the above function twice 
ret1=ret_f(ticker,begdate1,enddate1) 
ret2=ret_f(ticker,begdate2,enddate2)
#
# output
print('Std period #1    vs. std period #2') 
print(round(sp.std(ret1.ret),6),round(sp.std(ret2.ret),6)) 
print('T value ,    p-value ') 
print(sp.stats.bartlett(ret1.ret,ret2.ret))
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The very high T value and close to zero p-value in the following screenshot suggest 
the rejection of the hypothesis that during these two periods, the stock has the same 
volatility. The corresponding output is given as follows:

Std period #1   vs. std period #2
(0.01981, 0.017915)
T value ,       p-value 
BartlettResult(statistic=12.747107745102099, 
pvalue=0.0003565601014515915)

Test of heteroskedasticity, Breusch,  
and Pagan
Breusch and Pagan (1979) designed a test to confirm or reject the null assumption 
that the residuals from a regression are homogeneous, that is, with a constant 
volatility. The following formula represents their logic. First, we run a linear 
regression of y against x:

Here, y is the dependent variable, x is the independent variable, α is the intercept, β 
is the coefficient, and  is an error term. After we get the error term (residual), we 
run the second regression:

Assume that the fitted values from running the previous regression is t f, then the 
Breusch-Pangan (1979) measure is given as follows, and it follows a χ2 distribution 
with a k degree of freedom:
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The following example is borrowed from an R package called lm.test (test linear 
regression), and its authors are Hothorn et al. (2014). We generate a time series of x, y1 
and y2. The independent variable is x, and the dependent variables are y1 and y2. By 
our design, y1 is homogeneous, that is, with a constant variance (standard deviation), 
and y2 is non-homogeneous (heterogeneous), that is, the variance (standard 
deviation) is not constant. For a variable x, we have the following 100 values:

Then, we generate two error terms with 100 random values each. For the error1, its 
100 values are drawn from the standard normal distribution, that is, with zero mean 
and unit standard deviation. For error2, its 100 values are drawn from a normal 
distribution with a zero mean and 2 as the standard deviation. The y1 and y2 time-
series are defined as follows:

For the odd scripts of y2, the error terms are derived from error1, while for the even 
scripts, the error terms are derived from error2. To find more information about the 
PDF file related to lm.test, or an R package, we have the following six steps:

1.  Go to http://www.r-project.org.
2. Click on CRAN under Download, Packages.
3. Choose a close-by server.
4. Click on Packages on the left-hand side of the screen.
5. Choose a list and search lm.test.
6. Click the link and download the PDF file related to lm.test.

The following is the related Python code:

import numpy as np
import scipy as sp
import statsmodels.api as sm 
#
def breusch_pagan_test(y,x): 
    results=sm.OLS(y,x).fit() 
    resid=results.resid
    n=len(resid)

http://www.r-project.org
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    sigma2 = sum(resid**2)/n 
    f = resid**2/sigma2 - 1
    results2=sm.OLS(f,x).fit() 
    fv=results2.fittedvalues 
    bp=0.5 * sum(fv**2) 
    df=results2.df_model
    p_value=1-sp.stats.chi.cdf(bp,df)
    return round(bp,6), df, round(p_value,7)
#
sp.random.seed(12345) 
n=100
x=[]
error1=sp.random.normal(0,1,n) 
error2=sp.random.normal(0,2,n) 
for i in range(n):
    if i%2==1:
        x.append(1) 
    else:
        x.append(-1)
#
y1=x+np.array(x)+error1 
y2=sp.zeros(n)
#
for i in range(n): 
    if i%2==1:
        y2[i]=x[i]+error1[i] 
    else:
        y2[i]=x[i]+error2[i]

print ('y1 vs. x (we expect to accept the null hypothesis)') 
bp=breusch_pagan_test(y1,x)
#
print('BP value,    df,    p-value') 
print 'bp =', bp 
bp=breusch_pagan_test(y2,x)
print ('y2 vs. x    (we expect to rject the null hypothesis)') 
print('BP value,    df,    p-value')
print('bp =', bp)
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From the result of running regression by using y1 against x, we know that its 
residual value would be homogeneous, that is, the variance or standard deviation is 
a constant. Thus, we expect to accept the null hypothesis. The opposite is true for y2 
against x, since, based on our design, the error terms for y2 are heterogeneous. Thus, 
we expect to reject the null hypothesis. The corresponding output is shown as follows:

y1 vs. x (we expect to accept the null hypothesis)
BP value,       df,     p-value
bp = (0.596446, 1.0, 0.5508776)
y2 vs. x        (we expect to rject the null hypothesis)
BP value,       df,     p-value
('bp =', (17.611054, 1.0, 0.0))

Volatility smile and skewness
Obviously, each stock should possess just one volatility. However, when estimating 
implied volatility, different strike prices might offer us different implied volatilities. 
More specifically, the implied volatility based on out-of-the-money options, at-
the-money options, and in-the-money options might be quite different. Volatility 
smile is the shape going down then up with the exercise prices, while the volatility 
skewness is downward or upward sloping. The key is that investors' sentiments and 
the supply and demand relationship have a fundamental impact on the volatility 
skewness. Thus, such a smile or skewness provides information on whether 
investors such as fund managers prefer to write calls or puts. First, we go to the 
Yahoo! Finance website to download call and put options data:

1. Go to http://finance.yahoo.com.
2. Enter a ticker, such as IBM.
3. Click Options in the center.
4. Copy and paste the data for call and options.
5. Separate them into two files.

If readers use the data for a maturity of March 17, 2017, they can download it from 
the author's website at http://canisius.edu/~yany/data/calls17march.txt, 
http://canisius.edu/~yany/data/puts17march.txt.

The Python program for calls is shown in the following code:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
infile="c:/temp/calls17march.txt"
data=pd.read_table(infile,delimiter='\t',skiprows=1)

http://finance.yahoo.com
http://canisius.edu/~yany/data/calls17march.txt
http://canisius.edu/~yany/data/puts17march.txt
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x=data['Strike']
y0=list(data['Implied Volatility'])
n=len(y0)
y=[]
for i in np.arange(n):
    a=float(y0[i].replace("%",""))/100.
    y.append(a)
    print(a)
#
plt.title("Volatility smile")
plt.figtext(0.55,0.80,"IBM calls")
plt.figtext(0.55,0.75,"maturity: 3/17/2017")
plt.ylabel("Volatility")
plt.xlabel("Strike Price")
plt.plot(x,y,'o')
plt.show()

In the preceding program, the input file is for call options. The graph of the volatility 
smile is shown here. The other screenshot is based on the relationship between implied 
volatility and exercise (strike) prices. The program is exactly the same as the preceding 
program, except the input file. At the end of the chapter, one data case is related to the 
preceding program. The next image is the volatility smile based on the call data:

Volatility smile based on call data
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Similarly, the next volatility smile image is based on put data:

Graphical presentation of volatility 
clustering
One of the observations is labeled as volatility clustering, which means that high 
volatility is usually followed by a high-volatility period, while low volatility is usually 
followed by a low-volatility period. The following program shows this phenomenon 
by using S&P500 daily returns from 1988 to 2006. Note that, in the following code, in 
order to show 1988 on the x axis, we add a few months before 1988:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.finance import quotes_historical_yahoo_ochl as getData
#
ticker='^GSPC'
begdate=(1987,11,1)
enddate=(2006,12,31)
#
p = getData(ticker, begdate, enddate,asobject=True, adjusted=True)
x=p.date[1:] 
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ret = p.aclose[1:]/p.aclose[:-1]-1
#
plt.title('Illustration of volatility clustering (S&P500)') 
plt.ylabel('Daily returns')
plt.xlabel('Date') 
plt.plot(x,ret)
plt.show()

This program is inspired by the graph drawn by M.P. Visser; refer to https://pure.
uva.nl/ws/files/922823/67947_09.pdf. The graph corresponding to the previous 
code is shown as follows:

The ARCH model
Based on previous arguments, we know that the volatility or variance of stock 
returns is not constant. According to the ARCH model, we could use the error terms 
from the previous estimation to help us predict the next volatility or variance. This 
model was developed by Robert F. Engle, the winner of the 2003 Nobel Prize in 
Economics. The formula for an ARCH (q) model is presented as follows:

https://pure.uva.nl/ws/files/922823/67947_09.pdf
https://pure.uva.nl/ws/files/922823/67947_09.pdf
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Here,  is the variance at time t,  is the ith coefficient,  is the squared error 
term for the period of t-i, and q is the order of error terms. When q is 1, we have the 
simplest ARCH (1) process as follows:

Simulating an ARCH (1) process
It is a good idea that we simulate an ARCH (1) process and have a better 
understanding of the volatility clustering, which means that high volatility is usually 
followed by a high-volatility period while low volatility is usually followed by a low-
volatility period. The following code reflects this phenomenon:

import scipy as sp 
import matplotlib.pyplot as plt
#
sp.random.seed(12345)
n=1000        # n is the number of observations
n1=100        # we need to drop the first several observations 
n2=n+n1       # sum of two numbers
#
a=(0.1,0.3)   # ARCH (1) coefficients alpha0 and alpha1, see Equation 
(3)
errors=sp.random.normal(0,1,n2) 
t=sp.zeros(n2)
t[0]=sp.random.normal(0,sp.sqrt(a[0]/(1-a[1])),1) 
for i in range(1,n2-1):
    t[i]=errors[i]*sp.sqrt(a[0]+a[1]*t[i-1]**2) 
    y=t[n1-1:-1] # drop the first n1 observations 
#
plt.title('ARCH (1) process')
x=range(n) 
plt.plot(x,y)
plt.show()
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From the following graph, we see that indeed a higher volatility period is usually 
followed with high volatility while this is also true for a low-volatility clustering:

The GARCH model
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) is an 
important extension of ARCH, by Bollerslev (1986). The GARCH (p,q) process is 
defined as follows:

Here, is the variance at time t, q is the order for the error terms, p is the order for 
the variance, is a constant,  is the coefficient for the error term at t-i,  is 
the coefficient for the variance at time t-i. Obviously, the simplest GARCH process is 
when both p and q are set to 1, that is, GARCH (1,1), which has following formula:



Volatility, Implied Volatility, ARCH, and GARCH

[ 538 ]

Simulating a GARCH process
Based on the previous program related to ARCH (1), we could simulate a GARCH 
(1,1) process as follows:

import scipy as sp 
import matplotlib.pyplot as plt
#
sp.random.seed(12345)
n=1000          # n is the number of observations
n1=100          # we need to drop the first several observations 
n2=n+n1         # sum of two numbers
#
a=(0.1,0.3)     # ARCH coefficient
alpha=(0.1,0.3)    # GARCH (1,1) coefficients alpha0 and alpha1, see 
Equation (3)
beta=0.2 
errors=sp.random.normal(0,1,n2) 
t=sp.zeros(n2)
t[0]=sp.random.normal(0,sp.sqrt(a[0]/(1-a[1])),1)
#
for i in range(1,n2-1): 
    t[i]=errors[i]*sp.sqrt(alpha[0]+alpha[1]*errors[i-
1]**2+beta*t[i-1]**2)
#
y=t[n1-1:-1]    # drop the first n1 observations 
plt.title('GARCH (1,1) process')
x=range(n) 
plt.plot(x,y)
plt.show()

Honestly speaking, the following graph is quite similar to the previous one under the 
ARCH (1) process. The graph corresponding to the previous code is shown as follows:
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Fig15_04_garch.png

Simulating a GARCH (p,q) process using 
modified garchSim()
The following code is based on the R function called garchSim(), which is included 
in the R package called fGarch. The authors for fGarch are Diethelm Wuertz and 
Yohan Chalabi. To find the related manual, we perform the following steps:

1. Go to http://www.r-project.org.
2. Click on CRAN under Download, Packages.
3. Choose a close-by server.
4. Click on Packages on the left-hand side of the screen.
5. Choose a list and search for fGarch.
6. Click on the link and download the PDF file related to fGarch.

http://www.r-project.org
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The Python program based on the R program is given as follows:

import scipy as sp
import numpy as np
import matplotlib.pyplot as plt
#
sp.random.seed(12345) 
m=2
n=100              # n is the number of observations
nDrop=100          # we need to drop the first several observations 
delta=2
omega=1e-6 
alpha=(0.05,0.05)
#
beta=0.8 
mu,ma,ar=0.0,0.0,0.0
gamma=(0.0,0.0) 
order_ar=sp.size(ar) 
order_ma=sp.size(ma) 
order_beta=sp.size(beta)
#
order_alpha =sp.size(alpha) 
z0=sp.random.standard_normal(n+nDrop) 
deltainv=1/delta 
spec_1=np.array([2])
spec_2=np.array([2])
spec_3=np.array([2])
z = np.hstack((spec_1,z0)) 
t=np.zeros(n+nDrop)
h = np.hstack((spec_2,t)) 
y = np.hstack((spec_3,t)) 
eps0 = h**deltainv  * z
for i in range(m+1,n +nDrop+m-1):
    t1=sum(alpha[::-1]*abs(eps0[i-2:i]))    # reverse 
    alpha =alpha[::-1] 
    t2=eps0[i-order_alpha-1:i-1]
    t3=t2*t2 
    t4=np.dot(gamma,t3.T)
    t5=sum(beta* h[i-order_beta:i-1]) 
    h[i]=omega+t1-t4+ t5
    eps0[i] = h[i]**deltainv * z[i] 
    t10=ar * y[i-order_ar:i-1] 
    t11=ma * eps0[i -order_ma:i-1]
    y[i]=mu+sum(t10)+sum(t11)+eps0[i] 
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    garch=y[nDrop+1:] 
    sigma=h[nDrop+1:]**0.5 
    eps=eps0[nDrop+1:] 
    x=range(1,len(garch)+1) 
#
plt.plot(x,garch,'r')
plt.plot(x,sigma,'b')
plt.title('GARCH(2,1) process')
plt.figtext(0.2,0.8,'omega='+str(omega)+', alpha='+str(alpha)+',beta=
'+str(beta))
plt.figtext(0.2,0.75,'gamma='+str(gamma)) 
plt.figtext(0.2,0.7,'mu='+str(mu)+', ar='+str(ar)+',ma='+str(ma)) 
plt.show()

In the preceding program, omega is the constant in equation (10), while alpha is 
associated with error terms and beta is associated with variance. There are two items 
in alpha[a,b]: a is for t-1, while b is for t-2. However, for eps0[t-2:i], they stand 
for t-2 and t-1. The alpha and eps0 terms are not consistent with each other. Thus, 
we have to reverse the order of a and b. This is the reason why we use alpha[::-1]. 
Since several values are zero, such as mu, ar, and ma, the time series of GARCH is 
identical with eps. Thus, we show just two time series in the following graph. The high 
volatility is for GARCH, while the other one is for standard deviation:

Fig15_05_two.png
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GJR_GARCH by Glosten, Jagannanthan, 
and Runkle
Glosten, Jagannathan, and Runkle (1993) modeled asymmetry in the GARCH 
process. GJR_GARCH (1,1,1) has the following format:

Here, the condition It-1=0, if  and It-1=1 if  holds true. The 
following code is based on the codes written by Kevin Sheppard:

import numpy as np
from numpy.linalg import inv
import matplotlib.pyplot as plt
from matplotlib.mlab import csv2rec
from scipy.optimize import fmin_slsqp 
from numpy import size, log, pi, sum, diff, array, zeros, diag, dot, 
mat, asarray, sqrt
#
def gjr_garch_likelihood(parameters, data, sigma2, out=None): 
    mu = parameters[0]
    omega = parameters[1] 
    alpha = parameters[2] 
    gamma = parameters[3] 
    beta = parameters[4]
    T = size(data,0)
    eps = data-mu
    for t in xrange(1,T):
        sigma2[t]=(omega+alpha*eps[t-1]**2+gamma*eps[t-1]**2*(eps[t- 
1]<0)+beta*sigma2[t-1])
        logliks = 0.5*(log(2*pi) + log(sigma2) + eps**2/sigma2) 
    loglik = sum(logliks)
    if out is None: 
        return loglik
    else:
        return loglik, logliks, copy(sigma2)
#
def gjr_constraint(parameters,data, sigma2, out=None):
    alpha = parameters[2]
    gamma = parameters[3] 
    beta = parameters[4]
    return array([1-alpha-gamma/2-beta]) # Constraint 
alpha+gamma/2+beta<=1
#
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def hessian_2sided(fun, theta, args): 
    f = fun(theta, *args)
    h = 1e-5*np.abs(theta) 
    thetah = theta + h
    h = thetah-theta 
    K = size(theta,0) 
    h = np.diag(h)
    fp = zeros(K) 
    fm = zeros(K)
    for i in xrange(K):
        fp[i] = fun(theta+h[i], *args) 
        fm[i] = fun(theta-h[i], *args)
        fpp = zeros((K,K))
        fmm = zeros((K,K)) 
    for i in xrange(K):
        for j in xrange(i,K):
            fpp[i,j] = fun(theta + h[i] + h[j], *args) 
            fpp[j,i] = fpp[i,j]
            fmm[i,j] = fun(theta-h[i]-h[j], *args) 
            fmm[j,i] = fmm[i,j]
            hh = (diag(h))
            hh = hh.reshape((K,1))
            hh = dot(hh,hh.T)
            H = zeros((K,K)) 
    for i in xrange(K):
        for j in xrange(i,K):
            H[i,j] = (fpp[i,j]-fp[i]-fp[j] + f+ f-fm[i]-fm[j] + 
fmm[i,j])/hh[i,j]/2
            H[j,i] = H[i,j]
    return H

We can write a function called GJR_GARCH() by including all initial values, constraints, 
and bounds as follows:

def GJR_GARCH(ret): 
    import numpy as np
    import scipy.optimize as op 
    startV=np.array([ret.mean(),ret.var()*0.01,0.03,0.09,0.90])
    finfo=np.finfo(np.float64)
    t=(0.0,1.0)
    bounds=[(-10*ret.mean(),10*ret.mean()),(finfo.eps,2*ret.
var()),t,t,t] 
    T=np.size(ret,0)
    sigma2=np.repeat(ret.var(),T) 
    inV=(ret,sigma2)
    return op.fmin_slsqp(gjr_garch_likelihood,startV,f_ieqcons=gjr_con
straint,bounds=bounds,args=inV)
#
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In order to replicate our result, we could use the random.seed() function to fix 
our returns obtained from generating a set of random numbers from a uniform 
distribution:

sp.random.seed(12345) 
returns=sp.random.uniform(-0.2,0.3,100) 
tt=GJR_GARCH(returns)

The interpretations of these five outputs are given in the following table:

# Meaning
1 Message describing the exit mode from the optimizer
2 The final value of the objective function
3 The number of iterations
4 Function evaluations
5 Gradient evaluations

Table 15.1 Definitions of five outputs

The descriptions of various exit modes are listed in the following table:

Exit code Description
-1 Gradient evaluation required (g and a)
0 Optimization terminated successfully
1 Function evaluation required (f and c)
2 More equality constraints than independent variables
3 More than 3*n iterations in LSQ sub problem
4 Inequality constraints incompatible
5 Singular matrix E in LSQ subproblem
6 Singular matrix C in LSQ subproblem
7 Rank-deficient equality constraint subproblem HFTI
8 Positive directional derivative for line search
9 Iteration limit exceeded

Table 15.2 Exit modes
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To show our final parameter values, we print our results with the help of the 
following code:

print(tt)
Optimization terminated successfully.    (Exit mode 0)
            Current function value: -54.0664733128
            Iterations: 12
            Function evaluations: 94
            Gradient evaluations: 12
[  7.73958251e-02   6.65706323e-03   0.00000000e+00   2.09662783e-12
   6.62024107e-01]

References
One of the important properties of a normal distribution is that we could use mean 
and standard deviation.

Engle, Robert, 2002, DYNAMIC CONDITIONAL CORRELATION – A SIMPLE CLASS 
OF MULTIVARIATE GARCH MODELS, Forthcoming Journal of Business and Economic 
Statistics, http://pages.stern.nyu.edu/~rengle/dccfinal.pdf.

Appendix A – data case 8 - portfolio hedging 
using VIX calls
The CBOE Volatility Index (VIX) is based on the S&P500 Index (SPX), the core 
index for U.S. equities, and estimates expected volatility by averaging the weighted 
prices of SPX puts and calls over a wide range of strike prices.

By supplying a script for replicating volatility exposure with a portfolio of SPX 
options, this new methodology transformed VIX from an abstract concept into a 
practical standard for trading and hedging volatility.

In 2014, CBOE enhanced the VIX Index to include series of SPX Weekly options. The 
inclusion of SPX Weeklies allows the VIX Index to be calculated with S&P500 Index 
option series that most precisely match the 30-day target timeframe for expected 
volatility that the VIX Index is intended to represent. Using SPX options with more 
than 23 days and less than 37 days to expiration ensures that the VIX Index will always 
reflect an interpolation of two points along the S&P 500 volatility term structure.

http://pages.stern.nyu.edu/~rengle/dccfinal.pdf
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References
http://www.theoptionsguide.com/portfolio-hedging-using-vix-calls.aspx.

http://www.cboe.com/micro/vix/historical.aspx.

https://www.tickdata.com/tick-data-adds-vix-futures-data/.

Appendix B – data case 8 - volatility smile and 
its implications
There are several objectives of this data case:

• Understand the concept of the implied volatility
• Understand that the implied volatilities are different with different exercise 

(strike) prices
• Learnt how to process data and produce related graphs
• What is the implication of a volatility smile?

Source of data: Yahoo! Finance:

1. Go to http://finance.yahoo.com.
2. Enter a ticker, such as IBM.
3. Click Options in the center.
4. Copy and paste the data for call and options.
5. Separate them into two files.

For the following companies:

Company name Ticker Dell company DELL
International Business Machine IBM General Electric GE
Microsoft MSFT Google GOOG
Family Dollar Stores FDO Apple AAPL
Wal-Mart Stores WMT eBay EBAY
McDonald's MCD

http://www.theoptionsguide.com/portfolio-hedging-using-vix-calls.aspx
http://www.cboe.com/micro/vix/historical.aspx
https://www.tickdata.com/tick-data-adds-vix-futures-data/
http://finance.yahoo.com
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Note that for each stock, there are several maturity dates; see the following 
screenshot:

A sample Python program is shown here and the input file can be downloaded from 
the author's website at http://canisius.edu/~yany/data/calls17march.txt:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
infile="c:/temp/calls17march.txt"
data=pd.read_table(infile,delimiter='\t',skiprows=1)
x=data['Strike']
y0=list(data['Implied Volatility'])
n=len(y0)
y=[]
for i in np.arange(n):
    a=float(y0[i].replace("%",""))/100.
    y.append(a)
    print(a)
#
plt.title("Volatility smile")
plt.figtext(0.55,0.80,"IBM calls")
plt.figtext(0.55,0.75,"maturity: 3/17/2017")
plt.ylabel("Volatility")
plt.xlabel("Strike Price")
plt.plot(x,y,'o')
plt.show()

http://canisius.edu/~yany/data/calls17march.txt
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Exercises
1. What is the definition of volatility?
2. How can you measure risk (volatility)?
3. What are the issues related to the widely used definition of risk  

(standard deviation)?
4. How can you test whether stock returns follow a normal distribution? For the 

following given set of stocks, test whether they follow a normal distribution:

Company name Ticker Dell company DELL
International Business 
Machine

IBM General Electric GE

Microsoft MSFT Google GOOG
Family Dollar Stores FDO Apple AAPL
Wal-Mart Stores WMT eBay EBAY
McDonald's MCD

5. What is the lower partial standard deviation? What are its applications?
6. Choose five stocks, such as DELL, IBM, Microsoft, Citi Group, and Walmart, 

and compare their standard deviation with LPSD based on the last three-
years' daily data.

7. Is a stock's volatility constant over the years? You could choose International 
Business Machine (IBM) and Walmart (WMT) to test your hypothesis.

8. What is an ARCH (1) process?
9. What is a GARCH (1,1) process?
10. Apply the GARCH (1,1) process to IBM and WMT.
11. Write a Python program to show the volatility smile combine both calls  

and puts.
12. Write a Python program to put volatility smiles by using different maturity 

dates. In other words, put several smiles together.
13. Use the Breusch-Pagan (1979) test to confirm or reject the hypothesis that 

daily returns for IBM is homogeneous.
14. How can you test whether a stock's volatility is constant?
15. What does fat tail mean? Why should we care about fat tail?
16. Could you write a Python program to download the option data?
17. How do you download all maturity dates?
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Summary
In this chapter, we focused on several issues, especially on volatility measures and 
ARCH/GARCH. For the volatility measures, first we discussed the widely used 
standard deviation, which is based on the normality assumption. To show that such 
an assumption might not hold, we introduced several normality tests, such as the 
Shapiro-Wilk test and the Anderson-Darling test. To show a fat tail of many stocks' 
real distribution benchmarked on a normal distribution, we vividly used various 
graphs to illustrate it. To show that the volatility might not be constant, we presented 
the test to compare the variance over two periods. Then, we showed a Python 
program to conduct the Breusch-Pangan (1979) test for heteroskedasticity. ARCH 
and GARCH are used widely to describe the evolution of volatility over time. For 
these models, we simulate their simple form such as ARCH (1) and GARCH (1,1) 
processes. In addition to their graphical presentations, the Python codes of Kevin 
Sheppard are included to solve the GJR_GARCH (1,1,1) process.
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put-call parity
about  359-362
graphic presentation  359-362
put-call ratio, with trend for  

short period  363, 364
URL  361

puttable bond  167
Python

custom financial calculator,  
writing  91, 92, 105

direct installation  4-6
financial calculator, writing in  81-85
GDP dataset usGDPquarterly2.pkl,  

generating  281
installation  1, 2, 96, 97
installation, via Anaconda  2, 3
installing, via Canopy  204-206
launching, via Spyder  3, 4
URL  97
used, for high-frequency data  273-276

Python datasets
businessCycleIndicator2.pkl  235
businessCycleIndicator.pkl  235
ffcDaily.pkl  235
ffcMonthly.pkl  235
ffDaily5.pkl  235
ffDaily.pkl  235
ffMomMonthly.pkl  235
ffMonthly5.pkl  235
ffMonthly.pkl  235
ibm3factor.pkl  235
tradingDaysDaily.pkl  235
tradingDaysMonthly.pkl  235
uniqueWordsBible.pkl  235
URL  235
usCPImonthly.pkl  235
usDebt.pkl  235
usGDPquarterly.pkl  235
yanMonthly.pkl  235

Python function
writing  9, 10

Python loops
about  10
if...else conditions  11-15

Python module
about  32-37
advantages  67
dependency  67
disadvantages  67
installing  64-67
related to finance  59, 60

Python Module Index (v2.7)
reference link  60

Python Module Index (v3.5)
reference link  60

Python module, in finance
economics  59
finance  59
FinDates  59
googlefinance  59
Numpy.lib.financial  59
pandas_datareader  59
Python_finance  59
quant  59
tradingmachine  59
tstockquote  59
yahoo-finance  59

Python Package Index (PyPI)
reference link  60

Python Packaging Index (PIP)  97
Python program

candle-stick picture, drawing  139
for bond duration estimation  182
for displaying stock's intra-day  

movement  142
for interest conversion  178
for price movement  140
for rateYan.py  178
for stock price based n-period  

model estimation  180
pandas DataFrame, properties  142, 143
Python dataset with .pickle  

extension, generating  144
Python dataset with .pkl extension,  

generating  144
return distribution, versus normal  

distribution  138
several Python datasets, generating  145
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Python SimPy module  449

Q
Quasi Monte Carlo  462, 463

R
R

graphical presentation, in relationship  
with NPV  102-104

rainbow options  498-505
random numbers

generating, from normal  
distribution  422-425

generating, from Poisson distribution  431
generating, from uniform distribution  428
generating, with seed  424, 425
histogram, for normal distribution  425, 426
lognormal distribution, graphical  

presentation  426, 427
recovery rates

reference  473
risk-free rate (Rf)  227, 315, 482
Roll's spread

estimating  266
Root Mean Standard Square Error  

(RMSE)  215

S
Scholes and William adjusted beta  194-197
SciPy

about  41-44
installation  96, 97

scipy.optimize.minimize() function
BFGS  296
CG  296
COBYLA  296
dogleg  296
LBFGSB  296
NelderMead  296
NewtonCG  296
Powell  296
SLSQP  296
TNC  296
trustncg  296

seed
random numbers, generating  424, 425

Shapiro-Wilk test  258
shout option  496
simple interest rate

versus compounding interest rate  176, 177
SimPy  449
simulation

Black-Scholes-Merton call,  
replicating with  441

methods, liking for VaR  445
pi value, estimating with  429, 430
used, for obtaining efficient frontier  

based on stocks  454-456
skewness

about  402
volatility smile  379-381

Small Minus Big (SMB)  218, 433
Sobol sequence  462, 463
social policies, comparison

example  450-454
Sortino ratio  526-528
S&P500 Index (SPX)  545
S&P500 monthly returns

replicating  323, 324
Spyder

Python, launching through  3, 4
Python, launching via  3, 4

statsmodels  49-51
stock price movements

simulation  437, 438
stock prices

graphical presentation, at options  
maturity dates  439, 440

stocks
selecting, randomly from  

given stocks  432, 433
stock valuation  171-176
stress testing  411-413
strftime

URL  249
string manipulation  201-203

T
text files

output data, extracting to  198
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time-series analysis  244, 245
time value of money

about  72-80
visual presentation  98

Trade and Quotation (TAQ) database
URL  273

Trade, Order, Report, and Quotation 
(TORQ) database

about  276
URL  276

trading strategies
about  350
butterfly, with calls  353, 354
covered-call  351
Greeks  356-359
input values and option values,  

relationship between  355
scenario  352, 353

T-test  262
two dozen datasets

generating  130

U
uniform distribution

random numbers, generating  428
uniqueWordsBible.pkl file

URL  203
up-and-in parity, barrier options

graph  510-512
up-and-out parity, barrier options

graph  510-512

V
Value at Risk (VaR)

about  389-399
estimation  408
estimation, case study  415-417
for portfolios  409-411
methods, liking with simulation  445+

value-weighted market returns  
(VWRETD)  285

VaR based on historical returns  405-408
variable assignment  7, 8
volatility

equivalency, testing over  
two periods  528, 529

volatility clustering
graphical presentation  534

volatility skewness  532-534
volatility smile

about  532-534
implications  546, 547
skewness  379-381

W
Walmart (WMT)  299, 403

Y
Yahoo! Finance

option data, retrieving  378
URL  378, 532

yanMonthly.pkl dataset
URL  195, 302, 320, 432

Yield to Maturity (YTM)  162, 168, 467
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